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Abstract—In this paper, we consider a system that consists of
independent parallel channels, where the receiver starts to de-

code the information being transmitted when it has access to at
least of them. We refer to this system as the � �-limited ac-
cess channel. No prior knowledge for the distribution about which
transmissions will be received is assumed. In addition, both the
channel inputs and channel disturbances can be arbitrary, except
that the mutual information function for each channel is assumed
strictly concave with respect to the input power. Hence, the channel
capacity below which the code rate is guaranteed to be attainable
by a sequence of codes with vanishing error can be determined by
the minimum mutual information among any out of chan-
nels. We then investigate the power allocation that maximizes this
minimum mutual information subject to a total power constraint.
As a result, the optimal solution can be determined via a system-
atic algorithmic procedure by performing at most single-power-
sum-constrained maximizations. Based on this result, the closed-
form formula of the optimal power allocation for an � �-lim-
ited access channel with channel inputs and additive noises, re-
spectively, scaled from two independent and identically distributed
random vectors of length is subsequently established, and is
shown to be well interpreted by a two-phase water-filling prin-
ciple. Specifically, in the first noise-power redistribution phase, the
least noise powers (equivalently, second moments) are first
poured (as noise water) into a tank consisting of interconnected
unit-width vessels with solid base heights, respectively, equal to the
remaining largest noise powers. Afterward, those vessels ei-
ther with noise water inside or with solid base height equal to the
new water surface level are subdivided into � vessels
of rectangular shape with the same heights (as the water surface
level) and widths in proportion to their noise powers. In the second
signal-power allocation phase, the heights of vessel bases will be
first either lifted or lowered according to the total signal power
and channel mutual information functions, followed by the usual
signal-power water-filling scheme. The two-phase water-filling in-
terpretation then hints that the degree of “noisiness” for a general
(possibly, nonadditive and non-Gaussian) limited access channel
might be identified by composing the derivative of the mutual in-
formation function with its inverse.

Index Terms—Channel capacity, compound channel, mutual in-
formation, power allocation, water-filling.
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I. INTRODUCTION

A fundamental issue in multiple access channels is power
allocation under a total power constraint. In the literature,

the best known result in this subject is perhaps the water-filling
power allocation principle obtained by maximizing the capacity
of parallel additive white Gaussian noise (AWGN) channels
[10]. An extension to additive color Gaussian noise chan-
nels has later been studied and was found to also follow the
water-filling principle over the color spectra of the noises [8].
Recently, by characterizing the relationship between mutual
information and minimum mean square error (MMSE) [11], the
optimal power allocation for parallel AWGN channels with ar-
bitrary input (possibly finite) has been established, resulting in
a new graphical power allocation interpretation called the mer-
cury/water-filling principle [18]. In light of this new finding, the
optimal power allocations, respectively, for multiuser downlink
orthogonal frequency-division multiplexing (OFDM) channels
[19] and multiple-input-multiple-output (MIMO) channels [23]
with arbitrary inputs in the presence of additive white Gaussian
background noises are subsequently obtained and found to
follow variations of mercury/water-filling principle.

Instead of assuming complete knowledge on channel statis-
tics, a channel could have a number of states with unknown dis-
tribution. These channels are classified as compound channels
as they are compounds of channels parameterized by their states
[9], [14], [34]. Since the channel state of a compound channel
is only known to be an element of some given set, its capacity
below which the code rate is guaranteed to be attainable by a se-
quence of codes with vanishing error is then determined by the
minimum mutual information among all stated channels. Dif-
ferent sets of channel states have been considered in the litera-
ture, and their respective optimal power allocations that maxi-
mize the minimum mutual information have been derived.

In [21], the states for an MIMO Gaussian compound channel
are controlled by the fading parameter within an “isotropic” set,
and the optimal power allocation that maximizes the minimum
mutual information with respect to Gaussian inputs is shown
to be uniform. In [31] and [33], the channel states for mul-
tiple-input-single-output and MIMO Gaussian compound chan-
nels are parameterized again by the channel fading but are now
“ellipsoid” in nature, and the optimal strategy for power allo-
cation becomes beamforming for Gaussian inputs. In [22], the
authors model the channel state as the phase of the fading pa-
rameter in an MIMO Gaussian compound channel, and obtain
that the covariance matrix of the Gaussian input that maximizes
the capacity is diagonal. In [5], the channel capacity of MIMO
Gaussian compound channels with partially known distribution
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in channel matrix is investigated. In [32], by considering a par-
allel Gaussian compound channel where the channel states are
determined by the amplitudes of fading parameters, the power
allocation that achieves a capacity lower bound obtained via La-
grange duality is proposed. When arbitrary inputs rather than
Gaussian ones are considered for these existing results over
compound channels, the new finding in [18] may lead to inter-
esting extensions.

In this paper, we consider a compound channel with the
channel state being a binary vector of length . Although
additive Gaussian noises are appropriate models for general
physical channels, and thus are commonly assumed in the
power allocation literature (see, e.g., [18], [19], [21]–[23], and
[31]–[33]), experimental measurements in certain environments
show that the ambient noise may be non-Gaussian distributed.
These environments include indoor and urban radio channels
[3], [27], underwater communication systems [20], power line
channels [36], and digital subscriber lines [7]. We, therefore,
assume that the channel disturbances can be arbitrary, not
necessarily additive or Gaussian, and hence, the results of the
above literatures based on Gaussian compound channels cannot
be applicable to our channel.

The channel states that we consider are decided according to
whether or not the transmission signals can reach the receiver
end. A straightforward scenario for this state model is a packet
switched network, where packets can be lost during transmis-
sion [1]. In a highly mobile system, however, the transmission
signals can also be missed by a moving mobile terminal. In cer-
tain situations, the receiver may still be required to recover the
transmitted information from its partial receptions [15], [24],
[25]. This raises the question of what the optimal power allo-
cation principle will be for a compound channel with arbitrary
input and partially delivered receptions. Notably, since the set of
channel states we consider is no longer convex, the traditional
techniques [5], [21], [22], [31]–[33] used to solve the power al-
location problems based on a convex channel state space in com-
pound channels cannot be applied and an alternative approach
should be taken.

Specifically, among individual transmissions, possibly
parallelly or temporally, we assume that the receiver will begin
to recover the information being transmitted when it has access
to at least of them. Since we assume the channel disturbances
can be either nonadditive or non-Gaussian, to find the optimal
power allocation principle for this compound channel seems
tricky. We then find that if the mutual information satisfies a
certain concavity condition (cf., Assumption 1 in Section II),
the optimal power allocation can be obtained algorithmically
by solving at most Lagrange-multiplier maximizations
(see Theorem 2). To demonstrate the value of the proposed
algorithm in complexity reduction, comparison between the
proposed algorithm and a representative brute force method is
discussed afterwards. Then, following the proposed algorithm,
we further establish that when channel disturbances, in addition
to independence, are reduced to being additive with distri-
butions scaled from a common random variable, the optimal
power allocation can be directly obtained from a two-phase
water-filling process if the arbitrary channel inputs are given
by the respective component variables in an independent and

identically distributed (i.i.d.) random vector, multiplying by the
square root of the allocated power. The two-phase water-filling
interpretation then hints that the degree of “noisiness” for a
general (possibly, nonadditive and non-Gaussian) limited ac-
cess compound channel might be identified by composing the
derivative of the mutual information function with its inverse.

The rest of this paper is structured as follows. In Section II,
we introduce the channel model of the -limited access
channel considered in this paper as well as the corresponding
channel capacity formula. Section III presents discussion
regarding the properties of the optimal power allocation and
the algorithm that determines the optimal power allocation.
In Section IV, we simplify the channel model by further as-
suming that the channel inputs and additive noises are scaled,
respectively, from two i.i.d. random vectors, which results in
a two-phase water-filling graphical interpretation for optimal
power allocation. In Section V, following the notion of the
two-phase water-filling interpretation, the degree of “noisi-
ness” for a general limited access channel as well as the optimal
power allocation in low- and high-power regimes are addressed.
In Section VI, we conclude the paper and note some possible
extensions.

II. SYSTEM MODEL FOR AN -LIMITED

ACCESS CHANNEL

As shown in Fig. 1, we consider a system that consists of
parallel channels with unit-power inputs adapted according

to � satisfying . In
this system, only a certain portion of channel outputs are
guaranteed to be successfully received at the receiver end.
The system, however, does not a priori know which outputs
will be blocked or nullified, nor does the system have the
knowledge of the statistics of these blockage. We can realize
this assumption by introducing a set of auxiliary multiplica-
tive coefficients to the channel outputs, where
the th channel output is blocked or nullified when being
multiplied by , and remains when the multiplicative
constant is equal to 1. It is assumed that by monitoring the
channel activities, the receiver can perfectly tell the value of

�, where superscript “ ” is the matrix
transpose operation.1 Furthermore, will remain unchanged
within a codeword transmission period but may vary for dif-
ferent codeword blocks. The receiver will then decode the
information based on the receptions
if at least out of components of vector are equal to one,

where � are the channel outputs at time
instance , is the codeword length, and operator “ ” denotes
the matrix Hadamard product [17]. Conversely, the receiver
will give up the decoding if . We thus refer to this
channel model as an -limited access channel.

In this setting, we are interested in the optimal power
allocation � such that the minimum
input–output mutual information subject to is

1It has been remarked in [14, Th. 1] that for compound discrete memoryless
channels, the capacity remains unchanged even if the receiver knows nothing
about . Therefore, for the channels considered in [14, Th. 1] the result in this
paper can also be applied without prior knowledge of .
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Fig. 1. System model for an �����-limited access channel.

maximized. This quantity is generally regarded as the achiev-
able rate under which the decoding error can be made arbitrarily
small.2

Under the system model, the input–output mutual informa-
tion can be in principle represented by

where is the mutual information function and
�. Here, we overload the nota-

tion by denoting the channel output vector corresponding to

one channel usage by �, and likewisely
denote the channel input vector for a single channel usage by

�. The achievable rate that guarantees a
vanishing decoding error subject to is, therefore,
optimistically

(1)
where is the set of nonnegative real numbers. If the parallel
channels are independent in the sense that

(2)

then the independence bound for mutual information yields that

where the last equality follows from being either 1 or 0. We
can therefore focus on the optimal power allocation for inde-
pendent input distributions, if the channel transition probability
satisfies (2).

2Our focus in this paper is the decoding error given that � � � , not
the decoding error with respect to a statistically distributed . Note that since
the statistics of is assumed unknown, the latter (i.e., the expected probability
of decoding error with respect to ) actually cannot be established.

We next denote for convenience for
, and make the following assumption on these mutual

information functions.

Assumption 1: For , is continuous and
strictly increasing for , and its first derivative, i.e.,

exists and is continuous and strictly decreasing in , where

we define .3.
Generally speaking, the channels considered in Assumption

1 are supposed to have more available mutual information when
more power is allocated, but the rate of increment is decreasing
with respect to the power allotment. There are quite a few
practical channels satisfying this assumption, such as antipodal
binary-input AWGN channels with hard decision at receiver
side, quaternary-input additive Laplace noise channels (cf.,
Example 1), scalar AWGN channels with arbitrary inputs [18],
parallel AWGN channels with given independent inputs [18],
and Gaussian fading channels with given inputs [19]. We will
adopt Assumption 1 as a premise throughout the entire paper.

Under this assumption, it is clear that is a strictly con-
cave function of with initial value . To-
gether with the fact that for , we can replace
the two inequality constraints in (1) by their equality counter-
parts as

(3)

(4)

for a given that validates Assumption 1. In Section III, we
will show that under Assumption 1, the maximization–mini-
mization problem in (4) becomes algorithmically tractable.

III. ANALYSIS OF THE OPTIMAL POWER ALLOCATION

This section presents the analysis for the optimization
problem in (4). For , (4) can be simplified to

It is, thus, straightforward that the optimal power allocation
satisfies

For , the maximization–minimization power alloca-
tion problem reduces to a problem that requires only one max-
imization computation because .
Therefore, one can apply the Lagrange multipliers technique

3Since the mutual information function � ��� is only defined for � � �, its
derivative at the origin cannot be defined under the usual mathematical prin-
ciple, i.e., the derivative from the right equal to the derivative from the left.
From the aspect of the optimization problem concerned in this work, we adopt
� ���� ��� � ��� as the “derivative” at the origin, specifically when zero
power is considered to be allocated to channel �. See, for example, (30).
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and Karuch–Kuhn–Tucker (KKT) condition to find the optimal
power allocation [4]. However, for , a straight tech-
nique generally does not exist for this maximization–minimiza-
tion problem. Nevertheless, we can find a necessary condition
for the optimal power allocation such that the labor of examining
all possible combinations of satisfying can
be reduced as indicated in the next lemma.

Lemma 1: The optimal power allocation for an
-limited access channel, where , satisfies

for some permutation of sequence .
Proof: Since the lemma trivially holds when , we

assume in the below proof. For the optimal power
allocation , let be a permutation of sequence

satisfying

We then have

(5)

Suppose that there were some such that
. Then, we can reduce down to

���

where ��� is the inverse function4 of , and increase
, respectively, to

��� ���

���

with positive and satisfying

��� ���

and

Note that the existence, continuity and strict monotonicity of
��� for is guaranteed by Assumption 1. The new

power assignment will clearly improve (5) up to

A contradiction to the optimality of is, thus, obtained.

4In this paper, we use � ��� , instead of the usual � , to denote the inverse
function of � . This is to hopefully provide a clearer notational indication when
the inverse of the first derivative � is additionally required later, which will be
denoted by � ��� in this paper.

An immediate implication of Lemma 1 is that we can distin-
guish the optimal power allocation for an -limited access
channel into disjoint cases. In other words, the condition

(6)

is valid for exactly one value of in . As a result,
if the index set

in which their respective mutual information function values are
equal to is identified in advance, the maxi-
mization–minimization power allocation problem is simplified
to a maximization problem as

(7)

where

(8)
However, the direct identification of without knowing in

advance is in general a challenge. The opposite, i.e., identifying
after determining , is more straightforward. In order to re-

solve the optimization problem, we propose in Sections III-A
and III-B to first determine the best power allocation corre-
sponding to a conjectured maximal-mutual-information index
set, denoted by . Then, we examine whether this conjecture is
the optimal one based on conditions we establish later. In case
the conjectured achieves only a suboptimal power allocation,
a new round of maximization computation and follow-up exam-
ination will be launched based on a newly generated . Since the
established conditions will help identifying one channel that is
not in at each round, the process will stop after
iterations at which point is obtained.

A. Determination of the Best Power Allocation
Corresponding to a Given Index Set

Based on a given index set , we transform the maximiza-
tion–minimization problem into

(9)

where is defined the same as (8) except that is replaced
with . Since the given may not be the optimal index set ,
the solution of the optimization problem defined in (9) could
be at the boundary of in the sense that

For this reason, we use supremum instead of maximum in (9).
We next show that the third equality constraint in can

be relaxed by incorporating the aggregate mutual information
function that transforms the -dimensional power allocation
problem into an equivalent -dimensional one.
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Fig. 2. Graphical illustration of the aggregate mutual information function
when � ��� � ����� � ��� � and � � � for � � � ��� 	� 
�.

Definition 1: The aggregate mutual information function
associated with a sequence of mutual information functions

is defined through its inverse function5 as follows:
��� ��� (10)

provided that all the inverse functions exist (which is guaranteed
by Assumption 1).

A graphical illustration of the aggregate mutual information
function for is given in Fig. 2. In this figure, it is
clear that

��� ��� ��� ���

As a specific example, if for some
and , then

In terms of the aggregate mutual information function, we can
simplify the constraints in in the following lemma, for
which the proof is deferred to Appendix A.

Lemma 2: Fix an index set . The vector that achieves (9)
satisfies

for
��� for

(11)

where the -dimensional vector achieves

(12)

where

In addition, if, and only if, .

5For completeness, we define �
��� ��� � � for � � � ���� � ���

and 	
��� ��� � � if one of �� ��� ���� is equal to �. Note that the

inverse function value	 ��� of function 	 ��� is always well defined for every
� � � because each � is assumed to be a strictly increasing function, and
��� 	 ��� � ��
 � .

By reducing the number of constraints down to two in
in Lemma 2, we can further proceed to show that the inequality
constraint in is redundant in case , as sum-
marized in Theorem 1, for which the proof can be found in
Appendix A.

Theorem 1: Given that , the maximizer for
(12) is equal to the maximizer of the problem below:

(13)

where

We summarize the notations we have used thus far as fol-
lows. The best power allocations for (12) and (13) with respect
to a given are denoted by and , respec-
tively. For convenience, we drop the dependence on in their
notational expressions. These two power allocations may not be
equal unless . Once is taken to be the optimal
corresponding to the optimal power allocation in the sense
of (6), can be derived from (equivalently, since
implies ) through an assignment similar to (11). Such no-
tational convention will be used throughout the paper. Notably,
we will show in Section III-B that for finding the optimal power
allocation , only the determination of is required since the
considered always belongs to . Hence, as the optimal
power allocation is concerned, the computation of a general

that may lie outside is not necessary.
We conclude this subsection by pointing out that the max-

imization computation in (13) is now performed over the
usual single power-sum constraint, and hence can be solved
by treating as the mutual information
function of an auxiliary aggregate channel. Based on the result
in Theorem 1, we are ready to present the algorithmic approach
that helps identifying the optimal maximal-mutual-information
index set and the optimal power allocation .

B. Determination of the Optimal Maximal-Mutual-information
Index Set and the Optimal Power Allocation

For an -limited access channel, there are possibly
candidate index sets for the choices of in

Theorem 1, and it may be time-consuming to perform the
optimization computation for(13) for each of them. The next
theorem then shows that this time-consuming maximization
labor can be reduced to only .

Theorem 2: The optimal maximal-mutual-information index
set and the optimal power allocation can be obtained
through the following algorithmic procedure:

Step 1. Initialize and .
Step 2. Obtain the maximizer for (13) by setting

, and calculate

�



3730 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 6, JUNE 2012

corresponding to the obtained and the given
through an assignment similar to (11).
Step 3. Assign , where is an
index in that satisfies

(14)

(If there are more than one index satisfying (14), just pick
up any one of them as .)
Step 4. If

(15)

then set and and stop the algorithm;
otherwise, set and go to Step 2.

Proof: For better readability, we defer the detail of the
proof to Appendix B and sketch only the key ideas here.

Following Lemma 2 and Theorem 1, we know that once in
(13) is taken to be , can be derived from through a similar
assignment to (11). Hence, to confirm the proposed algorithm,
it suffices to prove that when stop criterion (15) is first valid, the
corresponding is indeed equal to . The proof then requires
the verification of the below two claims.

(a) If , then stop criterion (15) is violated and
for .

(b) If stop criterion (15) is violated for , then
.

An immediate consequence of (b) is that if , then stop
criterion (15) must be valid at (because if stop criterion
(15) is violated at , we would obtain from
(b), a contradiction to ). Hence, is obtained by
the proposed algorithm. So, the proposed algorithm functions
correctly when .

When , according to (a), we have

and stop criterion (15) is violated for every .
Together with the statement of (b), we obtain that stop criterion
(15) must hold at ; otherwise, a contradiction
as will be obtained from (b).
Finally, we note that and
jointly imply Thus, the proposed algorithm also
functions correctly when . The proof of Theorem 2 is,
therefore, completed.

We would like to point out that the algorithm in Theorem 2
will stop when (and usually before) reaches , because (15)
trivially holds when . This coincides with the definition
of in (6) that at most indices are outside . Our algo-
rithm thus requires to solve at most optimization problems in
the form of (13).

We note that, in general, there are choices of
and only one of them is , and a straightforward method is

to examine all of them. In comparison with our algorithm, the
computation complexity of such a brute force method will be
much higher when and are only moderately large. For ex-
ample, consider an OFDM system, where there are 64 subcar-
riers and at least 30 subcarriers are required to be

accessible . The brute force method requires to ex-
amine maximizations in the form
of (13), and yet, our algorithm only needs to consider at most

maximizations of the same form. Hence, the com-
plexity reduction by the proposed algorithm is significant in this
regard.

Theorem 2 indicates that given the first derivative of the mar-
ginal mutual information function being
positive, strictly decreasing and continuous in for every

(i.e., Assumption 1), we can determine the optimal power
allocation for a spatially independent -limited access
channel with input by performing maxi-
mizations in the sense of (13). In Section IV, we will show that
this maximization labor can be further reduced to one if the con-
sidered channels are corrupted by additive noises of the same
family. Moreover, the resultant optimal power allocation can be
graphically interpreted by a two-phase water-filling scheme.

IV. OPTIMAL POWER ALLOCATION OVER

ADDITIVE NOISE CHANNELS

By additive noises of the same family, we mean that the rela-
tionship between channel inputs and outputs can be character-
ized by

(16)

where and are both i.i.d. complex random
variables with unit second moments, and they are indepen-
dent from each other. We then restrict our attention only to
the case that is a continuous random variable6 because
Assumption 1 may fail when both and are discrete.
Notably, often takes values in a finite alphabet (e.g., )
in practice. Specifically, when the intersection of two sets

and
is empty for every with and ,
we have

where is the entropy of the channel input [8]. This
implies that in a discrete system, can be equal to its max-
imum value almost everywhere in , in which case As-
sumption 1 is unquestionably violated.

Observe that for continuous additive noises

(17)

where is the differential entropy function [8], and (17)
follows from the independence between and , and

. This immediately yields

(18)

6By a continuous random variable, we mean that its support can not be made
finite or countable.
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Fig. 3. Graphical interpretation of the optimal two-phase water-filling power allocation for an ��� ��-limited access channel with independent additive noises
characterized by (16). In this figure, �� � � � � � � � � � � ��� 	� 
� �� �� �� �� 
�. (a)–(c) Noise-power redistribution phase. (d)–(f) Signal-power allocation phase.

with

(19)

Assumption 1 thus reduces to the single condition that function
is continuous and strictly increasing, and its first derivative

exists and is continuous and strictly decreasing.
Based on this system setting, we show in the next theorem

that the optimal power allocation follows a two-phase water-
filling scheme. Specifically, in the first phase (which we refer to
as the noise-power redistribution phase), the least noise
powers among will be first poured as noise water into
a tank consisting of interconnected vessels with solid base
heights equal to the remaining noise powers and with widths
of unit length as shown in Fig. 3(b). Afterward, those vessels
either with water inside or with solid base height equal to the
water surface level will be subdivided into vessels
of rectangular shape with the same heights (as the water surface
level) and with widths in proportion to their noise powers (but
the total volume remaining unchanged). As such, a tank with
vessels of proper heights and widths (corresponding to chan-
nels) is ready for the second phase as exemplified in Fig. 3(c). It
is worth mentioning that after the first phase, the optimal max-
imal-mutual-information index set has already been identified
and consists of the channel indices corresponding to the afore-
mentioned vessels and the least noise powers (hence,

).
In the second phase (which we refer to as the signal-power

allocation phase), the heights of vessel bases will be first ei-
ther lifted or possibly lowered according to total signal power

and function as well as their current heights as shown in
Fig. 3(e). What follows, as exemplified in Fig. 3(f), is the usual

water-filling power allocation scheme. The preadjustment of
base heights before water filling can be viewed as preparation
for these vessels to be “capable” of supporting the water that is
going to be poured in with amount . As a result, the volume of
water ended up in each vessel is exactly the power that should be
allocated. Notably, for the special case that the noises
are complex Gaussian distributed, the heights of vessel bases
can never be lowered in the preadjustment step; hence, a mer-
cury-filling scheme before water pouring has been proposed to
materialize the lifting of heights of vessel bases [18]. However,
since the adjustment of heights of vessel bases generally can
be in both up and down directions, the use of the name mer-
cury/water filling may induce that the vessel bases should be
lifted under general non-Gaussian additive noises; hence, we
simply use the conventional name of water-filling in this work.

Theorem 3: Suppose that the information transmitted over an
-limited access channel is corrupted by additive noises

of the same family characterized by (16), and the mutual in-
formation function defined in (19) satisfies Assumption 1.
Assume without loss of generality that

Then, the optimal maximal-mutual-information index set is
given by

(20)

where

(21)
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and for with chosen to satisfy

, and . The
optimal power allocation can therefore be obtained from
through an assignment similar to (11), where is the maxi-
mizer for (13) with equal to the above . In other words

for

for (22)

with7

���

(23)
for and

��� (24)

where ��� is the inverse function of the first derivative of
function , and is chosen such that

(25)

Proof: In terms of (18), the determination of in (14)
can be simplified to

��� (26)

(27)

where (26) follows from

���

���

and (27) holds because ��� is finite due to
for (cf., (62c) and ).

Condition (27) then gives that for ,

(28)

Using (18) again simplifies stop criterion (15) to

(29)

7For notational convenience, we define � ���� ��� � ��� and note that
� ��� � � for most channels of practical interest such as channels with finite
input alphabet. In the specific situation where � ��� � �, we point out that it is
still unnecessary to consider the case of �� � � ��� in (23) because the KKT
condition requires ��� � � �� �� � � �; thus by the strict decreasingness of
� , we have that �� � � �� �� � � � ���� � � � ��� is always valid for
finite total power � .

because

���

and

���

Then by definition of and the observation that the noise water
level , we have

which implies that in the above range of

Accordingly, (29) [equivalently, (15)] is violated for
. In addition, it can be verified that

is exactly equivalent to the validity of (29) at . Following
the algorithm in Theorem 2, we can conclude from (28) that

.
The optimal power allocation as well as its transformation

to follows the usual optimization process for (13) by setting
. Specifically, we can reduce (13) to
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where in the aforementioned derivation, we apply

, and is the Lagrange multiplier. Then, the La-

grange multipliers technique and KKT condition give that for

if

if
(30)

and

as [see (62c)], where is chosen to satisfy
(25). The validity of (23) and (24) is, therefore, confirmed. The
transformation from to can be derived as follows:

for
��� for

for

��� for

for

for .

Several remarks can be made based on Theorem 3.
1) First, it can be extended from Theorem 3 that as long as

is predetermined, the maximization labor can always be
reduced down to one. In the special case that the noises are
additive and originated from the same family (as consid-
ered in this section), we can directly determine in terms
of (21).

2) Second, when (equivalently, ),
can be determined without any maximization labor since
we immediately have by (25). In such a case, the
optimal power allocation follows the equal signal-to-noise
ratio (SNR) principle as

3) Finally, the validity of Theorem 3 does not need to be re-
stricted to channels with additive noises of the same family
but can be extended to any -limited access channel
with marginal mutual information functions satisfying (18)
for some function that obeys Assumption 1. A straight-
forward example is the flat fading channels with known
channel states at the receiver end, characterized by

(31)

where is i.i.d. with unit second moment,
and is independent of the channel input and addi-
tive noise. We then obtain with

. Theorem 3, thus,

can be used to establish the optimal power allocation by
treating as the new noise power level.

An exemplified illustration of the two-phase water-filling
scheme is depicted in Fig. 3. Details are given as follows.

-
Fig. 3(a) Set vessels with widths of unit length and with
base height of the th vessel being for . (Note
that we assume .)
Fig. 3(b) Pour in the “noise water” of amount
and set as the new water level of vessel for .
Let be the smallest integer among such that

[cf., (21)]. Assign and
.

Fig. 3(c) Subdivide the space of the last vessels (i.e.,
) into new

vessels of rectangular shape with base height the same as
the water surface level and widths in proportion to for

.
-

Fig. 3(d) Retain the vessels from the previous phase.
Fig. 3(e) Adjust the base height of the th vessel to 8

for
for

(32)

where is the parameter chosen in Theorem 3 according
to (25), and

��� if

if .

Fig. 3(f) Pour in the “signal water” of amount . Then, the
volume of water in the th vessel is the optimal power
to be allocated for channel .

In the aforementioned procedure, the auxiliary function
will be reduced to what has been defined and identically denoted
in [18, eq. (43)], for the mercury adjustment when are
i.i.d. complex Gaussian with unit variance. It can also be con-
firmed that for additive complex Gaussian noises and ,
the induced mercury adjustment in [18] is exactly equal to that
given by (32) by replacing the constant therein with . Fur-
thermore, when channel inputs are also independent
and complex Gaussian distributed, the adjusted base heights in
(32) are further reduced to the original noise variances, and
the standard water-filling interpretation is resulted. We, how-
ever, found that the adjusted base heights may not be always
greater than or equal to the original heights (as they should
be for additive Gaussian noises). Thus, the intuition suggested

8Since ��� is the water level, (22) indicates that the base heights for unit-
width vessels with indices � � � � � should be given by

�

��� � �

� .

A similar derivation can be made for vessels with indices � � � � � . We
re-express the adjusted base heights in terms of an auxiliary function � in order
to have a compatible formula to that in [18] when complex Gaussian additive
noises are considered.
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Fig. 4. Function � ��� for quaternary-input additive Laplace noise channels.

by mercury-filling may not be applicable when the heights of
vessel bases need to be lowered. We next give examples for both

and to substantiate this finding.

Example 1 (Quaternary-Input Additive Laplace Noise Chan-
nels): Suppose that the i.i.d. channel inputs in (16)
admit only four values with

and the complex zero-mean unit-variance i.i.d. additive noises
have marginal Laplace probability density function

for complex , where
and are the real and imaginary parts of , respectively.
The additive Laplace noise has been considered in many
publications such as [2], [13], [16], [28]–[30], and [35], and
has been shown to be an appropriate model for, e.g., polarity
detection [13], prediction error of image encoding [35] and
communications at extremely low frequencies [2].

Assume , , and
. We can then derive as similarly to [12] that

and

where is the Gudermannian func-
tion [6]. It can then be confirmed from Fig. 4 that satisfies
Assumption 1

Since , we get for ; hence,
and . We can then obtain numerically that

for
for
for
for

where according to (25). Therefore, the base
heights of the first two vessels are actually lowered rather than
lifted as indicated above inside the parentheses. The optimal
power allocation is given by

We next illustrate a situation with .

Example 2: Following Example 1 but now using and
, we get ; hence,

and . We then obtain numerically that

for
for
for
for

where according to (25). Therefore, the base
heights of the first two vessels are again lowered rather than
lifted. Note that for vessels with indices in , their
adjusted base heights should be equal and are determined by

. The optimal power allocation is given by

Although the two-phase water-filling scheme cannot be ex-
tended to a general -limited access channel (for which
the channels may not be controlled by a common function with
single parameter ), the resultant optimal power allocation
can still be graphically interpreted similarly to Fig. 3(f). In par-
ticular, we can regard the tank to be structured by
vessels, which have unit width except for the last one that is of
width , as illustrated in Fig. 5. The adjusted heights
of vessel bases in their most general form can be formulated by
the following equations: if , then

��� (33a)

(33b)

else (i.e., )

��� (34)

It can be verified that taking function into function defined
in (32) should assume the same form as (33a) and (33b) and
(34). From the aforementioned formula, it is clear that can
be interpreted as the water level. Equations (33a) and (34) then
reasonably imply that the optimal power allocation satisfies

��� for and ��� . The
aggregate power will then be redistributed to those channels
with indices in according to equal-mutual-information prin-
ciple, i.e., for every . This equal-mu-
tual-information principle is exactly the extension of equal-SNR
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Fig. 5. Graphical interpretation of the optimal power allocation for a general ��� ��-limited access channel. We assume is known to be ��� �� �� �� �� �� in order
to facilitate its comparison (as an extension) with Fig. 3(f).

principle for channels with additive noises of the same family.
Moreover, when lies in the range specified in (33b) for some
, no power is allocated to the respective channel; hence,

.
We close this section by the following observation. It may

be worth knowing that for channels with additive noises of the
same family, the optimal power allocation can actually be
determined directly by regarding the last vessels as unit-
width vessels with base height, respectively, equal to for

[cf., Fig. 3(b)]. This reduces the orig-
inal problem to a power allocation problem over a -lim-
ited access additive noise channel with effective noise powers

. The resultant -dimensional optimal power alloca-

tion is exactly the heights of water levels in
each vessel. The desired optimal power allocation can then
be given by

for

for

Although taking this aspect seems to save the effort of sub-
dividing the vessels into ones with unequal widths in Fig. 3(c),
more effort can be saved if the last vessels are aggregated
as one. In other words, we can simply use a tank containing

vessels, in which of them have unit width and the re-
maining one has width . We can then obtain the -dimensional
optimal power allocation through
the water-filling scheme [cf., Fig. 3(f)]. The equal-SNR power
allocation principle is subsequently applied to redistribute
to in proportion to , respec-
tively, as suggested in (22). This is actually what Theorem 3
implicitly indicates, which justifies the introduction of the ag-
gregate mutual information that views the last
channels as a single auxiliary channel.

V. IMPLICATIONS FROM THE OPTIMAL POWER ALLOCATION

Theorem 2 indicates that the sequence of candidate max-
imal-mutual-information index sets can be iden-
tified via the determination of . In a sense, this
sequence can be regarded as sorting the channels in their de-

scending degrees of “noisiness,” which can be supported by the
result from Theorem 3, where the sequence of co-
incides with .

For a general -limited access channel in which the
noises are not necessarily additive or scaled from the same
family, can one identify such sequence through their mutual
information functions? The next theorem may provide a guide
along this direction of thinking. For simplification, all the
proofs in this section are placed in Appendix C.

Theorem 4: For a general -limited access channel, if

��� ��� ���

for all , then for .9

Here, regardless of the original goal of the determination of
optimal power allocation, Theorem 4 (as an extension from The-
orem 3) proposes a way to compare the degree of “noisiness” of
general channels via their mutual information functions. For the
additive noise channels of the same family, we have

��� ���

Hence, the proposed ordering coincides with the general impres-
sion that the larger the , the noisier the th channel is consid-
ered to be. To simplify the notation, we drop the parentheses
between and ��� in the sequel.

For channels other than the one considered in Section IV,
there could be no apparent winner between any two channels
in the sense of ��� . In other words, it could happen
that

��� ���

but

��� ���

for two distinct and and two distinct and . As such,
the sequence of will become a function of the total

9When � 	 
�� � ��� is finite, the function � �� ��� ���� is clearly

defined for � � � . For � � � , we define � ��� ��� 	 � as emphasized in
Footnote 5. This, together with the fact that � �� and Assumption 1 jointly
imply that 
�� � ��� 	 
, gives that � �� ��� ���� 	 
 for � � � .
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signal power . However, if a certain condition is satisfied, the
preidentification of the degrees of channel noisiness is still pos-
sible at two extreme situations: and , which we
will, respectively, refer to as the low- and high-power regimes
in later discussion.

Lemma 3:
1) If

��� ��� (35)

for every , then in the low-power
regime, where sign function is equal to either 1, 0
or depending on whether , or .

2) If

��� ��� (36)

for every , then in the high-power
regime, provided that for ,

where .
Since the input alphabet is usually finite for channels of prac-

tical interest, we have . This
immediately validates the premise, i.e., ,
for condition (36) implying in the high-power regime.
In other words, is true for all finite-input
channels. There however exists a certain kind of channels where

while . An example is the Gaussian-
input AWGN channel for which . We
would like to emphasize that the inference regarding (36) still
remains valid for channels with unbounded mutual information
as long as .

Conditions (35) and (36) in Lemma 3 involve the examination
of the limit supremum of function differences. The next corol-
lary shows that their validity can be guaranteed by comparing
the limiting behaviors of individual functions.

Corollary 1:
1) The validity of (35) for an pair is certain if one of the

three conditions below is satisfied:10

(37a)

(37b)

(37c)

2) The validity of (36) for an pair is certain if

(38)

We are now ready to illustrate an example that validates the
sufficient conditions in Lemma 3 and Corollary 1.

Example 3 (Flat Fading Channels): Consider the fading
channels characterized by (31), where the additive noises

are i.i.d. zero-mean complex Gaussian, but the

10The second derivative � at the origin is again defined as

� ���� ��� � ���.

channel inputs are no longer identically distributed.
With the first three channel inputs being, respectively, BPSK,
QPSK, and 16-QAM and the remaining channel inputs being
complex Gaussian signals, we obtain for in
both low- and high-power regimes by being given

(39)

This can be verified as follows.
It has been derived in [19] that

and

where

In the low-power regime, the order of those indices, where
are not equal, is thus confirmed by (37a). From [18], we

know

Then

for . Then, (37c) assures that and in the
low-power regime, which somehow suggests that under equal
effective noise power, QPSK modulations should be favored
over BPSK modulations when the power budget is extremely
tight. Since and in the low-power regime can be
verified similarly, we omit their proof.

In the high-power regime, we first note that
for . We then confirm for from

(40)
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according to (38). That for in the high-power
regime can be substantiated by (36) and ���

��� , where

and

After determining the sequence , the next task
for finding the optimal power allocation is to determine .
Recall that is defined as the set of channels that have the
largest mutual information for the optimal power assignment
[see (6)]. For channels corrupted with additive noises of the
same family, can be directly determined and has nothing
to do with total power . In more general cases, however,
depends on . There is even no guarantee for its convergence
in the low-or high-power regimes even if the monotonicity
condition of ��� in Theorem 4 holds. This is because
in terms of given , only sufficient conditions on
the validity and violation of stop criterion (15) can be obtained
as summarized in the next lemma.

Lemma 4: For the already predetermined and
an integer that is under examination in the algorithm of The-
orem 2, we have the following logical statements to help de-
termining . Again, in the high-power region, we assume that

for .
1) If

���

���
(41)

then stop criterion (15) holds in the low-power regime.
2) If

���

���
(42)

then stop criterion (15) fails in the low-power regime.
3) If

���

���
(43)

then stop criterion (15) holds in the high-power regime,
where

4) If

���

���
(44)

then stop criterion (15) fails in the high-power regime.
Although conditions (41) and (42) are mutually exclusive, it is

still possible that both are violated. In such a case,

may be indeterminate. Likewise, the same remark is applied to
(43) and (44).

The conditions in Lemma 4 involve the examination of the
limiting behavior of a difference between a constant and
a sum of function ratios ��� ��� .
We similarly derive sufficient conditions to (41)–(44) based
on the limiting behavior of individual functions as shown in
Corollary 2.

Corollary 2: Follow Lemma 4.
1) Equation (41) is valid if

(45)

2) Equation (42) is valid if

(46)

3) Equation (43) is valid if

���

���
(47)

4) Equation (44) is valid if

���

���
(48)

Furthermore, if are determined according to
the condition in Lemma 3, i.e., (36), then (44) can be im-
plied by

(49)

Example 4: Continue from Example 3 where we have deter-
mined for for both low- and high-power
regimes. Assume and

Then, by for and (45) and (46), we
establish

in the low-power regime.
In the high-power regime,(49) and (40) imply that

. Examination of with gives

���

���

Hence, (47) is valid, and so is the stop criterion of the algorithm.
As a result, the algorithm in Theorem 2 will stop at and

.
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The two lemmas and two corollaries presented previously
give the conditions under which can be determined directly in
the low- and high-power regimes. We can then compute the op-
timal power allocation using the Lagrange multipliers tech-
nique and KKT condition in terms of the auxiliary aggregate
channel associated with . After such step, the optimal power
allocation for a channel outside equals the respective com-
ponent of , but the power allocation for channels inside
should be obtained by redistributing the power according to
the equal mutual-information principle. Since we are concerned
with the situation when approaches either 0 or , the optimal
power may as well approach the same limiting value. It is
thus more meaningful to consider the ratio between the optimal
power allocations of channel pairs in the low- and high-power
regimes.

Lemma 5: After the determination of , the optimal power
allocation for the th channel outside asymptotically satis-
fies

if

(50)
provided the second derivatives and exist,

, and
. In addition, for two channels with indices , in , the

redistribution of yields

provided that and are both finite.
In the high-power regime, since we assume

, we have .11 Discussion regarding the
limiting power ratio between channel pair, therefore, cannot be
stated in the same fashion as (50). The next observation then
indicates that in the high-power regime, the power ratios be-
tween channel pairs are governed by the rate of convergences of

at large.
Observation 1:

1) For channels outside , the following statements hold.

a) If and each outside vanish at a polynomial
speed, i.e.,

and

where , , , and are all positive, or if
and each outside vanish at an exponential speed,
i.e.,

11This can be seen from � � � ����� � � ��� � � ��� as a conse-
quence of the strict decreasingness of � [26, p. 100].

and

where , , , and are all negative, then for ,

if

if

if

and

if

if

if .

b) If for , , vanishes exponentially fast while
and decay to zero at a polynomial speed, then

2) For channels , inside ,

��� if
���

���
if

where .
There are certain channels with polynomially vanishing

first derivatives in their mutual information functions. For
example, the fading channels characterized in (31) satisfy

when both channel inputs and additive
noises are complex Gaussian. Examples for exponentially van-
ishing first derivatives in their mutual information functions are
the AWGN channels with a finite channel input alphabet [18],
for which , where is
the minimum distance between distinct channel inputs.

An interesting observation in the high-power regime is that
the optimal power allocation for a channel in may be
bounded even if the total power goes to infinity. An available
example can be constructed by reassuming in Example
3. Then, we have ,
and ��� ��� for , in
which case is a finite positive number for

. It can be further verified that taking in the same ex-
ample gives in the high-power regime, which
also results in for .

VI. CONCLUDING REMARKS

In this paper, we consider the -limited access channel
and establish an algorithmical procedure to find its optimal
power allocation. The optimal power allocation obtained is not
restricted to AWGN channels but can be applied to general
channels with corresponding mutual information functions
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satisfying Assumption 1. For additive noises scaled from the
same distribution family, finding the optimal power allocation
is reduced to a simple two-phase water-filling process. This
two-phase water-filling graphical interpretation can then be
deduced to a general case, where the degrees of “channel
noisiness” are in a sense implied by the composition functions

��� of the mutual information functions .
General behaviors of the optimal power allocation in low- and
high-power regimes are also established. We would like to
point out that the results in the work can be directly applied to
a resource allocation problem associated with some “profit”
functions as long as the problem is mathematically
of the same form as (3). As such, the optimal resource allo-
cation can be solved algorithmically, and sometimes directly
if certain monotonicity conditions are satisfied. In addition,

��� now suggests the prioritized sequence of invest-
ments, i.e., the smaller the ��� , the less profitable from the
investment .

One possible future work is to relax the independence as-
sumption in (2) since a certain degree of dependence among
channels may exist in practice. A good start would be to inves-
tigate the Gaussian compound channel modeled by

where both and become dependent Gaussian
distributed, but and remain independent of
each other. The optimal power allocations, respectively, for

and can then be similarly established, where the
former follows equal-marginal-SNR principle, while the latter
can be transformed to an equivalent problem for independence
Gaussian compound channels. When , however,
the eigendecomposition transformation technique used for the
case of fails because the incomplete receptions make
the simultaneous whitening of all selections of
out of channels unattainable. Our preliminary study never-
theless found that there may exist a threshold such that when
the total power is larger than this threshold, the optimal power
allocation for the dependence Gaussian -limited access
channel just defined can be determined by the optimal power
allocation for an independent Gaussian -limited access
channel with noise variances being a function of the covariance
matrix of the dependent Gaussian. Further investigation along
this direction might be worthwhile.

APPENDIX A
PROOFS OF LEMMA 2 AND THEOREM 1

We first provide a simple property regarding the aggregate
mutual information function. This property will be used in the
proofs of both Theorems 1 and 2.

Property 1: If and for
every , , then

(51)

Proof: This is a direct consequence following (10) and the
relation between the first derivative of a function and its
inverse ��� as

���

where in the aforementioned equation, can be replaced by ei-
ther any with or the aggregate mutual information
function .

Proof of Lemma 2:
1) For any , we can use the assignment in the lemma

to obtain a corresponding , i.e.,

for
��� for .

(52)

Then, we have

for
��� for

and for because
satisfies condition in . Thus, and

Since the aforementioned derivation is true for any
, we obtain that

(53)

2) Similarly, for any , we can assign its corre-
sponding as

(54)

Then, for

���

��� (55)

��� (56)
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where (55) follows the definition of the aggregate mutual
information , and (56) holds because, according to con-
dition in , for every . By
applying conditions and in , we obtain for

Hence, and

Accordingly

(57)

3) In summary, (53) and (57) jointly imply that equality holds
for both inequalities, and the relation between maximizers

and should follow (52) and (54).

Proof of Theorem 1: We first obtain from the definition of
and Property 1 that for

���

���

���

We can then infer from Assumption 1 that is a posi-
tive, strict decreasing and continuous function for , and

. This implies that

(58)

is strictly concave for . By definition of (cf.,
Lemma 2)

Then, the assumption that and the strict concavity
of (58) together imply that is the unique global maximizer
that maximizes (58) over . Hence, .

APPENDIX B
PROOF OF THEOREM 2

Two properties regarding the optimal maximal-mutual-infor-
mation index set and the optimal power allocation must be
established before our presenting the proof of Theorem 2.

Property 2: Fix . The optimal maximal-mutual-in-
formation index set and the optimal power allocation sat-
isfy the following two properties.

1) For

if
if . (59)

2) For any , , if , then

(60)

The first property indicates that the first derivative of the
mutual information function attains the maximum value

whenever its respective allocated
power is positive. It also indicates that
for . The second property reveals that for the optimal
power assignment, a larger mutual information cannot have a
smaller first derivative. These two properties will be the basis
of the prove-by-contradiction technique adopted in the proof of
Theorem 2.

Proof of Property 2: We first observe that .
This is because if for some , then (6) gives that

. Thus, for
every , and , which contradicts
the assumption that .

We next note that the Lagrange multipliers technique and
KKT condition imply that the first derivatives of the mutual
information functions achieve the maximum for those indices
whose corresponding allocated powers are positive. Then by re-
placing by in (13) and by noting

we obtain that for

if
if .

This completes the proof of (59).
The proof of (60) can be done as follows. Suppose
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Then, and hence by Assumption 1. By the
continuity of functions , , and , there exists

such that

Hence

(61)

where (61) follows a relation derived from Assumption 1 that
for every and

Noting that must be outside since , we
distinguish between two cases below: and .

First, if , then

which contradicts the optimality of . If, however, , then

which again contradicts the optimality of . The proof of (60)
is, therefore, completed.

We are now ready to present the proof of Theorem 2.
Proof of Theorem 2: The proof of the theorem is divided

into two parts.

In the forward part, we will show by induction that when

(62a)

(62b)

(62c)

hold for every . Condition (62b) then ensures
that stop criterion (15) is violated for every for
some when

; hence the algorithm will not stop before finding and .
Notably, the definition of in (6) guarantees that

; hence, the set can never
be empty. Also, according to ���

from (11), (62c) is equivalent to for every
.

After confirmation of the forward part, the converse part will
subsequently be proved by induction, namely, if stop criterion
(15) is violated for every , then . An
immediate consequence of the converse is that when ,
the stop criterion (15) must hold at because the converse
can be equivalently stated (by taking ) as that

implying the validity of (15) at .
Then the forward and converse parts together conclude that

the smallest integer that validates the stop criterion (15) is
exactly . The desired result is, therefore,
confirmed by deriving

and by applying (62a) (which has been proved to be valid for
every in the forward part) to
obtain

Note that stop criterion (15) trivially holds when ;
hence, the above statement is applicable even at the extreme case
that .

1) Forward Part: Under , (62a)–(62c) are valid
for every .

1) Preliminary 1: We then claim that for the considered range
, and cannot be both empty,

given that . This is because if both of them were
empty, then for every . We then no-
tice from (11) that function values are all equal
for . Also, by definition of from (6), the set
should contain all indices whose respective function values

are equal. Thus, and for
immediately imply that . Accordingly,

can only occur when
, which is outside the range

that we consider here. The claim is thus validated.
2) Validity of (62a)–(62c) When : Observe that is

always a subset of , so we know from
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the claim in 1) Preliminary that and cannot be both
empty. Based on this, we can further reason from

that and are both nonempty. Since

and

(63)

we can infer from the strict increasingness of functions
that for every , which indicates

.
We then claim and will prove by contradiction that ob-
tained from

(64)

does not belong to , and therefore is not contained in .
This will immediately yield .
Suppose . Then the definition of implies

(65)

Because , (65) further implies
the existence of another index (in ) such that

(66)

From (11) and (64), we, respectively, obtain

and

Then, by (65) and (66), the strict increasingness of func-
tions and , and the strict decreasingness of functions

and , we have

which contradicts (60) in Property 2. Accordingly, .
Next, we prove that (62b) is valid when . Using the
prove-by-contradiction technique, we suppose

(67)

Since for every

���

and are all equal , we obtain from
Property 1 that

Accordingly

(68)

(69)

(70)

(71)

where (68) follows from (67) and (69) is based on (64) and
(70) is due to , and (71) is true because

. Then, based on and , we know
for every and . Hence, from the

strict decreasingness of functions , (71) implies that

which contradicts (59) in Property 2.
After proving (62a) and (62b) at , what remains to
be confirmed is the validity of (62c). Using the prove-by-
contradiction technique, we first suppose (62c) were not
true when , i.e., . Then, we obtain

The KKT condition follows that

The strict decreasingness of functions and , to-
gether with the straightforward relations:

implies

which contradicts (62b) at . The proof of the case
is then completed.

3) Validity of (62a)–(62c) at Implying Their
Validity at for : Based on the
premise that (62a) is true at (i.e., ),
we know from the discussion in the Preliminary on page
24 that and cannot be both empty. So when is
not empty, we will show and as similar
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to the proof at , which immediately gives
. We will then show by contradiction

that and can never occur if (62a) and
(62c) are both true at . The desired result, i.e.,

implies for every ,
is therefore verified.
Case 1) : Since

and

for (as ), we can infer from the strict increasing-
ness of functions that for every , which
indicates .

In order to prove , we need to first show the exis-
tence of an index such that . This can be
proved by contradiction. Suppose no such index exists in
(i.e., ). Because , there
must exist an index outside , satisfying . Since

, we know must be strictly positive. Then we can
derive by the KKT condition (i.e., the first derivatives of the mu-
tual information functions with positive allocated powers should
achieve the maximum) that

(72)

where equality in (72) follows from the validity of (62c) at
, i.e., . Since the validity of (62c) at

is equivalent to for , and function
values are all equal also for , we have from
Property 1 that

(73)

Based on (73), we can further reason from

and the strict decreasingness of functions that

(74)

Using again that for , we know that
for . Property (59) then leads to

where the last inequality cannot be replaced by an equality be-
cause may be zero, and in the above derivation, we have im-
plicitly applied the validity of (62a) at to obtain

. A contradiction to
(74) is thus obtained. Accordingly, , and hence con-
firmation of the existence of such that is
completed.

We can now proceed to prove that by contradiction.
Suppose ; hence, . Then following four
observations:

1) ,
2) ,
3) the strict increasingness of functions and , and
4) the strict decreasingness of functions and ,

we have

which contradicts (60) in Property 2. Accordingly, .
This finishes the proof of given

.
Case 2) but : Our goal is to show that this

case can never happen if (62a) and (62c) are valid at .
Since and , and ,
there exists an index outside , satisfying . Thus,
the KKT condition implies that

(75)

where the aforementioned inequality follows the premise that
(62c) is true at . Since the function values
are all equal for , we have from (75) and Property 1 that

(76)

Based on (76), we can then reason from

and also the strict decreasingness of functions that

(77)
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By noticing that implies , we can derive using
(59) in Property 2 that

where we again implicitly use
(i.e., ) in the above derivation. A contradiction

to (77) is thus obtained. Therefore, and cannot
occur if (62a) and (62c) are valid at .

After the completion of the proof for , we next
prove that (62b) is valid at . Using the prove-by-contra-
diction technique, we suppose (62b) were not true at .
Then, using the just proved , the validity of (62c) at

(i.e., for ), and the observation
that the function values are all equal for ,
we obtain from Property 1 that

Accordingly

(78)

(79)

(80)

(81)

where (78) follows from the assumed violation of (62b) at
, (79) is based on , (80) is due

to , and (81) is true because .
Since and , we know for
and . Hence, from the strict decreasingness of
functions , (81) implies that

A contradiction to (59) is thus obtained.
After proving (62a) and (62b) at , what remains to

confirm is the validity of (62c). We require the next inequality
to proceed:

(82)

which can be proved as follows. Given that (62c) is true at
(i.e., ), we know from the KKT condition

that

(83)

We can then derive

(84)

(85)
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where (84) follows from the validity of (62b) at , and
(85) is a consequence of (83). By applying the validity of (62b)
at again, we have

Inequality (82) is thus proved.
We proceed to prove (62c) by contradiction. Suppose (62c)

were not true at (i.e., ). Then
by the assumed validity of (62c) at (i.e.,

, we have

���

and hence

(86)

because . Inequality (86) and
then implies

which immediately indicates that there exists such
that

(87)

The KKT condition thus follows that

The strict decreasingness of functions and , together
with (86) and (87), implies

which contradicts (82). The proof of the forward part is thus
completed.

2) Converse Part: If the stop criterion (15) is violated
for every , where ,
then .
We now prove the converse part by induction.

1) Validity of the Converse Statement at : It suf-
fices to prove that cannot be true if (15) is violated
at , and we prove this by contradiction. Suppose

. Then, is the optimal power allocation,
and for every , ��� be-
cause .
Observe that the violation of (15) at tells that

By the continuity and strict decreasingness of functions
and , there exists such that

Hence, using an argument similar to (61) yields

(88)

Consequently, another power allocation

if
���

which satisfies the power-sum constraint:

���

���

will give that for every

���

���
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The aforementioned inequality and (88) then jointly imply
that for some

This indicates that cannot be the optimal power alloca-
tion . The desired contradiction is thus obtained.

2) Validity of the Converse Statement at
Implying its Validity at for : We
are given that the stop criterion (15) is violated for every

and have already confirmed that
. Now, since the stop criterion is violated again

for , we should then prove that ,
which immediately implies the desired . We
use the prove-by-contradiction technique.
Suppose . Then, is the optimal
power allocation, since we have already proven in the for-
ward part that , which together with

results in . By definition of in (6), we get

(89)

Inequality (89) then implies that ; hence,
. Observe that the violation of (15) at

tells that

By the continuity and strict decreasingness of functions
and , there exists such that

Hence, through the same procedure as (88), we obtain

(90)

Consequently, another power allocation

if
if

��� if

which satisfies the power-sum constraint:

will give that for every

(91)

where the last strict inequality in (91) follows the strict in-
creasingness of function and (89). The aforementioned
inequality and (90) then jointly imply

This indicates that cannot be the optimal power alloca-
tion . The desired contradiction is thus obtained.

APPENDIX C
PROOFS OF THE THEOREM, LEMMAS, AND

COROLLARIES IN SECTION V

1) Proof of Theorem 4: By noting
��� for and letting ,

(14) can be equivalently written as

��� ���
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Thus the condition in Theorem 4 implies that for
.

2) Proof of Lemma 3:
1) Equation (35) implies the existence of such that

��� ��� ��� (92)

for . Thus, following similar proof of Theorem
4, we have when the total power is less than

��� .
2) We first show that the allocated power will go to in-

finity as .
Recall that the KKT condition gives

if
if

(93)

and for

if
if (94)

where the Lagrange multiplier is chosen such that
. This then implies that

will go to infinity as , because if there exists a sequence
such that and

then we can use to obtain that

which then implies the existence of sequence
(where ) such that or equiv-

alently for all sufficiently large and
as . Since

for every , we have ; hence,
by (93), which

is a contradiction to . As a consequence,
diverges to infinity for every sequence , and

therefore, exists and is equal to .
Next, we observe that (36) implies

(95)

because if for some , then

��� ���

which is a contradiction to (36). Then (36) and (95) togetherly
imply that for , there exists such that for

��� ���

(96)
In addition, by noting ��� for
and letting , (14) can be equivalently written as

��� ��� (97)

Consider . Since , we obtain from
that will lie in

as sufficiently large. Condition (96) (with setting
) and (97) then jointly imply as sufficiently large.

We can repeat the procedure by further enlarging (whenever
necessary) to make , and obtain
in the high-power regime. A similar argument can be applied to
obtain for .

3) Proof of Corollary 1:
1) That (37) implies (35) is obvious. From (37a), we can infer

by the continuity of that there exists such that
. So for , we have

��� by and the strictly increasingness
of . Hence

��� ���

where the first and last strict inequalities follow the strict
decreasingness of and , respectively. Confirmation of
(37a) implying (35) is then completed. It remains to verify
that (37b) implies (35). By definition, im-
plies the existence of such that for

, which together with implies
for . Thus, (37b) implies (37c),

which in turns implies (35).
2) Since , we have

���

and

��� ���

Thus, (36) is valid.
4) Proof of Lemma 4: We first observe that (15) can be

rewritten as

���

���

where for ,
and (62c) guarantees and hence

. Based on this observa-
tion and noting

when
as

this lemma becomes straightforward.
5) Proof of Corollary 2:

1) Rewrite (45) as

(98)

Then, a similar proof for (37a) can be used to prove
(45) implying (41). Note the validity of (45) im-
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plicitly indicates the finiteness of
because would fail (45); so

.
2) That (46) is a sufficient condition for (42) can be proved in

the same way as item 1 by reversing the order of inequality
(98); hence, we omit it.

3) Since (47) implies

���

���

���

���

���

���

we have

���

���

which validates (43).
4) Again, since (48) implies

���

���

���

���

���

���

we have

���

���

which validates (44).
Finally, if are determined according to condition

(36) in Lemma 3, then

(99a)

(99b)

where (99a) has been proved in (95), and (99b) is a consequence
of (99a). Based on these results, we can derive from (49) that for

���

���
(100)

because implies ��� approaching

zero and ��� being bounded away from zero as
approaching . The proof is thus completed.

6) Proof of Lemma 5: Recall that the KKT condition gives

(101)

and for

if
if

(102)

where we have used the fact that [see
(62c)], and the Lagrange multiplier is chosen such that

. We then distinguish among the following
three cases.

Case 1: for some . In
this case, there exists such that

Hence, when , we have

where the last strict inequality follows the strict decreasingness
of . This contradicts (101); hence, Case 1 cannot happen.

Case 2: for some .
In this case, there exists such that

Hence, when , we have

which implies for any .

Case 3: for some .
In this case, for fixed, because if , we

obtain

which then contradicts (101). Based on and for
, we derive from (101) and (102) that

���

���

���

���

(103)

The proof for (50) is completed.



WANG et al.: OPTIMAL POWER ALLOCATION FOR -LIMITED ACCESS CHANNELS 3749

We now turn to the power allocations for channels , in .
By

(104)

we derive

���

���

���

���

(105)

7) Proof of Observation 1: The result for 1 is a direct con-
sequence of the given rates of convergence, and the result for 2
follows similarly to (105). Hence, we omit them.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers and
the Associated Editor for their valuable comments and sugges-
tions which helped to improve the quality of the paper.

REFERENCES

[1] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Pri-
ority encoded transmission,” IEEE Trans. Inf. Theory, vol. 42, no. 6,
pp. 1737–1744, Nov. 1996.

[2] S. L. Bernstein, M. L. Burrows, J. E. Evans, A. S. Griffiths, D. A. Mc-
neill, C. W. Niessen, I. Richer, D. P. White, and D. K. Willim, “Long-
range communications at extremely low frequencies,” Proc. IEEE, vol.
62, no. 3, pp. 292–312, Mar. 1974.

[3] K. L. Blackard, T. S. Rappaport, and C. W. Bostian, “Measurements
and models of radio frequency impulsive noise for indoor wireless
communications,” IEEE J. Sel. Areas Commun., vol. 11, no. 7, pp.
991–1001, Sep. 1993.

[4] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[5] C. D. Charalambous, S. Z. Denic, and C. Constantinou, “Capacity of
the class of MIMO channels with incomplete CDI-properties of mutual
information for a class of channels,” IEEE Trans. Inf. Theory, vol. 55,
no. 8, pp. 3725–3734, Aug. 2009.

[6] G. R. Clements and L. T. Winson, Manual of Mathematics and Me-
chanics. Rockville, MD: Wildside Press, 2008.

[7] J. W. Cook, “Wide-band impulsive noise survey of the access network,”
BT Tech. J., vol. 11, no. 3, pp. 155–162, Jul. 1993.

[8] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[9] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. New York: Academic, 1981.

[10] R. G. Gallager, Information Theory and Reliable Communication.
New York: Wiley, 1968.

[11] D. Guo, S. Shamai, and S. Verdú, “Mutual information and minimum
mean-square error in Gaussian channels,” IEEE Trans. Inf. Theory, vol.
51, no. 4, pp. 1261–1283, Apr. 2005.

[12] D. Guo, S. Shamai, and S. Verdú, “Additive non-Gaussian noise
channels: Mutual information and conditional mean estimation,” in
Proc. IEEE Int. Symp. Inf. Theory, Adelaide, Australia, Sep. 2005, pp.
719–723.

[13] M. Kanefsky and J. B. Thomas, “On polarity detection schemes with
non-Gaussian inputs,” J. Franklin Inst., vol. 280, no. 2, pp. 120–138,
Aug. 1965.

[14] A. Lapidoth and P. Narayan, “Reliable communication under channel
uncertainty,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2148–2177,
Oct. 1998.

[15] I.-C. Lee, C.-S. Chang, and C.-M. Lien, “On the throughput of mul-
ticasting with incremental forward error correction,” IEEE Trans. Inf.
Theory, vol. 51, no. 3, pp. 900–918, Mar. 2005.

[16] T.-H. Li and K.-S. Song, “Estimation of the parameters of sinusoidal
signals in non-Gaussian noise,” IEEE Trans. Signal Process., vol. 57,
no. 1, pp. 62–72, Jan. 2009.

[17] R. G. Lorenz and S. P. Boyd, “Robust minimum variance beam-
forming,” IEEE Trans. Signal Process., vol. 53, no. 5, pp. 1684–1696,
May 2005.

[18] A. Lozano, A. M. Tulino, and S. Verdú, “Optimum power allocation
for parallel Gaussian channels with arbitrary input distributions,” IEEE
Trans. Inf. Theory, vol. 52, no. 7, pp. 3033–3051, Jul. 2006.

[19] A. Lozano, A. M. Tulino, and S. Verdú, “Optimum power allocation
for multiuser OFDM with arbitrary signal constellations,” IEEE Trans.
Commun., vol. 56, no. 5, pp. 828–837, May 2008.

[20] D. Middleton, “Channel modeling and threshold signal processing in
underwater acoustics: An analytical overview,” IEEE J. Ocean. Eng.,
vol. OE-12, no. 1, pp. 4–28, Jan. 1987.

[21] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Uniform power allo-
cation in MIMO channels: A game-theoretic approach,” IEEE Trans.
Inf. Theory, vol. 49, no. 7, pp. 1707–1727, Jul. 2003.

[22] M. Payaro, A. Wiesel, J. Yuan, and M. A. Lagunas, “On the capacity of
linear vector Gaussian channels with magnitude knowledge and phase
uncertainty,” in Proc. 31st Int. Conf. Acoust., Speech, Signal Process.,
Toulouse, France, May 2006, pp. IV–IV.

[23] F. Pérez-Cruz, M. R. D. Rodrigues, and S. Verdú, “MIMO Gaussian
channels with arbitrary inputs: Optimal precoding and power alloca-
tion,” IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1070–1084, Mar.
2010.

[24] S. S. Pradhan, R. Puri, and K. Ramchandran, “n-channel symmetric
multiple descriptions—Part I ��� �� source-channel erasure codes,”
IEEE Trans. Inf. Theory, vol. 50, no. 1, pp. 47–61, Jan. 2004.

[25] S. S. Pradhan, R. Puri, and K. Ramchandran, “n-channel symmetric
multiple descriptions—Part II: An achievable rate-distortion region,”
IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1377–1392, Apr. 2005.

[26] H. L. Royden, Real Analysis, 3rd ed. New York: Prentice-Hall, 1988.
[27] M. G. Sánchez, A. V. Alejos, and I. Cuiñas, “Urban wide-band mea-

surement of the UMTS electromagnetic environment,” IEEE Trans.
Veh. Technol., vol. 53, no. 4, pp. 1014–1022, Jul. 2004.

[28] G. Shevlyakov and K. Kiseon, “Robust minimax detection of a weak
signal in noise with a bounded variance and density value at the center
of symmetry,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1206–1211,
Mar. 2006.

[29] M. W. Thompson and H.-S. Chang, “Coherent detection in Laplace
noise,” IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 2, pp. 452–461,
Apr. 1994.

[30] M. W. Thompson, D. R. Halverson, and G. L. Wise, “Robust detection
in nominally Laplace noise,” IEEE Trans. Commun., vol. 42, no. 2/3/4,
pp. 1651–1660, Feb./Mar./Apr. 1994.

[31] A. Wiesel, Y. C. Eldar, and S. Shamai, “Beamforming maximizes the
compound capacity in MISO channels,” presented at the presented
at the Int. ITG Workshop Smart Antennas, Duisburg, Germany, Apr.
2005.

[32] A. Wiesel, Y. C. Eldar, and S. Shamai, “Robust power allocation for
maximizing the compound capacity,” presented at the presented at the
NEWCOM-ACoRN Joint Workshop, Vienna, Austria, Sep. 2006.

[33] A. Wiesel, Y. C. Eldar, and S. Shamai, “Optimization of the MIMO
compound capacity,” IEEE Trans. Wireless Commun., vol. 6, no. 3, pp.
1094–1101, Mar. 2007.

[34] J. Wolfowitz, Coding Theorems of Information Theory, 3rd
ed. Berlin, Germany: Springer-Verlag, 1978.

[35] J. Woods and S. O’Neil, “Subband coding of images,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 34, no. 5, pp. 1278–1288, Oct.
1986.

[36] M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive
noise in broad-band powerline communications,” IEEE Trans. Electro-
magn. Compat., vol. 44, no. 1, pp. 249–258, Feb. 2002.

Shih-Wei Wang (S’09) was born in Pingtung, R.O.C., in 1981. He received
the B.S. and M.S. degrees in electrical engineering from the National Central
University, Chungli, Taiwan, in 2003 and 2005, respectively. He is currently
working toward the Ph.D. degree in the Department of Electrical Engineering,
National Chiao Tung University, Hsinchu, Taiwan. He held a visiting position
with Queen’s University, Kingston, Canada, in 2010. His research interests lie
in information theory and convex optimization.



3750 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 6, JUNE 2012

Po-Ning Chen (S’93–M’95–SM’01) was born in Taipei, R.O.C. in 1963. He
received the B.S. and M.S. degrees in electrical engineering from the National
Tsing-Hua University, Taiwan in 1985 and 1987, respectively, and the Ph.D.
degree in electrical engineering from University of Maryland, College Park, in
1994. From 1985 to 1987, he was with Image Processing Laboratory in National
Tsing-Hua University, where he worked on the recognition of Chinese charac-
ters. During 1989, he was with Star Tech. Inc., where he focused on the develop-
ment of finger-print recognition systems. After the reception of Ph.D. degree in
1994, he jointed Wan Ta Technology Inc. as a vice general manager, conducting
several projects on Point-of-Sale systems. In 1995, he became a research staff
in Advanced Technology Center, Computer and Communication Laboratory,
Industrial Technology Research Institute in Taiwan, where he led a project on
Java-based Network Managements. Since 1996, he has been an Associate Pro-
fessor in the Department of Communications Engineering at the National Chiao-
Tung University, Taiwan, and was promoted to a full professor since 2001.
He was elected to be the Chair of the IEEE Communications Society Taipei
Chapter in 2006 and 2007, during which the IEEE ComSoc Taipei Chapter
won the 2007 IEEE ComSoc Chapter Achievement Awards (CAA) and 2007
IEEE ComSoc Chapter of the Year (CoY). He has served as the chairman of the
Department of Communications Engineering, National Chiao-Tung University,
during 2007–2009. Dr. Chen received the annual Research Awards from the Na-
tional Science Council, Taiwan, R.O.C., five years in a row since 1996. He then
received the 2000 Young Scholar Paper Award from Academia Sinica, Taiwan.
His Experimental Handouts for the course of Communication Networks Labora-
tory have been awarded as the Annual Best Teaching Materials for Communica-
tions Education by the Ministry of Education, Taiwan, R.O.C., in 1998. He has
been selected as the Outstanding Tutor Teacher of the National Chiao-Tung Uni-
versity in 2002. He was also the recipient of the Distinguished Teaching Award
from the College of Electrical and Computer Engineering, National Chiao-Tung
University, Taiwan, in 2003. His research interests generally lie in information
and coding theory, large deviation theory, distributed detection and sensor net-
works.

Chung-Hsuan Wang (S’94–M’01) received the B.S. and Ph.D. degrees from
the National Tsing Hua University, Hsinchu, Taiwan, in 1994 and 2001, respec-
tively, both in electrical engineering.

From August 2001 to July 2004, he held a faculty position with the Depart-
ment of Electronic Engineering, Chung Yuan Christian University, Chung-Li,
Taiwan. From August 2004 to July 2009, he was with the Department of Com-
munication Engineering, National Chiao Tung University (NCTU), Hsinchu.
Since August 2009, he has been with the Institute of Communication Engi-
neering and the Department of Electrical Engineering, NCTU. His current re-
search interests include digital communications, error-correcting codes, infor-
mation theory, and signal processing.


