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Abstract This article deals with the boundedness properties of Calderén—Zygmund operators on
Hardy spaces HP(R™). We use wavelet characterization of H?(R") to show that a Calderén-Zygmund
operator T with 7*1 = 0 is bounded on HP?(R"), nie < p <1, where ¢ is the regular exponent of

kernel of T'. This approach can be applied to the boundedness of operators on certain Hardy spaces

without atomic decomposition or molecular characterization.
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1 Introduction

The original notion of a Calderén—Zygmund operator was introduced by Calderén and Zygmund
in [1]. Their main object was to generalize the Hilbert transform and Riesz transforms. They
showed that Calder6n—Zygmund operators are bounded on LP(R"), 1 < p < oco. For Hardy
spaces HP(R™), p sufficiently closed to 1, it is well known that Calderén—Zygmund operators
T with T*1 = 0 are bounded on HP(R™). There are some methods to gain the result in
general. One is shown in terms of atomic decomposition together with the maximal function
characterization of HP(R™) (see [2, p. 115, Theorem 4]). Another approach is given by molecular
characterization of HP(R™) (see [3, p.335, Theorem 7.18]). Some approaches are given by
wavelets with smooth atomic and molecular decomposition (see [4, Section 6] and [5, Section 2]).
In this article, we use almost orthogonal property and wavelet characterization of H?(R™) to
get the HP(R™) boundedness of Calderén—Zygmund operators without atoms and molecules.
The method mentioned in this article can be applied to certain types of Hardy spaces without
atomic decomposition or molecular characterization, for example, flag Hardy spaces [6].

We say that T is a singular integral operator with regularity exponent e € (0, 1], denoted by
T € SIO(¢), if T is a continuous linear operator from D, the set of C'*° functions with compact
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support, into its dual associated to a kernel K (z,y), a continuous function on R” x R"\ {z = y},

satisfying the following conditions: there exists an absolute constant C' > 0 such that

K(z,y)|l < , 1.1
K (2,y)] o — gl (1.1)
Ky - K@) <c® 7% e < o 1.2
K (z,y) — K(2',y)| < = glnte’ o —2'| < e —yl, (1.2)
K Ky <c WY iy — | < Hlo— 1

K (z,y) — K(z,y)| < -yl ly =yl < le—yl (1.3)

Moreover, the operator T' can be represented by

(Tf,g) = /n - K(z,y)f(y)g(x)dydax

for f,g € D with supp(f) N supp(g) = @. We say that a singular integral operator T is a
Calderén—Zygmund operator, denoted by T € CZO(e), if T can be extended to be a bounded
operator on L?(R").

The Hardy space HP?(R™), 0 < p < 1, denotes the class of distribution f such that Myf €
LP(R™), where

My (f)(z) = sup|[f * ¢ (x)] = sup
t>0 t>0

(x — ) (y)dy
]Rn

for some ¢ is a Schwartz function on R"™ with [;, ¢ =1 and || f||g» := || My f||,. We said that
the local integrable function f € BMO if

1
Ifllowo = sup o /Q (@) — foldz < oo,

where supremum ranges over all finite cubes @ in R™, |Q| is the Lebesgue measure of @, and
fq denotes the mean value of f over Q. It is well known that the space BMO is the dual of H!
(see [7]) and we have the inequality

[ 1o
R‘n

for f € H* and g € BMO. For a fixed number N € N, the 71 = 0 means

< Clfllallglizmo

/ K(z,y)(x)dyde =0 for any ¢ € CV with compact support
n Rn
and T*1 = 0 means

/ K(z,y)(y)dedy =0 for any ¢ € C with compact support.
n R’Vl

We will use almost orthogonal property and wavelet characterizations to show the following
well known result.

Theorem 1.1 Let T € CZO(g), 0 < e <1, with T*1 =0. Then T is bounded on HP(R") for

e <P <L
2 Preliminary

Let ¢ and v in OV, N € N (depends on the regularity exponent ¢), with compact supports.

Denote by E the set of 2™ — 1 vectors e = (e1,ea,...,¢e,) of 0’s and 1’s, excluding the origin
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(0,...,0). For e € E and k = (ky, ko, ..., k,) € Z"™, define
USi(x) = 27902y (27 e — ) = 27 By (2 g — k) - (27T — k)

with the convention that ° = ¢ and ¢! = 1. We may assume the family {@/}jef’k} has four
fundamental properties as follows (see [8, p. 108]).
(a) {$) :j € Z,k € Z",e € E} is an orthonormal basis of L*(R"); that is,

F=2200 > (fd5i)ufa forany f € LA(R");
e€E jeZ keln

(b) supp ¥5y C Qjk where Q;x = {r e R :279x —k € [0,1)"}, k = (ky1,ka,..., k) €
z",j € L;

(c) [0°98, | < C2771e12719/2 for every multi-index v € N" of order |a| < N;

(d) [ x9S, (z)dz = 0, when |a| < N.

Hereafter, for simplicity we use >_, ;) to denote > .cp > icz D kezn- We also have the
wavelet characterization of Hardy spaces (see [8, p.143, Theorem 1] and [9, p.113, Theo-
rem 4.16]).

Theorem 2.1 ([8,9]) Let e be the reqularity exponent associated with singular integral operator

n

+e
equivalent :

(i) f € HP(R™);

(1) (e jue (£ 0500 050 @) ) € L (R);

(i) (D |80 1Qid X (1)) € LP(RT).

To show the main theorem, we claim that 7%, and z/Jf/:k, have the almost orthogonal
property.
Lemma 2.2 Let T' € CZO(e), 0 < e < 1, with T1 = T*1 = 0 and the family {1$,} has
properties (a)—(d). Then for 0 <&’ <e,

and " < p < 1. Suppose the family {d)ik} has properties (a)—(d), then the following are

9(3vi')e

<T¢€},' LS < 23 U+iNg=li=d"le" ’
| ik’ Fik | (2(]v] )+ |yj’k Yy |)n+€

(2.1)

where j V j' = max{j,j'} and y, .y, ., are the center points of Qjx,Qj w which contains

supp ?/J;k, supp 1/)39,/ X respectively.
Proof Let ng € C*°(R"™) satisfy

1, if |z <1,
no(r) = .
0, if |z|>2,
and set 71 = 1 — 9. To prove this lemma, we consider the four cases: (i) {j/ < j and

Uy, | <420, (1) {7 < and ly,, —y,, | > 429}, (i) {7’ > j and |y, —y,, | < 427}
and (iv) {j" > j and |y,, —y, | >4-27 }.
In Case (i), it suffices to show

‘<T¢;’l,ku 10| < 025U =i)g=(i=i"e"
Using T*1 = 0, we rewrite

<Tw;’/,k’a 7/’f,k> = <T¢ffl,k/a 1/);,1( - w;,k (yj/,k,)>
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= [ T i@ W5le) = 5l ) e
e’ e e = y]" k/
= /" ij’,k’ (],‘) (wj,k(x) - wj,k(yj/,k/)>770 ( 2. 2]/’ ) dx
e’ e e = y?" 134
+ /Rn T3 4 () (wj,k(x) — ik (yj/‘kz)>771 ( 9. 95" ) dx

= Il + IQ.

To estimate I;, Holder’s inequality and the L? boundedness of 7 imply

(¢fk() - 1/Jf,k(3/j/,k/))770 ( ;.yé;',k'>

1/2
c( / 2da:> :
‘zfyj/’k/|g4‘2j/

We use the mean value theorem to get

1|

IN

!’
Hm; y
’ 2
2

IN

wek(x) - w;,k (yj’,k’)

| < €230 —g=(=i"e

To estimate I, the cancellation fwe/ =0and z ¢ B(?Jj/,k/ , 2]'/) show

| = ’/R / (¢fk($) - w.?ak(yj’,k’))

r—Y.,., ’
XM ( J-;k ) (K(l',y) - K(x,yj,yk,))wflyk,(y)dydm :

2.2
<C< 4|£L'_yj/,k/‘ >2J277
2tz -y, |

Since y € B(yj,’k,,Zj/), we have [y —y, | < 2" < Al — Y, | and hence the condition of

By an easy estimate

|1/J}e,k($) - Qp?,k(yj/,k/)

standard kernel implies

| y/ /‘ € jn |y_y/ /|8 ’
L|<C « 272 gk % 1w (y)|dxd,
2| /"/|w y, 22 (234_:,; y/k/|) |$_yj/’kl|n+s|wj k (y)|dxdy

w20
SC// . 2% 05" g (9) | deedy
ey, 12200 (2 |$ ~ Yy =yl

<25’ / , !
|x—yj, W ‘22'2j/ (2J + |l’ - yj/,k/ DE

_gn . i'n o
< (02772279272 z =y, " de
lz—y, o 1>2:27 ’

—no—je
—|—/ =y, "2 dx)
229> z—y,, 12229

< 0275 97597 97i5 (1 4 log 277) < €230 ~D)g-G=i)<'

|z —y, | "dx

Next, we consider Case (ii). We only need to show
27’

(TS 0, 0| < €256+ .
| j'.k" i,k | |yij _ yj“k,|n+a
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Since
‘SL‘— jk|>|y/k/_ jk|_‘ylk1_‘r|>4‘.2j_2j > 27

forany [z -y, .| < 27" we have supp z/Je 1 Nsupp 9§, = 0. Thus fwe = 0 implies

sl = | [ G = Ko, )05 e )05l
By
‘.’E - yj,k| < 27 < 4|yj,k - yj/,k" and |y - yj’,k/| < 27 S 2 < 4|yj,k - yj/,k’ ‘,
we have

|yj,k - yj/,k/ |yj k yj/,k/‘ + |:E - y‘

= 2
It follows that

1
o=yl 2 1y — ¥l and fy—y,,, Iaj —yl. (2:2)

| <
2
The condition of the standard kernel and inequality (2.2) yield

\y Yol
(05 e 620 <c/ /| 0 ) dody

P (x dx/ Ve o (y)|dy
|ka yj/Yk/‘n-‘rE /]Rn | j’k( )| R | 7.k ( )|

27’
|y]‘,k - yj’,k' ‘n-&-a

The cases (iii) and (iv) are similar to (i) and (ii), and the proof is completed. O

9% 9"

3 Proof of Theorem 1.1

In this section, we will show the HP boundedness of Calderén—Zygmund operators. To reach

the goal, we first consider an easier case.

Theorem 3.1 Let T € CZO(e), 0 < € < 1, with T1 = T*1 = 0. Then T is bounded on
HP(R™), " <p<1l
Proof We know that the subspace HP(R™) N L?(R") is dense in HP(R"). It suffices to show
that T is bounded from HP(R™) N L?(R") to HP(R™). Given f € HP(R") N L?*(R"), then
Tf e L?(R") since T is a Calderén—Zygmund operator. Property (a) implies
Tf= Z<Tfﬂ/)§,k>¢?,k and f = Z <f71/)/k/> K-
e,j.k e’,j’ k'’

Fixing e, j,k, we estimate that

NTF s = D e TV e 0S| < Y (08 0)

!og ’ !og ’
e j k e j k

(TUS 1, U510

For 7,7’ and k are fixed, we define the sets
Ay = {Qj,’k, . |yj’k — yj/‘k/| < 2(jv;'/)}7 A; = {Qj,’k, . 9i=19(jVi") < ‘yj’k _ yﬂ)k/| < 2i2(jVj’)}

for all € Nand y, Y, o are the center points of Q; x, @,/ x which contains supp Y, supp
w;’vk,, respectively. Choose r satisfying ' <r <p, (2.1) gives

Z ’<f,¢ j/ k’> |<T¢ge'/l,k’awje',k>|

! o4l !
e’',j" k
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EAZIE

S C 23 (j+j/)2_‘j_j/|€/ S <f7 1/)'?3,/ kl>

e’;k/ (2(]\/] ) + |y,~,k - yj/Yk/ |)n+E ’ 7

Yo li—i'le 2(3Vvi'e

=C Y 2R R wre | (1 0570)

’ gt ; (2J J +|y»'k_y'/ /|)

e 120 {k":Q;s 1 €A;} 7 itk
< 022; (J'H')Qjj'€'2(jVj')nZQi(n+6)< Z ‘(f, 7/138/, ) >

e’ i>0 {K:Q;/ 1w €A}

1/r

0 Ml (D SR D

e’ i>0 {K:Qs €A}

Therefore, the property that all cubes in A; are nonoverlapping for all ¢ shows that

Y S s TS e 50|
e/ j/ k/
< CZQ (J+3 )2 l7—J \5 —(3Vvi')n
e/’]/
- 1/r
(N [0l e, i)
i>0 {k":Q;r 1 €A}
—C Z o5 (+i")9—1i—i'le' 9= (Vi yng—7."
e/7j/
- r 1/7’
X Zz“”*”(/ ( Yo (s XQJ/,k/) dl”) :
i>0 " NKEQy €A}
Since
‘ U Q| <Clly =y, 0| +vn-20%0)" < 02m20%0"  for any i € 2,
Qj’,k’eA'i
we obtain
Y ) (TS e )]
e/ j/ k/
<C Z 95 (G+3")9—1i—3"le’ 9= (3Vi"Ing((GVvs")—5") }
A v _1 r 1/r
gty (’ U @l [ ( S ) m) d:v) :
i>0 Q1o €A BN Qywea
Thus,
Y WA (TS e 50|
e/7j/7k/
r 1
< 0 280+ li=d 9=V Ing(viN =i {M<<Z |(F, 055 1) XQ]-/,k/) )} ;
e/’j/ k/

where M is the Hardy—Littlewood maximal function. This implies that
2 -1
> Tl Qin] ™ X

e,j,k
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<oy ( 93 ng i1V Ing (G35

e,j e’,j’
g r } 2
-{M((Z|<f,w§f,kl> 2 XQ) )} )
k/

<03 2 lid €y GV mg (V=

e,j e/’jl
™,
.{M<(Z‘<f’w?hk'> 272 XQ-?"*') )}
k/
r 2
)

<oy {u((Shnuga
e.J' x
SUPZ 9i'no=1i=i'le'o=(Vi'Ing (Vi) =i ~ 5o

J

since
j/
and

sup 3 29" li=i1€ 9= (VI Ing(VINI) < o,
J
J

Using the Fefferman—Stein vector-valued maximal function inequality [10, Theorem 1.1] with

r < p, we have

1/2
H{ > |, w;,kﬂ?\czj,k\‘lmj,k}
e,j,k
RO
k/
’ i'n s ? T’/2
(S 1))
k/
, iin 2y r/2)1/r
(Z’<f7w?’,k’> 27 2 XQj’,k') }
k/

, » 1/2
=C {Z |<f, §k>’ |Qj7k| XQj,k}

e,jk

P

i rN2y1/2
* o) )] )

<C

{
:c{
{

p
1/r

by
2
>

J
e
J

p/r

p/T

Y
e,

P
The last equality holds since each @;/ x on the right-hand side is nonoverlapping. The proof is
completed by Theorem 2.1. O

To finish the proof of Theorem 1.1, we have to study para-product operators. Given f €
L?(R™) N HP(R™), there exists a Schwartz function ¢ on R™ with [, ¢ = 1 such that Myf €
LP(R™). For i € N, define

Q= {,T eR™: M¢(f)(l‘) > 27'}

and

1 1
B, = {Q is a dyadic cube : |Q N Q;| > 2|Q|, QN Q] < 2|Q}. (3.1)
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For any @k, we can choose z;x € Q;x N (; \ Q41) since Q;x € B; for some i. Then we
obtain
My(f) (i) <27 (3:2)

Now, for any b € BMO, we define the para-product operator
I (f)(2) = Z (b, ;,k>(¢2j * f(x]k))il);k(x) for x € R™.

e,jk

Its adjoint operator can be written as

I (f)(z) = Z (b, 7/J§B,k><l/1§k, [¢oi(zjx —x) for z € R™

e,j,k
Then
Iyl = Z (0,95 1) (25 * 1) (250)) Y5 = </ $2i (Y dy) k=10
e.j,k e,j, k
and
HZl: Z<b’ ;’k><w;’k7 >¢QJ Ijk_ Z<b </ 1/) dy>¢2ﬂ(xjk— ):0.

e,j.k e,j.k
Moreover, we have the HP boundedness of IIj.

Theorem 3.2 Let € be the reqularity exponent associated with singular integral operator and
. <p<1. Suppose b € BMO, then Il is bounded on HP.

Proof By Theorem 2.1, it suffices to show that

1
2
H{ b, Y510 | 62 *f(xj-,k)|2|Qj,k|_1XQj,k} < O\l fll -
uk p
Note that
3 ||P
1 S vl = el " xe )

e,j,k p

D

/ (ZZ > > (b, f,k>|2’¢2f*f(xj,k)’2|Qj,k|_1XQj,k>2d$,

¢ 7 {kQ;x€Bi} {1kQ;xCQ;
Qj xEB; }

where @%k is the largest cube containing the cube Q;k in B;. Holder’s inequality and (3.2)
yield

5 ||P

S 1050l o2 i Plsad x|
e, 7,k

p
B 5

XY Y (% el w0 xen) @

e 1 {jkQ;kEB;} ® {:k:Q; 1k CQ; 1,

Q; xEB:i}
U :

=53) SEND DI ) i (D DN (XN eENEFEMNY

e 1 {jkQ;rEB;} {5.k:Q;kCQj k.

Q; xEB;}
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p

- XE:Z ( T |@j,k|)1_§ ( ST v 6w + f(CCj,k)‘Q) 2

i {j,k:@j,kEBi} {jvk:Qj,keBi}
-2
i A e 2
coxyer( Y 2awne)) (X (ewsl)
e {j,k:Q; «E€B;} {j,k:Q; xEB;}

Write
Q; = {z e R": M(xq,)(z) > 1/2}.
Given Q;x € B;, we have Q;x C (NZZ Then

p

1-2 P
Yy X o) (X (el
e i {5.k:Q; kE€B;} {j,k:Q;xEB;}

<cg;z@|ﬂir“§< > o)

{1.k:Q;,C:}

By [8, p. 154, Theorem 4],

Sx#al (¥ jeel) <oT Tl alk

{5, k:Q;,kC}

Since M is of weak-type (1,1),

2||P )
{5 00 Plows « sanaflQind Mo} | <€ S 2ol < sl
e,j,k p e A

which completes the proof. O
Also, 1 is a Calderén—Zygmund operator.

Theorem 3.3 Let b € BMO. Then the operator 11y, is a Calderon—Zygmund operator.

Proof  First, we claim that II, is bounded on L?(R™). Given f € L*(R"),

Meflla = sup [(Iuf,g)| < sup > (b, 053] |das * f (00| [ (W5 9)]-
[lgll2<1 llgll2<1 e,j.k

Using Holder’s inequality and Parseval’s formula, we obtain

1/2
Iflls < sup (Zy ;,k>!2|¢2j*f<wj,k>|2) (Z| )

llgll2< e,j.k e,j.k

< (X lsollen « saswl’)

e,jk
1/2
(zz S sl el )
i {jk:QjxEB:i}

where B; is defined as (3.1). By (3.2) and Carleson’s condition,

HHbf||2 < (ZZZQ(H-D Z ‘<b,we’k>‘2)

{j.k:Q; xEB;}

1/2
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< <;Zi:22<i+1> > jk)|2>1/2

{1, k:Q;kCQs}

1/2
< <2222(i+1>@-|) < C<ZZQ2iQZ_|)

< C[Mgfll2 < Cllf 2

1/2

Obviously, the function

Kb(x7y) = Z <b7 w?,k>¢2j (xj,k - y)d]je',k(x)> T,y € Rn7

e,j.k

is the kernel of IT,. We check that K}, satisfies (1.1)—(1.3). Since
|0, 951 < IbllBmo ¥l < €279/2[1Bllmwo,

we have

[Ky(,9)| = | D (095 bs (w0 — 9) U5 ()

e,j.k
e 2j e
< C||b‘|BMO§{||¢47k||H1 (27 + | —y\)"+1| k()]
< Clbllo S22 7 92, (@) for 2,y € R™.
22 @ ey

For any j, if |z — y| > 2y/n27, then
27 27
) <C _
(¥ +zje =yt = (P + |z -y
since )
wx =yl = |z —y| = g — 2] 2 o —y| — Vn2 > o1 =yl
If |z — y| < 2y/n27, then
27 _ 2J

—nj

‘ <2 <(C :
(27 + |zjae =yl =0 T (20 4 fr gy

Hence

Kol <08, oy SCle =yl
Next, we estimate

|Ky(z,y) — Kp(z',y)| < C|xz__yg|:;t€ for0 <e <1.

To see that, we have

Ko(e,y) — Kola! )] = ] S (b, 6510 b0 (251 — 1) (U5 () w;,ku'))\

e,j,k

227 | — 2| :

€,)
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97 (2—¢)
= C|bllBmolz — 2|7 ez]: (20 + |a — y|)n+2
<C |z — 2'|°
T eyt
Finally, we estimate
ly —y'|° L1
|Ky(z,y) — Kp(z,y')| < C|37 _ |t for0<e<land|y—y|< 2|x—y|‘

By the definition,
|Kb(‘ra y) - Kb(xa y/)|

_ \ S 0b, 0510 (62 (23— ) — b (5 — 3') 650 (2)

e,j,k

< CZ Hb”BMOHw;kHHl’¢2J’($j,k_ Y) — b2 (Tj% — ’WJ

e,j,k

<C Z Z W)ik”Hl |¢2J’ (ffj,k —Y) — P (xj,k - yl)W’;k(w)

e€E {jk:|y—y'|<27-1}

+C Z Z 1975 x

ecE {jki|y—y’|>2i-1}

= IIl + IIQ

|H1’¢21(95j,k_ y) — b2 (wjx ’WL

For II;, we have

S S ) Prel Gl I
21 \(Tjk — Y 21\ Tjk —Y )| = 9; (2 + |z — y|)n 1
Hence,
27(1=¢) ly—y'|°
I <Cly—y'|° . <C .
OV 2 el Ol e

{5:ly—y'|<27}
For II,, we have
27 2)
STTRER R RaY)
<o . 7
(2 + |z =yt
since |z — y'| > |z —y| — |y — /| > 3|z — y|. Hence, we obtain

2 ly =]
I, <C E ) <C
— 27 _ n+1 — _ n+1
Gy (27 + ]z —yl) |z —y|

|poi (250 — y) — doi (5 — V)| < O((

and the proof is completed. O
We are ready to show the main theorem.

Proof of Theorem 1.1 ~ We define the operator T by
T=T-Tr.
Since T is bounded on L?(R™), T'1 theorem shows that 71 € BMO (see [11]). It is easy to check
T1=T1-Tp1=T1-T1=0
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and

T*1=T*1—1I51=0.

The operator T is Calderon—Zygmund operator because II, and T are Calderén—Zygmund
operators. By Theorem 3.1, T is bounded on HP(R™), " < p<1. By Theorem 3.2, the proof

) n+te
is completed.
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