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Abstract The cutting-stock problem, which considers how
to arrange the component profiles on the material without
overlaps, can increase the utility rate of the sheet stock. It is
thus a standard constrained optimization problem. In some
applications the components should be placed with specific
orientations, but in others the components may be placed with
any orientation. In general, the methods used to solve the
cutting-stock problem usually have global search strategies
to improve the solution, such as the Genetic Algorithm and
the Simulated Annealing Algorithm. Unfortunately, many
parameters, such as the temperature and the cooling rate
of the Simulated Annealing method and the mutation rate
of the Genetic Algorithm, have to be set and different set-
tings of these parameters will strongly affect the result. This
study formulates the cutting-stock problem as an optimiza-
tion problem and solves it by the SQP method. The proposed
method will make it easy to consider different orientations of
components. This study also presents a global search strategy
for which the parameter setting is easy.
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Introduction

The cutting-stock problem is a key consideration in many
manufacturing industries, such as textile, garment, metal-
ware, paper, ship-building, and sheet metal industries. It
considers how to arrange objects on the material, with the
intention of increasing the material utility rate and avoiding
overlaps between objects.

The cutting-stock problem can be classified according
to different characteristics of objects, such as the shape,
the number, and their orientation. Some applications, such
as in the paper industry, consider only rectangular objects.
However, most applications, such as garment manufacture,
ship-building, and the sheet metal work, consider irregular
objects. When classifying by the object number, the cut-
ting-stock problem may be considered as a mass produc-
tion problem or a small production problem. Many objects
with the same shape will be cut from the material in the
mass production problem. In recent years customized prod-
ucts have become popular; thus, products will be manufac-
tured on a small scale. In the small production problem,
there will be many different kinds of objects, and this prob-
lem is more complex than the mass production problem.
The other classification in this study is made by the ori-
entation. In some applications the object can be arranged
only in one desired orientation. For example, clothes may
have some straight lines, and the lines have to be aligned
with one another on the material. This is called “orienta-
tion constraint” in the cutting-stock problem. The orienta-
tion constraint may be ignored in other applications, such
as arranging the profiles of components of a computer case
on a sheet metal. However, little research on this has been
done.

Therefore, this study proposes a method of solving the
cutting-stock problem with rotatable irregular objects in
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small-scale production. Because this kind of problem is com-
plex and popular, the literature about it is limited at present.

Literature review

The relative positions where one object contacts another
object can be represented as a polygon called a “no-fit poly-
gon”. For solving the cutting-stock problem, Dowsland et al.
(2002) used a “no-fit polygon” to obtain the closest posi-
tion between two objects, and used a bottom-left strategy
to arrange objects on the sheet stock. In this method, the
arrangement sequence governs the resulting arranged pat-
tern. Thus, deciding the arrangement sequence is very impor-
tant. Gomes and Oliveira (2002) changed the position of
objects in the sequence to generate a new solution based
on the original one. These methods can be used to solve the
cutting-stock problem when objects should be arranged in
a special orientation, because the object orientation is fixed
when finding the no-fit polygon. To allow the full rotation of
objects, Yu et al. (2009) formulated the cutting-stock prob-
lem as a standard constrained optimization problem. The cost
function is the summation of the distance of all objects, and
the constraints are the overlap depths between objects which
should be less than or equal to zero. The design variables
are the positions and orientations of objects, and the problem
is solved by the Sequential Quadratic Programming method
(Arora 2004). This approach allows objects to be arranged in
any orientation, but it finds only the local optimum solution
of the cutting-stock problem.

Poshyanonda and Dagli (2004) represented objects as
binary matrices, and used an artificial neural network and
the Genetic Algorithm to solve the cutting-stock problem.
Ratanapan et al. (2007) used an evolutionary algorithm to
solve the cutting-stock problem. The evolutionary algorithm
has a fitness function similar to the Genetic Algorithm, and
has some operators designed by the authors to escape from
the local optimum trap. Although the Genetic Algorithm
(Onwubolu and Mutingi 2003) is a popular and widely-use
method for searching for the global optimum solution, it
is not easy to use. It has many parameters that need to be
decided, such as the crossover rate and the mutation rate.
Also, each parameter setting will greatly affect the result, as
shown by Poshyanonda and Dagli (2004). Every design var-
iable is transferred to a binary code, and the resolution of the
binary code will affect the result. This is another disadvan-
tage of the Genetic Algorithm.

The Simulated Annealing Algorithm is another popular
global optimum method. When using the Simulated Anneal-
ing Algorithm, various operators used to determine a new
solution have to be designed for “searching”. The solution is
updated to the new solution if the cost function is decreased.
If the cost function of the new solution is larger than or equal

to the original one, a random number σ will be generated as
0 � σ1. If

σ ≤ e
−�E

T , (1)

where T is the temperature of the Simulated Annealing, and
�E is the increment of the cost function, the solution will
be updated to a new one. The temperature here is not a real
temperature. It is a parameter used to simulate a real anneal-
ing process, while the initial temperature, final temperature,
and cooling rate have to be set when using the Simulated
Annealing Algorithm. Marques et al. (1991) and Szykman
and Cagan (1995) used the Simulated Annealing Algorithm
to conduct a global search for solving the cutting-stock
problem. Leung et al. (2003) combined the Genetic Algo-
rithm and the Simulated Annealing Algorithm, and compared
the results with the pure Genetic Algorithm. As shown by
Marques et al. (1991), the parameter setting proved impor-
tant for obtaining a good solution compared to the Genetic
Algorithm.

Bennell and Dowsland (2001) used the Tabu Search and
Linear Programming to solve the cutting-stock problem. The
standard deviation of the results from 100 runs is small,
implying it is a stable method.

The methods, such as bottom-left strategy, Genetic Algo-
rithm, etc., used to arrange objects govern the search pro-
cess, and the geometry treatments govern the objects can be
rotated or not. There are four kinds of the geometry treat-
ment in the cutting-stock problem. They are no-fit polygon,
matrix representation, �-function, and direct method. The
no-fit polygon is mentioned above. For obtaining the no-fit
polygon, an object contacts another fixed object first, and
then slides on the boundary of the fixed object with a fixed
orientation. The sliding path can be represented as a poly-
gon, and it is the no-fit polygon. This method is not suitable
for rotating the object in an arbitrary orientation because the
no-fit polygon will be changed if the relative orientation of
these two objects is changed. Thus the no-fit polygon has to
be calculated for every orientation. The matrix representation
usually represents an object as a binary matrix. It is easy to
be rotated with 90, 180, and 270 degree because the matrix
can be treated as a set of rectangles. For arbitrary rotation,
the binary matrix has to be encoded for all orientations. The
�-function is present by Stoyan et al. (2001). They use the
same concept of no-fit polygon, but represent the no-fit poly-
gon as some equations not a set of vertices. The forth method
use the overlap area (Petridis and Kazarlis 1994) or overlap
length (Bennell and Dowsland 1999) to consider the over-
lap, and the arrangement method will eliminate the overlap
by moving objects. This is the most suitable method for rotat-
able polygons because all objects can be rotated in arbitrary
orientations.
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Three common cases: “Dagli”, “Shapes2”, and “Shirts”
are usually used in the literatures. The best results of Da-
gli, Shapes2, and Shirts are 84.35% (Poshyanonda and Dagli
2004), 79.13% (Gomes and Oliveira 2002), and 85.58%
(Gomes and Oliveira 2002) respectively. Although the result
of Dagli is good, it depends on the parameter setting of the
Genetic Algorithm. There are 9 kinds of parameters pro-
posed by Poshyanonda and Dagli (2004), and the difference
between the worst and the best one is 7.26%.

A review of the literature shows that the Genetic Algo-
rithm and the Simulated Annealing Algorithm are com-
monly-used methods for solving the cutting-stock problem.
However, many parameters need to be set for both algorithms,
and the results are strongly affected by the choices of these
parameters.

Therefore, this study will propose a global search strat-
egy that does not require any parameters to be set, and is
easy to use. This study also presents a formulation of the
cutting-stock problem with rotatable irregular objects and a
fixed width stock. This formulation is in a constrained opti-
mization problem form, making it easy to consider different
orientations of objects.

Method

The cutting-stock problem is a type of optimization prob-
lem. This study formulates it into a constrained optimization
problem form and solves it by using the Sequential Qua-
dratic Programming (SQP) method, a local search strategy.
For improving the solution, a global search strategy will be
used after obtaining a local optimum solution.

Formulation

The cutting-stock problem is formulated as a standard form
of the constrained optimisation problem as follows:

cost function : minimize f = n

√
√
√
√

N
∑

i=1

xn
ui (2)

design variables xi , yi , θi ; i = 1 ∼ N (3)

constraints g1i = DMi jk(x j , y j , θ j , xk, yk, θk) ≤ 0;
where i = 1 ∼ N (N − 1)

2
,

j = 1 ∼ (N − 1), k = ( j + 1) ∼ N (4)

g2i = −xli ≤ 0; i = 1 ∼ N (5)

g3i = −yli ≤ 0; i = 1 ∼ N (6)

g4i = yui ≤ ywidth; i = 1 ∼ N (7)

where N is the number of objects; n is an even number; xi is
the x-coordinate value of the reference point of object i; yi

is the y-coordinate value of the reference point of object i; θi

is the orientation of object i; xli is the lower bound of object
i in the x-direction; xui is the upper bound of object i in the x-
direction; yli is the lower bound of object i in the y-direction;
yui is the upper bound of object i in the y-direction; ywidth is
the width of the sheet stock.

The cost function will cause objects be arranged near the
lower boundary of the sheet stock as close to each other as
possible. The even number n in the cost function is used to
enhance the effect of objects far from the lower boundary of
the sheet stock. The design variables will denote the position
and the orientation of objects. A reference point is used to
denote the position of an object. The reference point of object
i is calculated by

xi = 1

V n

V n
∑

j=1

x j (8)

yi = 1

V n

V n
∑

j=1

y j (9)

where Vn is the vertex number of object i. Figure 1 shows an
example of a reference point.

DM jk is the maximum depth between object j and object
k. A depth is the distance between a vertex of an object and
its projection point on an edge of another object. The pro-
jection direction is parallel to the vector connecting the ref-
erence points of these two objects. The depth is defined as
positive if the vertex is in another object, and vice versa. The
maximum depth of object j and k is the largest depth of all
vertices of object j and k. The calculation of the maximum
depth method can be described with Fig. 2. Point B on edge
CD is the projection point of Vertex A projected along vector
O j Ok . Line AB can be represented as equations and edge CD
can be represented as equations.

xB = xA + (

xOk − xO j
)

t1 (10)

yB = yA + (

yOk − yO j
)

t1 (11)

xB = xC + (xD − xC ) t2 (12)

yB = yC + (yD − yC ) t2 (13)

t1 and t2 are parameters used to represent point B on the lines.
xO j , yO j , xOk, yOk, xA, yA, xB, yB , xC , yC , xD , and yD are
used to represent the position of points O j , Ok, A, B, C , and
D. O j and Ok are the reference point of object j and k. Solve
the equations by (10) = (12) and (11) = (13), the point B can
be obtained. If 0 � t2 � 1 and t1 � 0, the depth is set as
the distance between vertex A and point B. If 0 � t2 � 1
and t1 > 0, the depth is set as the minus value of the dis-
tance between vertex A and point B. If t2 > 1 or t2 < 0,
point B is not on edge CD. The depth is ignored. All vertices
and all edges of both objects have to be checked each other,
and the maximum one is the “maximum depth” of these two
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Fig. 1 The reference point of
an object

objects. The algorithm form of obtaining the maximum depth
of object Obj1 and Obj2 is shown as follows.

The position of Obj1 is

{

x1
y1

}

and the orientation of Obj1 is o1

The position of Obj2 is

{

x2
y2

}

and the orientation of Obj2 is o2

1. Set θ = 90 − tan−1
(

y1−y2
x1−x2

)

,

where

{

x1
y1

}

is the position of Obj1 and

{

x2
y2

}

is the position of Obj2
{

T x1i
T y1i

}

=
[

cos θ − sin θ

sin θ cos θ

] {

x1i
y1i

}

+
[

cosθ − sin θ

sin θ cos θ

] {

x1 − x2
y1 − y2

}

{

T x2i
T y2i

}

=
[

cosθ − sin θ

sin θ cos θ

] {

x2i
y2i

}

,

where

{

x1i
y1i

}

and

{

x2i
y2i

}

are the positions of the i-th vertex

of Obj1 and Obj2 respectively;

{

T x1i
T y1i

}

and

{

T x2i
T y2i

}

are the

positions of the i-th vertex of templates TObj1 and TObj2
respectively.

2. For (k=0; k<2; k++)
For (i=0; i<vertex number of TObj2; i++)

For (j=0; j<vertex number of TObj1; j++)
if ((T x2i > T x1 j ) and (T x2i < T x1 j+1))

Set y = (T y1 j+1−T y1 j )(T x2i −T x1 j )

(T x1 j+1−T x1 j )
+ T y1 j

if (first time to obtain Length)
Length=T y2i −y

else if (Length < (T y2i − y))
Length=T y2i − y

End if
End if

End For
End For
Set Temp as TObj1
Set TObj1 as TObj2
Set TObj2 as Temp

End For
3. Obtain Length as the result

The maximum depth is used to evaluate the overlap of
these two objects. The maximum depth is used to evaluate
the overlap of these two objects. The DM jk will be negative
if two objects have no overlap but have a gap between them.
The constraint group g1 considers the overlap of objects; g2,
g3, and g4 constrain the objects to avoid them to be arranged
outside the boundaries of the sheet stock.

Local search strategy

After formulating the problem as a constrained optimiza-
tion problem, it can be solved by using the SQP method, a
numerical method for solving optimization problems. The
procedure of a numerical method is an iterative process of
finding a “search direction” and a “step size”.

To solve the optimization problem by the SQP method,
the Karush-Kuhn-Tucker (KKT) conditions (Arora 2004) of
the Lagrange function are used. The Lagrange function is
defined as follows:

L(d, μ) = f (d) + μT g (14)

where μ is the vector form of the Lagrange multipliers, and
d is a collection of design variables: xi , yi , θi . The numerical
solving process of the KKT conditions is an iterative process
of calculating the new solution d(k+1),

d(k+1) = d(k) + �d(k) (15)

where k is the iteration number, and �d(k) is the change in
design variables. It is also the search direction of the SQP
method. The SQP method defines a QP sub-problem to cal-
culate the search direction. The flowchart of the SQP method
(Arora 1984) is shown in Fig. 3. The detailed descriptions can
be found in the references, and the derivation can be found in
the work by Arora (2004) and Liao (1990). There are several
programs such as MOST (Tseng 1989) and IDESIGN (Arora
1988) that use the SQP method to solve the constrained opti-
mization problem.
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Fig. 2 The overlap depth of object j and k

Fig. 3 The flowchart of SQP method

Global search strategy

The global search strategy of this study includes “escaping
the local optimum trap” and “sometimes accepting a bad
solution”. Two objects will be swapped after finding a local
optimum, and objects will be re-arranged by the SQP method.

Fig. 4 The flowchart of whole approach

This will help to search for a solution in another region and
escape the local optimum trap. If there is no solution better
than the original one after several swaps, the best one in these
swaps will be updated as the new solution. This is similar to
the Simulated Annealing method that accepts a bad solution
according to Eq. (1) described above.

The whole approach of this study is shown in Fig. 4, and
includes the following steps:

1. Arrange all objects on the sheet stock randomly, and
decide the maximum iteration number. The random
arrangement is the initial solution. The index “IterNo”
indicates the iteration number now, and it is set as 0 at
the beginning.

2. Use the SQP method to arrange objects, and the solution
“D” and the cost function value “F” are obtained. And
then, initialize the best solution “Dbest ” and the best cost
function value “Fbest ” as D and F.

3. Update the “IterNo” and initialize the “SwapNo”. Set the
maximum swap number as the iteration number.

4. Update the “SwapNo” first, and swap the position of two
objects of solution D. The two objects are selected ran-
domly.
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5. There will be some overlap after swap two objects. Thus
the SQP method is used to re-arrange all objects, and
the solution of the swap sub-process “Dsub” and its cost
function value “Fsub” are obtained.

6. If it is the first swap or the result of swap is better than the
best solution in the swap sub-process, the best solution
of the swap sub-problem “Dsubbest ” and its cost function
value “Fsubbest ” are updated.

7. If “Fsubbest ” is larger than “Fbest ”, i.e., the best solution
of the swap sub-process is worse than the best one of
total process, and it will be better to try another swap, or
“SwapNo” is less than “SwapMax”, i.e., another swap is
allowable, go to step 4 to do another swap.

8. If another swap is not necessary or not allowable in
the swap sub-process, check if “Fsubbest ” is better than
“Fbest ” or not. If a solution better than the best one of the
total process is obtained in the swap sub-process, update
the best solution and its cost function.

9. If “IterNo” is less than “IterMax”, update the swap base
“D” as the best solution of the swap sub-process and go
to step 3 to continue the process. If not, the best solution
is the final solution.

The maximum swapping number is set as the iteration
number, because the bad solution may be accepted easily in
the beginning of the solving process. The acceptance of bad
solution will become more and more difficult in the solv-
ing process. This characteristic is similar to the concept of
Simulated Annealing Algorithm for global searching. As the
maximum swapping number is increased during every itera-
tion in the process, the number of bad solution acceptances
is decreased. It is similar to the “cooling down” in the Simu-
lated Annealing Algorithm, but no additional parameter has
to be set, such as the temperature and the cooling rate of the
Simulated Annealing Algorithm and the mutation rate of the
Genetic Algorithm. It is friendly and easy to use.

Experimental results

The object information of the cases used in this study can
be downloaded from the ESICUP website. Some cases are
shown in Table 1. Before testing the results of the proposed
approach, two parameter settings were tested first on an
example named Dagli.

The first parameter was the exponent n in Eq. (2) of the
optimization problem formulation. The maximum iteration
number was set as 10, and four levels of n were tested. It
is selected as an even number because it is easy for pro-
gramming. The infinite n is implemented by taking the max-
imum bound of all objects in the x-direction. Ten results
were obtained for every level because the initial solution of
the whole process was generated randomly. The results are

Table 1 The information of cases

Case
name

Number of
different kind
objects

Total number
of objects

Total area of
objects

Stock
width

Dagli 10 30 3043.28 60

Shapes2 7 28 324 15

Marques 8 24 7,194 104

Mao 9 20 3758550.93 2,550

Shirts 8 99 2,160 40

Table 2 Results of different n with maximum iteration number equals
to 10

No. n = 2 (%) n = 4 (%) n = 8 (%) n =∞ (%)

1 75.00 79.69 82.61 78.57

2 80.26 79.94 75.45 78.21

3 78.19 78.19 79.50 78.40

4 80.43 79.79 78.41 77.44

5 76.27 78.19 81.97 77.27

6 79.39 81.05 78.34 78.88

7 77.95 80.79 79.53 77.97

8 76.74 79.81 78.12 79.56

9 79.09 79.10 78.61 77.46

10 78.51 78.07 78.95 76.67

Best utility 80.43 81.05 82.61 79.56

Average utility 78.18 79.46 79.15 78.04

Deviation utility 1.66 1.01 1.91 0.82

shown in Table 2. When n equals 2, the best material utility
rate in the ten results is 80.43% and the average material util-
ity rate is 78.18%. When n increases to 4, i.e., the effect of
objects far from the origin becomes large, the best material
utility rate increases to 81.05%, and the average increases
to 79.46%. The best result increases the utility rate a little
further to 82.61%, but the average decreases marginally to
79.15% when n increases to 8. When n is set as infinite, the
best and average utility rate are decreased a little. Therefore,
a larger exponent may improve the material utility rate, but
an infinite exponent may not be good. It may be because the
object with a larger upper bound in the x-direction will has a
larger effect for the cost function with a larger n, and this may
help to reduce the necessary stock length. When n is infinite,
the movement of all objects will not affect the cost function
unless the object with the largest x upper bound. If it does not
affect the cost function to move an object toward the lower
boundary of the stock in x-direction, the movement will not
be executed and the object will not be arranged toward the
x lower boundary. This may not be good for arranging all
objects toward the x lower boundary as close as possible.
However the difference is not remarkable, and the best one
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Table 3 Results of four cases with different n and maximum iteration
number equals to 10

Case Utility

Best (%) Average (%) Deviation (%)

Shapes2

n = 2 71.18 68.37 2.17

n = 4 69.63 67.28 1.88

n = 8 72.23 68.65 1.97

n =∞ 72.34 68.39 2.14

Marques

n = 2 75.73 71.21 2.85

n = 4 76.75 71.77 2.71

n = 8 77.98 73.37 3.21

n =∞ 74.69 71.98 1.80

Mao

n = 2 71.37 68.48 2.00

n = 4 72.96 69.14 2.06

n = 8 70.90 68.01 1.41

n =∞ 71.10 67.67 2.18

Shirts

n = 2 69.70 67.53 2.02

n = 4 73.79 69.59 2.50

n = 8 71.22 67.53 3.56

n =∞ 73.06 68.17 4.19

Table 4 Results of different maximum iteration number with n = 8

No. Maximum iteration number

10 20 30 40

1 82.61% 83.25% 83.85% 82.35%

2 75.45% 82.29% 84.28% 82.90%

3 79.50% 79.98% 82.54% 82.51%

4 78.41% 80.44% 81.89% 83.16%

5 81.97% 79.97% 83.04% 82.43%

6 78.34% 82.40% 84.24% 83.73%

7 79.53% 81.60% 82.63% 83.13%

8 78.12% 80.30% 80.49% 83.69%

9 78.61% 81.51% 82.13% 82.40%

10 78.95% 79.20% 81.83% 83.72%

Best utility 82.61% 83.25% 84.28% 83.73%

Average utility 79.15% 81.09% 82.69% 83.00%

Deviation utility 1.91% 1.24% 1.14% 0.54%

Average time 1 m 29.42 s 6 m 17.22 s 14 m 7.16 s 28 m 48.9 s,

in the test cases will be used. The number n was selected as
8 in the latter cases.

The results of different cases with different n are also
shown in Table 3. The difference between different n is not
remarkable.

Table 5 Results of five cases

Case Iteration
number

Utility Time

Best (%) Average
(%)

Deviation
(%)

Dagli 10 82.61 79.15 1.91 1 min 29.42 s

20 83.25 81.09 1.24 6 min 17.22 s

30 84.28 82.69 1.14 14 min 7.16 s

40 83.73 83.00 0.54 28 min 48.9 s

Shapes2 10 72.23 68.65 1.97 1 min 9.33 s

20 73.50 71.53 1.20 4 min 56.94 s

30 79.78 78.26 0.93 11 min 33.55 s

40 79.86 78.59 0.65 23 min 11 s

Marques10 77.98 73.37 3.21 53.3 s

20 80.02 76.65 2.13 2 min 55.83 s

30 82.10 80.44 1.16 8 min 21 s

40 84.32 81.99 1.59 13 min 59.6 s

Mao 10 70.90 68.01 1.41 58.46 s

20 74.76 71.62 1.69 3 min 29.45 s

30 78.97 75.05 2.31 9 min 43.07 s

40 81.31 79.04 0.88 15 min 6.4 s

Shirts 10 71.22 67.53 3.56 12 min 42.91 s

20 75.28 72.84 1.59 53 min 12.58 s

30 77.19 75.65 0.90 2 h 25 min 27.35 s

40 80.48 78.79 0.88 4 h 4 min 6.01 s

The other parameter was the maximum iteration number.
The case Dagli was also used to test this parameter, also with
four levels for testing. The results are shown in Table 4. The
best and average material utility rates are 82.61 and 79.15%,
respectively, when the maximum iteration number is 10. The
utility rate deviation and average time of these ten results
are 1.91% and 1 min 29.42 s. The best utility rate increases
to 83.25% and the average increases to 81.09% when the
maximum iteration number increases to 20. The deviation
decreases to 1.24% and the average time is 6 min 17.22 s.
The best and average material utility rate both increase and
the deviation decreases when the maximum iteration number
increases to 30. The average time is 14 min 7.16 s. When the
iteration number is 40, the best utility rate decreases a little,
but the average utility rate also increases. The average time
is 28 min 48.9 s. It is obvious that a tendency toward the best
and average material utility rate increase and the deviation
decreases as the maximum iteration number increases. The
time cost increases not linearly when the iteration number
increases. It is because the allowable swap number is larger
in later iteration. The time spent for completing the iteration
No. 40, allows 40 swap actions, which is usually larger than it
is for iteration No. 10, that allows 10 swap actions. This corre-
sponds with the notion that the solution of the optimization
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Fig. 5 The arranged patterns of the best run of five cases. a Dagli, b Shapes2, c Marques, d Mao, e Shirts

method will be improved and convergence if the iteration
number increases.

Five cases called Dagli, Shapes2, Marques, Mao, and
Shirts were used to test the effect of the proposed approach.
The object information of these cases can be downloaded
from the ESICUP website. The test results are shown
in Table 5 and the best arranged patterns are shown in
Fig. 5.

When the maximum iteration number is 30, the best util-
ity rate for the case Dagli is 84.28%. It is a little worse than
the 84.35% reported by Poshyanonda and Dagli (2004), but
the parameter setting of this study is much easier than that
used by Poshyanonda and Dagli (2004). The difference of the
worst and the best results of Dagli is 3.79%, and it is almost a
half of the difference in Poshyanonda and Dagli (2004). The
average utility rate in this study is 82.69%, larger by about
4.11% than the 78.58% reported by Ratanapan et al. (2007).
When the maximum iteration number increases to 40, the
best utility decreases, but the average utility rate increases.
The deviation is also improved.

The best utility rate for the case Shapes2 is 79.78%
when the maximum iteration number is 30, which is a small
improvement over the 79.12% reported by Gomes and
Oliveira (2002). The average utility rate and the deviation of
this case are 78.28 and 0.93%, and are better than the 76.58
and 1.12%, respectively, shown by Bennell and Dowsland
(2001). The best utility rate, average utility rate, and deviation

are improved when the maximum iteration number increases
to 40.

The case Marques was used by Marques et al. (1991), but
its results are not represented as a percentage, and the width of
sheet stock is not shown, either. Although the results cannot
be used to compare with those of this study, the best and aver-
age utility rate of this study are larger than 80%. Although
the deviation increases 0.43%, the best and average utility
rates are improved when the maximum iteration increases
from 30 to 40. The results from case Mao are about 79%,
while the best one is 81.31% in ten runs. They are similar to
the results of other instances in this study.

The fifth case Shirts is a case with a large model. There
are total 99 objects in this case. The average solving time
is about 2.5 h when the maximum iteration number is 30,
and increases to about 4 h when maximum iteration number
increases to 40. The best utility rate is 80.48%, and it is worse
than the result reported by Gomes and Oliveira (2002). The
average utility rates and the deviation are 78.79 and 0.88%.
The average is also worse than the 81.42% shown by Ben-
nell and Dowsland (2001), it is because the model becomes
large and difficult to obtain a good solution. But the pro-
posed approach is more stable because the deviation is less
than the 1.11% in Bennell and Dowsland (2001). All these
cases showed the same characteristic that the solution of the
optimization method will be improved and convergence if
the iteration number increases.
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Conclusions

The cutting-stock problem, which is a type of constrained
optimization problem, is considered in many manufactur-
ing industries. The cutting-stock problem in small-scale pro-
duction has become popular in recent years because of the
customization of products. The methods used to solve the
cutting-stock problem are usually not easy when considering
different orientations of objects. Some methods combine the
Genetic Algorithm or the Simulated Annealing Algorithm to
achieve a global search, but some parameters need to be set
in these methods, and the parameter settings greatly affect
the results. Therefore, this study proposes:
1. Formulating the cutting-stock problem as a standard

constrained optimization problem and solving it by the
Sequential Quadratic Programming method in order to
consider different orientations of object easily.

2. The approach in this study has only two parameters to
set, and the effect of parameter n is negligible. The other
parameter is the maximum iteration number. Although it
is better to set the maximum iteration number as large as
possible to obtain the best result, ten iterations already
yield good results.

3. The deviation from ten runs of every parameter setting
in every case is small, which means that the approach
proposed in this study has high stability.

4. The experimental instances used in this study show that
the proposed approach in this study can improve the
results.
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