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K-Clustered Tensor Approximation:
A Sparse Multilinear Model for Real-Time Rendering
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With the increasing demands for photo-realistic image synthesis in real time,
we propose a sparse multilinear model, which is named K-Clustered Tensor
Approximation (K-CTA), to efficiently analyze and approximate large-scale
multidimensional visual datasets, so that both storage space and rendering
time are substantially reduced. K-CTA not only extends previous work on
Clustered Tensor Approximation (CTA) to exploit inter-cluster coherence,
but also allows a compact and sparse representation for high-dimensional
datasets with just a few low-order factors and reduced multidimensional
cluster core tensors. Thus, K-CTA can be regarded as a sparse extension of
CTA and a multilinear generalization of sparse representation. Experimental
results demonstrate that K-CTA can accurately approximate spatially vary-
ing visual datasets, such as bidirectional texture functions, view-dependent
occlusion texture functions, and biscale radiance transfer functions for effi-
cient rendering in real-time applications.
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1. INTRODUCTION

Synthesizing photo-realistic images is a significant and ambitious
goal in computer graphics. Researchers have conventionally focused
on developing analytic models and simulation-based algorithms to
achieve photo-realistic image synthesis in real time. Nevertheless,
real-world object shape, surface reflectance, microscale appearance,
and natural illumination effects are frequently too complicated to
be synthesized using analytic models or simple simulations.

State-of-the-art methods, which are known as data-driven
models, thus perform rendering from cached or presampled data
that represent the results of complex procedures or even real-world
measurement. Although data-driven models can avoid computa-
tionally expensive procedures at runtime and generate high-quality
images, they are usually subject to cumbersome presampled obser-
vations that consume a large amount of storage space and memory
bandwidth. This problem becomes even worse when we have to
record more information to account for more degrees of freedom
and more detailed descriptions of the desired visual effects. Nowa-
days, the amount of presampled data often exceeds tens or hundreds
of gigabytes, so that the performance of data-driven models may
be even slower than directly employing complex procedures.

To solve this problem, we propose a sparse multilinear represen-
tation, namely K-CTA, for compressing and rendering large-scale
visual datasets. By retaining the structures of the input data as a
multidimensional array, namely a tensor, K-CTA extends CTA [Tsai
and Shih 2006] to classify each subtensor along the clustered mode
into more than one cluster, say Km clusters, so that inter-cluster
coherence can be exploited by mixing the decomposed results of
these clusters. To reduce runtime computational costs for real-time
applications, K-CTA also constrains that each subtensor belongs to
exactly Km clusters, thus providing a sparse representation in which
the sparsity is totally under user control. In other words, the number
of nonzero elements on which each subtensor depends is guaranteed
as a constant. This especially leads to an easy-to-optimize and
efficient shader program on Graphics Processing Units (GPUs).
Note that one can instead employ an approximation threshold to
determine the value of Km for different subtensors. Nevertheless,
it usually needs to add redundant zero entries for fast runtime ren-
dering performance, in order to avoid dynamic branches on GPUs.

Applications of K-CTA to spatially varying surface appearance,
such as Bidirectional Texture Functions (BTFs) [Dana et al. 1999],

ACM Transactions on Graphics, Vol. 31, No. 3, Article 19, Publication date: May 2012.



19:2 • Y.-T. Tsai and Z.-C. Shih

Fig. 1. Rendered images of all-frequency BRT based on different tensor representations for meso-structures, including N -SVD [De Lathauwer et al. 2000],
CTA [Tsai and Shih 2006], and K-CTA. In each subfigure, from top to bottom: rendered images; enlarged images; absolute difference images (scaled by a
factor of 3). Although both CTA and K-CTA allow real-time rendering performance, CTA sometimes produces noticeable artifacts when the viewpoint/object
moves. For the artifacts of CTA, please refer to our accompanying video and Figure 2. The model Bunny was provided in courtesy of Stanford Computer
Graphics Laboratory [2011].

Fig. 2. Artifacts of the rendered images based on CTA. In each subfigure,
from top to bottom: rendered images; enlarged images. Although the runtime
rendering rates of CTA and K-CTA are similar, CTA may produce noticeable
discontinuities when the viewpoint/object moves, especially at small grazing
angles of illumination/view directions. Please refer to our accompanying
video for more comparisons.

View-dependent Occlusion Texture Functions (VOTFs), and Biscale
Radiance Transfer (BRT) [Sloan et al. 2003b], demonstrate the
effectiveness and efficiency of K-CTA. Experimental results further
reveal that the inter-cluster coherence ignored by CTA is important
to the approximation of subtensors close to cluster boundaries,
since their approximation errors can be compensated by other
clusters. Moreover, the sparse property of K-CTA also provides a
good comprise between image quality and reconstruction costs.

The remainder of this article is organized as follows. Section 2
reviews the literature on recent advances in dimensionality

reduction, tensor approximation, and sparse representation. Next,
Section 3 briefly presents preliminaries and background of tensor
approximation and CTA for completeness. Then, Section 4,
which is the main part of this article, introduces a novel tensor
decomposition algorithm, namely K-CTA, to allow a multilinear
and sparse representation for multidimensional visual datasets.
Section 5 also considers some practical issues of K-CTA, such
as initialization, the extraction of global basis matrices, and the
degeneracy and convergence problems. Applications of K-CTA to
the compression of BTFs, VOTFs, and all-frequency BRT data,
with experimental statistics and comparisons to related methods,
are demonstrated in Section 6. Finally, Section 7 gives conclusions
and future research directions on K-CTA for real-time rendering.

2. RELATED WORK

2.1 Dimensionality Reduction

The high-dimensional “curse” has driven the advances of dimen-
sionality reduction techniques for a long time. Scientists generally
assume that low-dimensional manifolds are embedded in their
high-dimensional observations, and could be estimated by linear or
nonlinear transformations. One of the most popular linear models
may be Principal Component Analysis (PCA) [Jolliffe 2002]. In
computer graphics, PCA has been widely adopted to analyze and
compress various types of visual data, such as reflectance data
[Matusik et al. 2003] and spatially varying appearance models
[Sattler et al. 2003; Wang et al. 2003]. In general, linear models
are computationally efficient and easy to implement, but they are
inadequate to analyze datasets with nonlinear structures.

Apart from linear models, numerous dimensionality reduction
algorithms have been proposed to explore nonlinear correlations
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among data, for example local PCA (or clustered PCA) [Kamb-
hatla and Leen 1997], kernel PCA [Schölkopf et al. 1998], isomap
[Tenenbaum et al. 2000], locally linear embedding [Roweis and
Saul 2000], to name a few. Although the structures of real-world
observations are complicated and globally nonlinear, many nonlin-
ear models assume that local correlations are approximately linear.
Thus, the observations could be “locally” transformed into low-
dimensional linear subspaces without a significant loss of infor-
mation. Compared to linear models, however, nonlinear models are
computationally more expensive, and sometimes may be intractable
for large-scale datasets. Additionally, not all nonlinear models are
generative. This frequently prevents some of them from practical
applications of data-driven rendering. Despite these disadvantages,
successful applications of nonlinear models are still prevalent in
computer graphics, for instance, Precomputed Radiance Transfer
(PRT) [Sloan et al. 2003a], BTF compression [Müller et al. 2003;
2004], texture synthesis [Lefebvre and Hoppe 2006], and material
modeling [Matusik et al. 2003].

2.2 Tensor Approximation

In recent years, tensor approximation (also called multilinear
models or multiway analysis) [De Lathauwer et al. 2000; Kolda
and Bader 2009; Smilde et al. 2004] has become widespread and
caught a lot of attention. It can be regarded as a generalization
of Singular Value Decomposition (SVD), where data samples
are processed in their intrinsic form as a multidimensional array,
and separate reduction is allowed along each dimension. Unlike
linear and nonlinear models in dimensionality reduction, tensor
approximation relies on decomposing a high-dimensional space
into multiple low-dimensional subspaces that are, respectively,
associated with each mode of observations to remove the curse of
dimensionality. The extracted low-order factors in each subspace
then can be combined to effectively model the original high-
dimensional space. In this way, multilinear models successfully
preserve the intrinsic structures and important information of
observations, and thus overwhelm one of the main disadvantages
of previous dimensionality reduction techniques.

In computer graphics, tensor approximation has also been
successfully extended [Tsai and Shih 2006; Wu et al. 2008] and
applied to various applications, such as data-driven rendering [Sun
et al. 2007; Vasilescu and Terzopoulos 2004; Wang et al. 2005] and
human facial processing [Vasilescu and Terzopoulos 2003; Vlasic
et al. 2005]. Even some matrix factorization methods [Lawrence
et al. 2006; Nayar et al. 2004; Suykens et al. 2003] are implicitly
related to multilinear models. Although tensor-based methods have
been shown more powerful and flexible than linear models, most of
them are inadequate for real-time applications. Even after applying
the popular N -mode SVD (N -SVD) algorithm [De Lathauwer et al.
2000] to derive an optimal approximation of the input tensor, the
amount of compressed data is still too cumbersome for fast runtime
rendering. Although CTA can reduce runtime computational costs
by dividing input data into disjoint regions, it meanwhile disregards
inter-cluster correlations. Moreover, similar to traditional clustering
methods, CTA also suffers an inappropriate initial guess. K-CTA
thus targets at overcoming these major drawbacks of CTA by
searching for an optimal reconstruction of input tensor across the
subspaces of different clusters.

2.3 Sparse Representation

Recently, there has been a growing interest in modeling real-world
observations as sparse linear combinations of atoms (or basis
functions) in an overcomplete dictionary [Elad et al. 2010; Wright

et al. 2010]. Although the underlying physical process of a
natural phenomenon may be a complex function or mixture of
heterogeneous elements, it is frequently desirable to represent
observations in a sparse form that allows efficient data analysis.
However, this intuitive concept is far from easy to achieve in
practice. Even with a fixed dictionary, searching for an optimal
solution in which each signal exactly depends on a given number
of atoms was proved NP-hard [Davis et al. 1997]. Therefore, many
practical algorithms instead consider suboptimal solutions, such
as matching pursuit [Mallat and Zhang 1993], basis pursuit [Chen
et al. 2001], and Bayesian models [Kreutz-Delgado et al. 2003].

In addition to pursuit algorithms and Bayesian models, previous
studies have also reported a close connection between sparse rep-
resentation and vector quantization [Kreutz-Delgado et al. 2003].
K-SVD [Aharon et al. 2006] thus generalized K-means clustering
to seek sparse representations by alternating between the pursuit
process and dictionary learning. Nevertheless, rather than using
Bayesian inference, it applied SVD to simultaneously update dictio-
nary atoms and nonzero basis coefficients in the dictionary learning
stage, so that the convergence rate could be improved.

In computer graphics, Ruiters and Klein [2009] also developed
a sparse representation based on K-SVD for BTF compression.
Nevertheless, their method simply applies K-SVD to each dimen-
sion of the input BTF, and cannot derive a locally optimal solution.
Furthermore, it is also difficult to achieve efficient performance for
data-driven rendering applications. By contrast, we propose a novel
sparse multilinear model, namely K-CTA, that can easily achieve
real-time rendering rates for compressed BTFs. K-CTA also com-
bines the advantages of CTA and K-SVD to bridge the gap between
sparse representation and tensor approximation. Several important
theorems of K-CTA are proved and discussed, showing that K-CTA
resembles the behaviors of K-SVD in the tensor space and is a
natural extension of CTA. As a result, K-SVD is further generalized
to allow high-dimensional data analysis based on multilinear
algebra, without destroying the intrinsic structures of observations.

3. PRELIMINARIES AND BACKGROUND

This section briefly reviews the background of tensor approxima-
tion1 and CTA. For completeness, notation and basic definitions
of tensor operators are also introduced. Although the out-of-core
tensor decomposition algorithm [Wang et al. 2005] was applied in
our experiments, in-core tensor notation is adopted in this article
for notational simplicity. For more details about various tensor op-
erators, interested readers may additionally refer to De Lathauwer
et al. [2000] and Smilde et al. [2004].

3.1 Basic Definitions

In this article, scalars are written as italic roman lowercase letters
(a, b, . . . ); vectors as boldface roman lowercase letters (a, b, . . . );
matrices as boldface roman capitals (A, B, . . . ); tensors as boldface
calligraphic capitals (A,B, . . . ). The entry in row i and column j
of a matrix U ∈ R

I×J is denoted by (U)ij ; similarly, the entry of
an N -th-order tensor A ∈ R

I1×I2×···×IN by (A)i1i2···iN . The i-th row

1Throughout this article, tensor approximation is particularly referred to as
the multiway analysis based on Tucker models [Smilde et al. 2004]. Readers
may notice that there is another popular multilinear model named parallel
factor analysis (PARAFAC) or canonical decomposition (CANDECOMP)
[Smilde et al. 2004] in chemometrics and psychometrics, but it is beyond
the scope of this article.
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of U is written as (U)i∗ and the j -th column of U as (U)∗j . The
transpose of a matrix U is denoted by UT .

The Frobenius norm of an N -th-order tensor A is defined as
‖A‖F = √〈A, A〉, where

〈A, B〉 =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN =1

(A)i1i2···iN (B)i1i2···iN (1)

denotes the scalar product of two tensors A, B ∈ R
I1×I2×···×IN .

The mode-n product of a tensor A and a matrix U ∈ R
Jn×In is

written as B = A ×n U, where the entries of the resulting tensor
B ∈ R

I1×I2×···×In−1×Jn×In+1×···×IN are given by

(B)i1i2···in−1jnin+1···iN =
In∑

in=1

(A)i1i2···in−1inin+1···iN (U)jnin . (2)

The symbol ufn(A) ∈ R
In×(In+1In+2···IN I1I2···In−1) denotes the mode-n

unfolded matrix of an N -th-order tensor A, which results from
retaining the n-th mode of A and flattening the others (refer to
Figure 2.1 in De Lathauwer et al. [2000]).

Moreover, we further define a series of mode-n products by

B = A
N

�n
n=1

Un = A ×1 U1 ×2 U2 · · · ×N UN, (3)

and A〈ni 〉 ∈ R
I1×I2×···×In−1×1×In+1×In+2×···×IN represents the i-th

mode-n subtensor of a tensor A, whose entries are defined as(
A〈ni 〉

)
i1i2···in−11 in+1in+2···iN = (A)i1i2···in−1i in+1in+2···iN . (4)

3.2 Tensor Approximation

Given a set of reduced ranks
{
Rn ∈ {1, 2, . . . , In}

}N

n=1
, where Rn

is the mode-n reduced rank, tensor approximation decomposes an
N -th-order tensor A as a series of mode-n products of a core tensor
Z ∈ R

R1×R2×···×RN and a set of N basis matrices
{
Un ∈ R

In×Rn
}N

n=1
,

so that the following constrained least-squares optimization prob-
lem is resolved. We have

min
{Z,{Un}N

n=1}

∥∥∥∥A − Z
N

�n
n=1

Un

∥∥∥∥
2

F

, subject to ∀n, UT
n Un = IRn

, (5)

where IRn
∈ R

Rn×Rn represents the identity matrix of size Rn×Rn,
and Un is also known as the mode-n basis matrix.

N -SVD [De Lathauwer et al. 2000] derives a locally optimal
solution to (5) using an iterative alternating least-squares algorithm
that optimizes only one basis matrix at a time, while leaving other
basis matrices unchanged. At the n-th iteration, the mode-n basis
matrix Un is extracted by retaining the structures of the n-th mode
of A, projecting A onto the basis matrices of other modes, and ap-
plying SVD to the mode-n unfolded matrix of the projected tensor.
The preceding steps are then repeated until convergence.

3.3 Clustered Tensor Approximation

For an N -th-order tensor A, CTA [Tsai and Shih 2006] partitions{
A〈mi 〉

}Im

i=1
, along the clustered mode m, into C disjoint regions

to reduce the runtime reconstruction costs of real-time applica-
tions. All the mode-m subtensors within a cluster c then can be
concatenated along the m-th mode into a new tensor and approx-
imated using N -SVD to minimize reconstruction errors from the
decomposed core tensor Zc ∈ R

R1×R2×···×RN and N basis matrices{
Un,c ∈ R

In×Rn
}N

n=1
of cluster c.

To obtain a locally optimal solution, the dual mode-m basis ma-
trices

{
Vm,c

}C

c=1
are derived from the core tensor of each cluster

to iteratively reclassify A〈mi 〉 into a cluster ci that minimizes the
approximation error of A〈mi 〉. This is equivalent to maximizing the
following objective function2∥∥∥∥∥∥ufm

⎛
⎝A〈mi 〉

N

�n
n=1
n	=m

UT
n,ci

⎞
⎠VT

m,ci

∥∥∥∥∥∥
2

F

, (6)

and the dual mode-m basis matrix of a cluster c is defined as

Vm,c = (
ufm(Zc)ufm(Zc)

T
)− 1

2 ufm(Zc). (7)

In this way, CTA groups correlated mode-m subtensors, so that
tensor approximation can exploit more coherence within a cluster.

4. K-CLUSTERED TENSOR APPROXIMATION

4.1 Algorithm Overview

4.1.1 Motivations. One major drawback of CTA is that it en-
forces hard clustering in which each mode-m subtensor is classified
into just one cluster. The subsequent tensor approximation within
each cluster thus can only exploit intra-cluster coherence. In ad-
dition, the results of CTA heavily depend on the initial guess of
cluster membership, but estimating an appropriate initial guess is
a nontrivial problem. Even if the globally optimal solution to hard
clustering could be easily found, the decomposed core tensors and
basis matrices of different clusters may still have strong correlations.

Our solution to this issue is to relax the hard clustering constraint
into a soft one. Each mode-m subtensor now can be classified into
more than one cluster and approximated by mixing the decom-
posed results of these clusters. To reduce runtime reconstruction
costs, this soft constraint should also be a sparse one in which each
mode-m subtensor belongs to just a few, say Km, clusters. This
not only permits K-CTA to exploit the inter-cluster coherence that
cannot be analyzed by CTA, but also alleviates the influence of an
inappropriate initial guess by breaking the hard cluster boundaries.
Thus, K-CTA can be regarded as a sparse extension of CTA and a
multilinear generalization of K-SVD [Aharon et al. 2006].

4.1.2 Mathematical Formulation. To allow soft and sparse
clustering, K-CTA is formulated as the following constrained least-
squares optimization problem

min{
Zc,{Un,c}N

n=1

}C

c=1

∥∥∥∥A −
C∑

c=1

(
Zc

N

�n
n=1

Un,c

)∥∥∥∥
2

F

,

subject to

⎧⎪⎪⎨
⎪⎪⎩

∀i,
∑C

c=1

∥∥∥(Um,c

)
i∗

∥∥∥
0

= KmRm,

∀c, ∀i,

∥∥∥(Um,c

)
i∗

∥∥∥
0

∈ {0, Rm},
∀c, ∀n, UT

n,cUn,c = IRn
,

(8)

where C is the total number of clusters for the clustered mode
m, Rn specifies the mode-n reduced rank, Zc ∈ R

R1×R2×···×RN and
Un,c ∈ R

In×Rn , respectively, denote the decomposed core tensor and
the mode-n basis matrix of cluster c, Km represents the number of
mixture clusters of each mode-m subtensor, and ‖·‖0 denotes the �0

norm of a vector. Note that Um,c is also called the mixing matrix
of cluster c, whose i-th row contains the mixing coefficients of the
i-th mode-m subtensor, namely A〈mi 〉, with respect to cluster c.

2Note that Eq. (6) is not derived in Tsai and Shih [2006], but we will show
and prove it in Theorem 1 and Appendix A.1.
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ALGORITHM 1: The K-CTA algorithm

Input: An N -th order tensor A, a set of reduced ranks {Rn}N
n=1,

the number of clusters C for the clustered mode m, the
number of mixture clusters Km, and the initial guess for{
Zc,

{
Un,c

}N

n=1

}C

c=1
.

Output: The core tensor and basis matrices of each cluster{
Zc,

{
Un,c

}N

n=1

}C

c=1
.

repeat
// Clustering stage
for c ← 1 to C do

Compute Vm,c by (7)
Initialize each entry of Um,c to zero

for i ← 1 to Im do // Greedy search
Obtain ci1 of A〈mi 〉 by solving (9)
Update

(
Um,ci1

)
i∗ as (11)

for k ← 2 to Km do
Obtain cik of A〈mi 〉 by solving (13)

Update
{(

Um,cij

)
i∗

}k

j=1
as (15) // Optimal

projection

for c ← 1 to C do // Post-processing
Decompose Um,c to obtain U′

m,c and Wc (Section 4.2.3)
Um,c ← U′

m,c

Zc ← Zc ×mWc

// Update stage
for c ← 1 to C do

Compute Rc as (20)
R′

c ← Rc ×m MT
c // Refer to (21) and (22) for Mc

Update Zc and
{
Un,c

}N

n=1
by decomposing R′

c using
N -SVD
Um,c ← McUm,c

until
∑C

c=1

∥∥Zc

∥∥
F

converges

The first and second constraints in (8) enforce that each mode-m
subtensor belongs to exact Km mixture clusters, and the entries of the
i-th row of Um,c must be all zeros if A〈mi 〉 is not classified into cluster
c. Therefore, all the mode-m basis matrices are sparse and implicitly
specify the cluster membership of each mode-m subtensor. Note
that when Km = 1, K-CTA should derive the same results as CTA
to permit it as a natural generalization of CTA.

4.1.3 Solution Outline. The proposed iterative K-CTA algo-
rithm is an alternating least-squares approach that consists of two
stages: clustering and update stages. After initializing the core ten-
sor and basis matrices of each cluster, all variables in (8) are fixed
in the clustering stage (Section 4.2), except for the mode-m basis
matrix of each cluster. For each mode-m subtensor, a greedy ap-
proach is then applied to sequentially search for the best Km mixture
clusters that minimize its approximation error, and the mixing co-
efficients are obtained by the proposed optimal projection method.
Next, in the update stage (Section 4.3), the core tensor and basis
matrices of each cluster are then iteratively updated using N -SVD,
one cluster at a time, while those of other clusters are unchanged.
Note that we also fix the cluster membership in the update stage to

simplify the proposed algorithm. Finally, the aforesaid two stages
are iteratively executed until the sum of the Frobenius norm of each
cluster core tensor converges, or a user-specified maximum itera-
tion count is reached. The whole process of K-CTA is summarized
in Algorithm 1.

4.2 The Clustering Stage

Given the core tensor and basis matrices of each cluster, we would
like to find the best Km mixture clusters of each mode-m subtensor
and derive the corresponding mixing coefficients in this stage, so
that the constraints in (8) are satisfied. This issue can be considered
as a multilinear counterpart of the pursuit problem for sparse repre-
sentation [Aharon et al. 2006; Chen et al. 2001; Mallat and Zhang
1993], which was proved NP-hard [Davis et al. 1997]. Indeed, it
is difficult to solve the cluster membership and the nonzero mix-
ing coefficients of a mode-m subtensor at the same time, since the
decomposed results of different clusters are frequently correlated.
Even a single change in the membership of a mode-m subtensor,
either adding the subtensor to or removing it from a cluster, will
affect its mixing coefficients for other clusters. Nevertheless, greedy
approaches often provide a satisfactory approximate solution to the
pursuit problem in both theory and practice [Davis et al. 1997]. We
thus sequentially update the cluster membership and sparse mixing
coefficients of all the mode-m subtensors, one cluster at a time.

4.2.1 Greedy Search.

First Mixture Cluster. To allow K-CTA as a natural generaliza-
tion of CTA, the first mixture cluster of a mode-m subtensor is
obtained by the following theorem and lemma.

THEOREM 1. Let Vm,c ∈ R
Rm×(Rm+1Rm+2···RN R1R2···Rm−1) be the

dual mode-m basis matrix of cluster c [Tsai and Shih 2006].
The first mixture cluster ci1 of A〈mi 〉 can be obtained by solving
the following constrained integer optimization problem

max
ci1

∥∥∥∥ufm
(
A(ci1 )

〈mi 〉
)

VT
m,ci1

∥∥∥∥
2

F

, subject to ci1 ∈ {1, 2, . . . , C} , (9)

where

A(ci1 )
〈mi 〉 = A〈mi 〉

N

�n
n=1
n	=m

UT
n,ci1

. (10)

LEMMA 2. The mixing coefficients for the first mixture cluster
ci1 of A〈mi 〉 are computed as(

Um,ci1

)
i∗ = ufm

(
A(ci1 )

〈mi 〉
)

ufm(Zci1
)+, (11)

where the superscript “+” specifies the Moore-Penrose pseudo-
inverse.

The mathematical proofs of Theorem 1 and Lemma 2 are pre-
sented in Appendix A.1. Theorem 1 states that A〈mi 〉 should be
classified into a cluster whose basis matrices adequately preserve
its projected norm, so that the mode-m subtensors within a cluster
are correlated with each other. Lemma 2 further indicates that the
mixing coefficients for the first mixture cluster of A〈mi 〉 is the pro-
jection coefficients of A〈mi 〉 onto the subspaces of cluster ci1 . Note
that the objective function in (9) is equivalent to the objective func-
tion of CTA in (6). This implies that if the number of mixture cluster
is set to one, K-CTA will be identical to CTA in the clustering stage.

Remaining Mixture Clusters. After resolving the first mixture
cluster of a mode-m subtensor, its remaining mixture clusters are
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then iteratively derived, one mixture cluster at each iteration, from
the results of previous iteration. We thus propose the following
theorem to settle the k-th mixture cluster of a mode-m subtensor.

THEOREM 3. The k-th mixture cluster cik of A〈mi 〉 is resolved
from the mixing coefficients for the previously selected k − 1 mixture
clusters ci1 , ci2 , . . . , cik−1 by minimizing the approximation error of
the residual subtensor

R(k)
〈mi 〉 = A〈mi 〉 −

k−1∑
j=1

⎛
⎝Zcij

×m

(
Um,cij

)
i∗

N

�n
n=1
n	=m

Un,cij

⎞
⎠, (12)

which is equivalent to solving the following constrained integer
optimization problem.

max
cik

∥∥∥∥ufm
(
A(cik

)

〈mi 〉
)

VT
m,cik

−
k−1∑
j=1

ufm
(
Z (cik

)
cij

×m

(
Um,cij

)
i∗

)
VT

m,cik

∥∥∥∥
2

F

,

subject to cik ∈ {1, 2, . . . , C} , cik /∈ {ci1 , ci2 , . . . , cik−1

}
,

(13)

where

Z (cik
)

cij
= Zcij

N

�n
n=1
n	=m

UT
n,cik

Un,cij
. (14)

The mathematical proof of Theorem 3 can be found in
Appendix A.2. For each mode-m subtensor, the first term of the
objective function in (13) is actually the same as the objective func-
tion in (9), and the second term instead penalizes a cluster whose
basis matrices are correlated to those of previously selected mixture
clusters. Therefore, Theorem 3 implies that the k-th mixture cluster
of a mode-m subtensor is determined by maximizing intra-cluster
correlations and minimizing inter-cluster correlations at the same
time. This interesting result is similar to the optimized orthogonal
matching pursuit approach [Rebollo-Neira and Lowe 2002], where
the k-th atom is resolved by simultaneously minimizing its linear
dependence with previously selected atoms and maximizing the
projected norm of the residual.

Moreover, it is obvious that Eq. (13) can be computed in the re-
duced tensor space3 to significantly decrease computational costs.
The first term of the objective function in (13) is the projection coef-
ficients of A〈mi 〉 onto the basis matrices and the dual mode-m basis
matrix of cluster cik . It should be already computed when resolving
the first mixture cluster of A〈mi 〉 and remains unchanged during the
whole clustering stage. The second term instead can be interpreted
as transforming the projected A〈mi 〉 in the subspaces of cluster cij ,
for j = 1, 2, . . . , k − 1, to the subspaces of cluster cik , followed by
the multiplication with VT

m,cik
to obtain projection coefficients. As a

result, we can avoid computing the residual subtensor in the origi-
nal tensor space, which needs to first reconstruct the corresponding
mode-m subtensor from the results of previous iteration.

4.2.2 Optimal Projection. Since the subspaces of different
clusters may be correlated, each time when assigning a new mixture
cluster to a mode-m subtensor, its mixing coefficients for previ-
ously selected mixture clusters should be updated to account for the

3In this article, the reduced tensor space is referred to as the union of all
decomposed cluster subspaces, whose dimensionality is frequently much
lower than the original tensor space.

change in the cluster membership. This guarantees an optimal pro-
jection of the mode-m subtensor onto the subspaces of all selected
mixture clusters. We therefore introduce the following theorem to
update the mixing coefficients of a mode-m subtensor.

THEOREM 4. The mixing coefficients for the k selected mixture
clusters ci1 , ci2 , . . . , cik of the i-th mode-m subtensor A〈mi 〉 are
given by

u(k)
mi

= Z(k)+
mi

a(k)
mi

, (15)

where

u(k)
mi

= [(
Um,ci1

)
i∗ · · · (

Um,cik

)
i∗
]T

, (16)

Z(k)
mi

=

⎡
⎢⎢⎢⎣

f
(ci1 )
m

(
Z (ci1 )

ci1

)
· · · f

(cik
)

m

(
Z (cik

)
ci1

)
...

. . .
...

f
(ci1 )
m

(
Z (ci1 )

cik

)
· · · f

(cik
)

m

(
Z (cik

)
cik

)
⎤
⎥⎥⎥⎦ , (17)

a(k)
mi

=
[
f

(ci1 )
m

(
A(ci1 )

〈mi 〉
)

· · · f
(cik

)
m

(
A(cik

)

〈mi 〉
)]T

, (18)

and f (c)
m (·) is the unfolded core projection function of a tensor, which

is defined as

f (c)
m (·) = ufm(·)ufm

(
Zc

)T
. (19)

Appendix B gives the mathematical proof of Theorem 4. Interest-
ingly, Eq. (15) resembles the least-squares solution to the projection
coefficients of an observation onto a set of basis vectors, where Z(k)

mi

can be regarded as the Gram matrix that accounts for the correla-
tions between all available cluster subspaces. Note that the proposed
K-CTA algorithm is indeed efficient, since Km is usually a small
positive integer. Moreover, all of the operations during the cluster-
ing stage are performed in the reduced tensor space, and most of
them only need to be computed once at the beginning of this stage.

4.2.3 Postprocessing. Note that the mode-m basis matrices de-
rived by optimal projection are not column-orthonormal. To satisfy
the orthonormal constraints on basis matrices in (8), we addition-
ally decompose the mode-m basis matrix of each cluster using SVD
to obtain Um,c = U′

m,cWc, where U′
m,c ∈ R

Im×Rm is a basis matrix
whose columns are the orthonormal left singular vectors of Um,c,
and each column of Wc ∈ R

Rm×Rm , respectively, contains the pro-
jection coefficients of each column of Um,c onto U′

m,c. After that, we
replace the mode-m basis matrix of cluster c with U′

m,c and recom-
pute the core tensor of cluster c by the mode-m product Zc×mWc,
so that the value of the objective function in (8) is unchanged.

4.3 The Update Stage

In this stage, the core tensor and basis matrices of each cluster are
updated from the results of the clustering stage. While this problem
for CTA can be easily solved by simultaneously applying tensor
approximation to the member subtensors of each cluster [Tsai and
Shih 2006], subspace learning for all clusters at the same time
would be difficult for K-CTA, since each mode-m subtensor now
belongs to Km different clusters that may be correlated with each
other. We thus alternately decompose one cluster at a time by tensor
approximation, while fixing the results of other clusters. To simplify
the proposed algorithm, the cluster membership of each mode-m
subtensor is not altered in this stage, leaving it to be updated only
in the clustering stage.

At the c-th iteration, Zc and
{
Un,c

}N

n=1
of cluster c are allowed

to change, while those of other clusters are fixed. The objective
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function in (8) thus can be rewritten as∥∥∥∥Rc − Zc

N

�n
n=1

Un,c

∥∥∥∥
2

F

, Rc = A −
C∑

j=1
j 	=c

(
Zj

N

�n
n=1

Un,j

)
, (20)

where Rc is the residual tensor at the c-th iteration. By comparing
(20) to (4.1) and (4.2) in De Lathauwer et al. [2000], we know
that the minimization of (20) can be solved with the aid of tensor
decomposition. To enforce the sparse constraint on Um,c, the key
idea is to only include member subtensors of cluster c in the tensor
decomposition process and just update the nonzero entries of Um,c,
which is based on the same concept in the codebook update stage of
K-SVD [Aharon et al. 2006]. As a result, the membership of cluster
c is fixed, and the zero entries of Um,c remain zeros. However, the
nonzero entries of Um,c are allowed to change with the decomposed
results of cluster c at the same time.

More formally, let Mc be the membership index set of cluster c
defined as

Mc = {
i ∈ {1, 2, . . . , Im} | A〈mi 〉 is a member of cluster c

}
,
(21)

and Mc ∈ R
Im×|Mc| denotes the membership matrix of cluster c,

whose entries are

∀i1, ∀i2,
(
Mc

)
i1i2

=
{

1, if i1 = (Mc)i2 ,
0, otherwise,

(22)

where | · | denotes the cardinality of a set, and (Mc)i2 is the i2-th ele-
ment of Mc. We thus can extract the member subtensors of cluster c
into an N -th-order tensor R′

c by R′
c = Rc ×m MT

c . When applying
tensor approximation to the shrunken tensor R′

c, nonmembers of

cluster c are excluded from the decomposition. Zc and
{
Un,c

}N

n=1
are then updated by the decomposed core tensor and basis matrices
of R′

c. Note that since R′
c contains only members of cluster c, Um,c

should be further updated by the multiplication McUm,c to satisfy
the constraints in (8).

5. IMPLEMENTATION ISSUES

In this section, we discuss some practical issues of K-CTA, such as
the initial guess of the core tensor and basis matrices of each cluster
(Section 5.1), the extraction of global basis matrices of all clusters
(Section 5.2), and the degeneracy and convergence problems of
K-CTA (Section 5.3).

5.1 Initial Guess

One practical issue of K-CTA is the initial guess of the core tensor
and basis matrices of each cluster. A simple and heuristic method
is to employ the decomposed results of hard clustering. We can
execute CTA for just one iteration to obtain the initial core tensor
and basis matrices of each cluster for further data analysis using K-
CTA. Although this scheme will push the problem back to the initial
seeds for clustering methods, various techniques for generating and
fixing the initial cluster seeds usually provide satisfactory results in
our experience.

The best approach may vary with the given datasets, but here
we present a general method as a guideline to determine the initial
cluster seeds. For a real-world dataset, each mode of the input ten-
sor is associated with a parametric space that describes its physical
conditions, for example, different illumination or view directions
for a reflectance function. Based on the assumption that observa-
tions from nearby parameters in the mode-m parametric space are

expected to be highly correlated, we can perform initial clustering in
the parametric space instead. This is computationally efficient since
the dimensionality of the mode-m parametric space is frequently
lower than that of observations. Sophisticated or even exhaustive
methods therefore can be employed to generate appropriate cluster
seeds. In our experiments, this scheme generally reduces the final
approximation errors of K-CTA by 2% ∼ 5%, when compared with
directly performing K-means clustering on mode-m subtensors to
determine the initial cluster seeds for CTA.

Interestingly, while finding a favorable initial guess is a signif-
icant issue for CTA and other iterative algorithms, K-CTA is less
sensitive to the quality of an initial solution. As the number of
mixture clusters increases, the importance of an appropriate initial
guess for K-CTA decreases. This result is not surprising since the
impact of inappropriate initial cluster membership can be compen-
sated by additional mixture clusters. The compensation also can
be regarded as an optimal interpolation scheme from other clus-
ter subspaces in the least-squares sense, which particularly allows
smooth transitions across different physical conditions in practical
applications. In Section 6.3, we will further demonstrate the influ-
ence of this characteristic of K-CTA in the experimental results of
all-frequency BRT.

5.2 Global Basis Matrices

Sometimes a single global mode-n basis matrix of all clusters is
preferred rather than an individual local mode-n basis matrix of
each cluster. The preference for global basis matrices may be due to
computational costs, storage space, or some special purposes of an
application. To account for this issue, the global basis matrices are
computed by decomposing an N -th order tensor A before applying
K-CTA.

Let G be the index set of global basis matrices
{
Un

}
n∈G

, where
the subscript c of a local mode-n basis matrix is omitted to denote
a global one. After extracting

{
Un

}
n∈G

by applying tensor approx-
imation to A, we project A onto

{
Un

}
n∈G

to obtain an N -th-order
reduced tensor AG as

AG = A �n
n∈G

UT
n . (23)

K-CTA is then performed on AG to compute the core tensor and the
local basis matrices of each cluster, while the global basis matrices
are fixed.

Although an iterative algorithm can be employed to alternately
update the global basis matrices and the decomposed results of
K-CTA, it is computationally too expensive and only reduces ap-
proximation errors by a small amount. We therefore just performed
the initial tensor decomposition on A to derive the global basis
matrices and did not update them after K-CTA for all experimental
results in this article.

5.3 Degeneracy and Convergence

When the total number of clusters is large, we have observed that
sometimes all the entries in a column of the mode-m basis matrix
of a cluster, for example, Um,c, may become zeros at the end of
the clustering stage, which implies that no mode-m subtensors are
classified into cluster c. Although this degeneracy problem does not
occur frequently in practice, an empty cluster actually consumes
memory space without any contributions to final approximation
errors. In the worst case, K-CTA may even derive a poor solution
when there are too many empty clusters, as if the total number of
clusters were set to a lower value. Our solution to this issue is to
split the cluster with the largest total sum of approximation errors in
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half by sorting the approximation error of each mode-m subtensor
within this cluster. If there is more than one empty cluster, we can
sequentially split nonempty clusters using the preceding method
until each empty cluster has been assigned at least one mode-m
subtensor. It should be noted that our approach is in fact related
to the key concept of teleportation [Cohen-Steiner et al. 2004] and
enhanced LBG [Patanè and Russo 2001] in the clustering literature.

Another important question is whether the proposed iterative
K-CTA algorithm always converges to a local optimum. Appar-
ently, the answer is no. Similar to K-SVD [Aharon et al. 2006],
the convergence of K-CTA is not guaranteed, since only the
approximate mixing coefficients (and also the cluster membership)
of each mode-m subtensor are derived in the clustering stage.
Therefore, the total sum of approximation errors is not guaranteed
to decrease when compared to the decomposed results of the
previous iteration. Note that if the convergence and a locally
optimal solution of K-CTA are both required, one can instead
perform the brute-force search for a globally optimal solution to
the pursuit problem, at the cost of longer computation time.

Fortunately, although K-CTA theoretically does not always en-
sure convergence, we have found that it practically converges within
just a few iterations in the experiments. We currently have no idea
about how to efficiently update mixing coefficients and cluster sub-
spaces, so that approximation errors are always reduced. However, a
simple and intuitive technique can be applied to prevent bad results
due to the divergence problem. At the end of the update stage, if the
total sum of approximation errors increases, we instead restore the
decomposed results of previous iteration. As a result, the approxi-
mation errors of an input tensor will never increase, and the conver-
gence criterion of K-CTA in Algorithm 1 can be always reached.

6. APPLICATIONS AND RESULTS

Three applications of the proposed K-CTA algorithm are presented
in this section, including the compression of BTFs4 (Section 6.1),
VOTFs5 (Section 6.2), and all-frequency BRT data (Section 6.3).
Our experiments demonstrate that K-CTA is effective and promising
when compared to previous tensor-based methods: N -SVD and
CTA. The experiments and simulation timings in this article were
conducted and measured on a workstation with an Intel i7-980X
Extreme CPU, an NVIDIA GeForce GTX 480 graphics card, and
12GB main memory.

In our experiments, the reduced ranks of each mode are con-
strained to be multiples of 4 for all tensor-based algorithms, since
this can maximize the efficiency of runtime texture filtering/fetching
on GPUs. For N -SVD, the reduced ranks of each mode are sepa-
rately obtained by decomposing only the basis matrix of one mode,
say the mode n, while fixing other basis matrices to identity ones,
and incrementally adding the value of Rn until an approximation
threshold is reached.

For CTA and K-CTA, we simply let Rm = 4 for the clustered
mode m, and select the reduced ranks of other modes as those for
N -SVD. Moreover, the total number of clusters C can be deter-
mined from the mode-m reduced rank for N -SVD. We have found
that when RmC is equal to the mode-m reduced rank for N -SVD, the

4In this article, the measured BTFs, including Corduroy, Sponge, and Wool,
were provided in courtesy of Koudelka et al. [2003] and Sattler et al. [2003],
whereas the BTF of each simulated material, such as Fiber or RoughHole,
was obtained by rendering a geometric surface using global illumination
techniques.
5The VOTF of a simulated material can be precomputed over a geometric
surface by using ray-tracing algorithms for visibility test.

signal-to-error ratios of the three tensor-based representations are
roughly similar to each other. As for the number of mixture clusters
Km, it usually can be a very small integer (typically 2 or 3 from our
experimental results, especially from Table I and Figure 5). A larger
value of Km, for example, 4, can slightly increase the signal-to-error
ratios by a factor of less than 1%, but may substantially reduce the
rendering rates by a factor of more than 20%.

6.1 Bidirectional Texture Functions

BTFs [Dana et al. 1999] generalized BRDFs to contain textural pat-
terns of real-world object surfaces. They capture spatially varying
surface appearance and reflectance that change with respect to the
illumination and view directions. A BTF is thus a 6D function of the
illumination direction ωl , the view direction ωv , and the 2D spatial
coordinates, x and y, of a texel t. Although the illumination effects
of real-world object surfaces can be faithfully captured with BTFs,
we usually have to tabulate several gigabytes of raw data for a single
BTF dataset. This is certainly impractical for photo-realistic image
synthesis in real-time rendering applications.

Various approximation algorithms have been employed to solve
this problem [Filip and Haindl 2009], including matrix factorization
[Koudelka et al. 2003; Sattler et al. 2003; Suykens et al. 2003],
nonlinear dimensionality reduction methods [Müller et al. 2003,
2004], parametric models [McAllister et al. 2002; Tsai et al. 2011],
to name a few. Recently, tensor-based methods have been widely
applied to BTF compression [Vasilescu and Terzopoulos 2004;
Wang et al. 2005; Wu et al. 2008]. We thus take a step further to
conduct experiments of K-CTA on different BTFs for comparison.

In our experiments, a BTF is organized as a fourth-order tensor
A(B) ∈ R

Iωl
×Iωv ×Ix×Iy to retain its intrinsic structures, where Iωl

and
Iωv

denote the numbers of sampled illumination and view directions,
and Ix as well as Iy specify the spatially horizontal and vertical
resolutions. Given the reduced ranks of each mode, namely R(B)

ωl
,

R(B)
ωv

, R(B)
x , and R(B)

y , K-CTA is then applied to A(B) with total
C(B) clusters for the view mode, K (B)

ωv
mixture clusters for a mode-

ωv subtensor, and a single global basis matrix for the illumination
mode. A(B) is thus approximated by

A(B) ≈
C(B)∑
c=1

(
Z (B)

c ×ωl
U(B)

ωl
×ωv

U(B)
ωv,c ×x U(B)

x,c ×y U(B)
y,c

)
, (24)

where Z (B)
c ∈ R

R
(B)
ωl

×R
(B)
ωv ×R

(B)
x ×R

(B)
y denotes the core tensor of cluster

c, U(B)
ωl

∈ R
Iωl

×R
(B)
ωl represents the global mode-ωl basis matrix of all

clusters, and U(B)
ωv,c ∈ R

Iωv ×R
(B)
ωv , U(B)

x,c ∈ R
Ix×R

(B)
x , and U(B)

y,c ∈ R
Iy×R

(B)
y

are, respectively, the mode-ωv , mode-x, and mode-y basis matrices
of cluster c.

The configurations of K-CTA for BTF compression are deter-
mined for the following reasons.

(1) Efficient texture filtering techniques on GPUs can be directly
utilized by not clustering the x and y modes.

(2) For a complex BTF, a high mode-ωv reduced rank is usually
required to model large view-dependent variations in the ap-
pearance data, which substantially increases runtime rendering
costs on GPUs. Clustering along the view mode allows us to
reduce the costs in an adjustable manner.

(3) In our experience, the mode-ωv reduced rank often dominates
the perceptual quality of reconstructed BTFs and may need to
be much higher than the mode-ωl reduced rank.
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Table I. Statistics and Timing Measurements of Different Tensor Approximation Algorithms for BTFs and VOTFs, including N -SVD,
CTA, and K-CTA

Material Corduroy Fiber RoughHole Sponge Wool
Iωl

× Iωv × Ix × Iy 81 × 81 × 128 × 128 100 × 100 × 96 × 96 100 × 100 × 96 × 96 120 × 90 × 128 × 128 81 × 81 × 128 × 128
Raw data (GB) 1.2 1.03 1.03 1.98 1.2

Algorithm N -SVD CTA K-CTA N -SVD CTA K-CTA N -SVD CTA K-CTA N -SVD CTA K-CTA N -SVD CTA K-CTA
R

(B)
ωl

× R
(B)
ωv 20×32 20×4 20×4 16×80 16×4 16×4 28×44 28×4 28×4 16×20 16×4 16×4 20×28 20×4 20×4

R
(B)
x × R

(B)
y 80×80 80×80 80×80 64×64 64×64 64×64 96×96 96×96 96×96 80×80 80×80 80×80 64×64 64×64 64×64

C(B) 1 8 8 1 20 20 1 11 11 1 5 5 1 7 7
K

(B)
ωv 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3

R
(O)
ωv – – – 80 4 4 44 4 4 – – – – – –

R
(O)
x × R

(O)
y – – – 80×80 80×80 80×80 80×80 80×80 80×80 – – – – – –

C(O) – – – 1 20 20 1 11 11 – – – – – –
K

(O)
ωv – – – 1 1 3 1 1 3 – – – – – –

Compressed data (MB) 7.87 8.13 8.14 11.07 12.06 12.09 22.26 22.54 22.56 3.96 4.11 4.11 4.42 4.6 4.6
BTF S/E ratio (dB) 19.38 18.2 19.09 17.34 16.45 17.29 14.77 12.71 14.54 24.32 23.55 24.23 20.7 19.76 20.52

VOTF error texels (B) – – – 732 2222 1046 572 1938 1029 – – – – – –
VOTF error texels (S) – – – 71 2027 291 325 969 597 – – – – – –

Compression time (min.) 19.5 30.43 54.25 8.58 15.14 30.86 2.45 8.61 11.74 13.37 17.61 18.14 8.23 8.86 12.66
All decomposed data were stored as half-precision (16-bit) floating point numbers. For BTFs, the quality of compressed data is measured by the signal-to-error ratio (S/E ratio) in
dB. As for VOTFs, we list the total number of error texels for the two representations: (B) binary visibility masks; (S) signed-distance functions.

According to the reconstructed results in previous articles
[Vasilescu and Terzopoulos 2004; Wang et al. 2005], we identify
that if the mode-ωv reduced rank is too low to capture the view vari-
ations in a BTF, the reconstructed images will become overblurred
or have strong ringing effects. Human eyes seem to be more sensi-
tive to these artifacts than unrealistic illumination effects. Therefore,
clustering along the view mode will reduce the performance penalty
when we need a high mode-ωv reduced rank.

In Figure 3, we present the reconstructed BTFs of different tensor
approximation algorithms, including N -SVD, CTA, and K-CTA,
whose statistics and timing measurements are further compared
in Table I. Figure 5(a) also plots the signal-to-error ratio versus the
mode-ωv reduced rank for the three multilinear models with various
configurations. Note that we compare them based on the same total
number of mode-ωv reduced rank, which leads to similar storage
space. It can be shown that K-CTA achieves compression ratios and
image quality comparable to N -SVD, while having lower approxi-
mation errors than CTA with ignorable storage overhead. For CTA,
note that the view mode is also partitioned into total C(B) clusters,
and a single global mode-ωl basis matrix is extracted for all clusters.
We have found that although extracting the global basis matrix may
slightly increase approximation errors, it can significantly reduce
both offline and runtime costs in some applications (Section 6.3).

6.2 View-Dependent Occlusion Texture Functions

Apart from BTFs, various appearance models have also been de-
veloped to render shadows and complex illumination effects from
precomputed meso-scale data or special fields, such as visibility
information [Heidrich et al. 2000], view-dependent displacement
mapping [Wang et al. 2003], shell texture functions [Chen et al.
2004], and relief mapping [Policarpo et al. 2005]. In this article, we
propose a spatially varying appearance model, namely VOTFs, to
visualize complex microgeometry of object surfaces. A VOTF is a
set of 2D textures in which each texture contains spatially varying
meso-scale occlusions from a sampled view direction. It is a 4D
function of the view direction ωv and the 2D spatial coordinates, x
and y, of a texel t. Thus, VOTFs can be employed to enhance the
surface appearance of objects with shape details and silhouettes.
Examples of a VOTF are shown in Figure 6(b).

Besides conventional binary visibility masks, we represent a
VOTF with a set of 2D signed-distance textures. Signed-distance
functions [Danielsson 1980] have been shown to successfully
preserve sharp features in vector textures [Qin et al. 2006] and
image structures for texture synthesis [Lefebvre and Hoppe 2006].
Recently, they were also applied to the approximation of visibility
integrals for PRT [Xu et al. 2008], further showing their potentials
for modeling occlusion information. According to our experiments,
the advantages of signed-distance functions still hold even after
compression with tensor approximation algorithms. The intuitive
explanation for this outcome is that sharp boundaries in the binary
visibility masks are in fact high-frequency signals. Converting
them into signed-distance functions instead produces smooth and
continuous signals that would facilitate subsequent approximation.
Figure 6(c) shows examples of a VOTF in the signed-distance
representation.

Therefore, a VOTF is first converted into signed-distance-to-
boundary textures from binary visibility masks, one texture for each
view direction. For a given texel t in the binary mask of a view direc-
tion, we compute its nearest distance to the boundaries. A positive
distance is stored if the value of texel t in the binary mask is equal to
0 (occluded). Otherwise, a negative distance is adopted. The trans-
formed VOTF is then normalized into the interval [−1, +1] and
organized as a third-order tensor A(O) ∈ R

Iωv ×Ix×Iy .
Given the reduced ranks of each mode, namely R(O)

ωv
, R(O)

x , and
R(O)

y , K-CTA is then applied to A(O) with total C(O) clusters for
the view mode and K (O)

ωv
mixture clusters for a mode-ωv subtensor.

A(O) is thus approximated by

A(O) ≈
C(O)∑
c=1

(
Z (O)

c ×ωv
U(O)

ωv,c ×x U(O)
x,c ×y U(O)

y,c

)
, (25)

where Z (O)
c ∈ R

R
(O)
ωv ×R

(O)
x ×R

(O)
y is the core tensor of cluster c, and

U(O)
ωv,c ∈ R

Iωv ×R
(O)
ωv , U(O)

x,c ∈ R
Ix×R

(O)
x , and U(O)

y,c ∈ R
Iy×R

(O)
y , respec-

tively, specify the mode-ωv , mode-x, and mode-y basis matrices
of cluster c.

In Figure 4, we show the reconstructed VOTF data of simulated
spatially varying meso-structures. Table I also compares the number
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Fig. 3. Reconstructed BTF images of different tensor approximation algorithms. In each subfigure, from left to right: raw data; N -SVD; CTA; K-CTA, from
top to bottom: reconstructed images; absolute difference images (scaled by a factor of 3).

Fig. 4. Reconstructed VOTF images of different tensor approximation algorithms. In each subfigure, from left to right: raw data; N -SVD; CTA; K-CTA, from
top to bottom: reconstructed images; absolute difference images (scaled by a factor of 10 for signed-distance functions).
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Fig. 5. Comparisons of the approximation errors of different multilinear models and visibility representations for the material RoughHole. In (a) and (b),
the values in parentheses for K-CTA represent the number of mixture clusters, namely K

(B)
ωv or K

(O)
ωv . For all multilinear models, R

(B)
x = R

(B)
y = 96 and

R
(O)
x = R

(O)
y = 80. For CTA and K-CTA, the horizontal axis in each chart specifies various total mode-ωv reduced ranks whose values correspond to R

(B)
ωv C(B)

for the BTF and R
(O)
ωv C(O) for the VOTF, with R

(B)
ωv = R

(O)
ωv = 4 for each cluster.

Fig. 6. Examples of the simulated material Fiber. For the VOTF, each im-
age records visibility information from a sampled view direction. The values
of signed-distance functions were normalized into the interval [−1, +1].

of error texels after approximation using N -SVD, CTA, and K-CTA.
From Figure 4 and Table I, K-CTA obviously outperforms CTA in
perceptual quality and the number of error texels, especially for the
VOTF of the material Fiber. Moveover, signed-distance functions
are significantly better than binary visibility masks in visual quality
and approximation errors (the number of error texels) for encod-
ing VOTFs. After compression, signed-distance functions tend to
reconstruct more continuous signals and less noises at silhouette
boundaries (see Figure 7 and the accompanying video).

Figure 5(b) plots the number of error texels versus the mode-ωv

reduced rank for the three multilinear models with various con-
figurations, when VOTFs are encoded in the signed-distance rep-
resentation. Note that we compare the three models based on the
same total number of mode-ωv reduced rank, which leads to similar
storage space. Furthermore, Figure 5(c) shows that signed-distance
functions begin to outperform binary visibility masks from a certain
cross point, for example, 36. This implies that the high-frequency
signals in binary visibility masks significantly limit the approxi-
mation ability of tensor approximation algorithms. In practice, we
have found that a higher mode-ωv reduced rank than the value of this
cross-point is frequently necessary to render high-quality images.

6.3 All-Frequency Biscale Radiance Transfer

6.3.1 Overview. BRT [Sloan et al. 2003b] generalizes PRT
[Sloan et al. 2002] with spatially varying materials, which are called
radiance transfer textures, to improve image quality with detailed
surface appearance. The main concept of BRT is to separate the light
transport problem into macro-scale (coarsely sampled global illumi-
nation data) and meso-scale (spatially varying appearance models)
radiance transfer. Nevertheless, most previous BRT algorithms are
limited to low-frequency light transport and low-quality surface

appearance at the silhouettes. The radiance transfer textures only
model fine-scale lighting and shadowing effects, but neither con-
tain shape information nor actually modify the surface geometry.
Therefore, meso-scale shape details and shadow boundaries owing
to complex meso-structures can not be faithfully captured. Recently,
Sun et al. [2011] proposed an all-frequency BRT algorithm based
on biclustering. Although their approach supports high-frequency
biscale lighting effects in real time, it only focuses on compressing
the macro-scale radiance transfer data. By contrast, the proposed
method can accurately approximate the radiance transfer datasets
at both scales.

In our experiments, BTFs and VOTFs are combined for meso-
scale radiance transfer to model not only spatially varying illumina-
tion effects but also view-dependent occlusions at the meso-scale.
To obtain an accurate and compact representation, we first apply
tensor approximation algorithms to decompose BTFs and VOTFs
into a few low-order factors and the reduced multidimensional core
tensor(s). For VOTFs, view-dependent signed-distance functions
are recommended instead of binary visibility masks to preserve
sharp geometric features at the meso-scale.

As for macro-scale radiance transfer, we modify the all-frequency
PRT framework [Tsai and Shih 2006] to precompute BRT data
for runtime rendering. Specifically, the light-dependent functions
in Tsai and Shih [2006] are replaced with the extracted mode-ωl

basis matrix from tensor approximation algorithms. For the BTF
compressed using CTA or K-CTA, note that we derive only a single
global mode-ωl basis matrix of all clusters as in Section 6.1. This
results in only one set of macro-scale BRT data, rather than C(B)

sets of BRT data when a local mode-ωl basis matrix is extracted for
each cluster. Both BRT computation and rendering costs thus can be
significantly reduced. Then, the raw radiance transfer matrices are
computed at each object vertex, approximated with a set of uniform
SRBFs, and finally compressed using CTA6 to exploit intervertex
coherence. During BRT computation, we also employ the meso-
scale occlusion information in VOTFs to cast shadows owing to
complex meso-structures. More details can be found in Tsai [2009,
Chapter 9.2].

6One can instead apply the proposed K-CTA algorithm to compress the
macro-scale radiance transfer matrices, but for a reasonable computational
cost, we employ CTA in the current implementation.
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Fig. 7. Comparison between different encoding schemes for VOTFs. Inside
triangle faces of the model are culled to clearly show the difference. For
binary visibility masks, the threshold T (O) and weight W (O) in (26) were,
respectively, set to 0.5 and 1. For signed-distance functions, T (O) and W (O)

were, respectively, set to 0.05 and 12.

6.3.2 Resampling. Due to the sparse sampling rates of the
illumination and view modes, it is necessary to resample the
compressed BTF data for efficient runtime rendering under novel
illumination and view conditions. Although N -SVD allows us
to generate observations from a novel illumination direction
by resampling just the columns of the mode-ωl basis matrix,
resampling the view mode is complicated since CTA and K-CTA
partition the view mode into different regions in our experiments.
For CTA, we employ traditional linear interpolation from nearby
view directions to solve this issue, whereas the proposed K-CTA
algorithm implicitly suggests a better resampling scheme.

For a compressed BTF based on K-CTA, we can resample the
view mode of the raw BTF first and employ the greedy search and
optimal projection in the clustering stage of K-CTA to compute the
mixing coefficients of each mode-ωv subtensor of the resampled
raw BTF. Thus, the overall effect is equivalent to resampling
the columns of the mode-ωv basis matrices, so that the BTF
reconstruction and interpolation are combined together without
reducing runtime performance. Although one can continue to
update the cluster subspaces of the compressed BTF and follow the
process of K-CTA on the resampled raw BTF until convergence, we
do not recommend applying this time-consuming iterative scheme.
Moreover, to accelerate the resampling of the raw BTF using so-
phisticated methods, such as cubic or thin-plate spline interpolation
in the spherical domain, we perform N -SVD on the raw BTF with-
out approximation errors to obtain a full-rank mode-ωv basis matrix
of size Iωv

× Iωv
, and then resample columns of this matrix instead.

6.3.3 Rendering. The rendering process of all-frequency BRT
based on tensor approximation algorithms is rather straightforward.
To increase performance and employ texture filtering on GPUs, we
reconstruct the x and y modes of each (cluster) core tensor, create
their mipmaps, and then concatenate the results into one or more 2D
texture arrays before rendering. The mode-ωl and mode-ωv basis
matrices are instead stored in 2D textures in the parabolic parame-
terization [Heidrich and Seidel 1999]. For meso-structure synthesis,
the spatial coordinate texture S is obtained by using appearance-
space texture synthesis [Lefebvre and Hoppe 2006] on the raw
BTF/VOTF data. The runtime process on GPUs thus consists of the
following steps.

(1) Perform steps 1–3 in the runtime process in Tsai and Shih
[2006] to obtain the per-vertex radiance transfer vector rp.

(2) In the pixel shader, sample the synthesized texture S for the
BTF/VOTF spatial coordinates tp of current pixel p.

(3) If the meso-structure of pixel p does not contain VOTF, set pixel
p as visible and go to step 7. Otherwise, continue to execute
step 4.

(4) The approximated VOTF value of pixel p, Ôp, is given by
reconstructing the view mode according to the employed tensor
approximation algorithm.

(5) A user-defined visibility mapping function, for example, (26),
is then applied to map Ôp into a visibility value Ô ′

p within the

interval [0, 1]. Set pixel p to visible if Ô ′
p > 0.

(6) If pixel p is visible, compute its shading color by step 7. Oth-
erwise, discard it.

(7) Sample the texture of the mode-ωv basis matrix for all the
components of current novel view direction. The shading color
of pixel p is then given by the dot product of the sampled results
and rp.

The main purpose of the visibility mapping function in step 5 is
to determine final visibility values and avoid the aliasing problem
that results from meso-scale visibility. It should be designed to
generate visually pleasing effects at silhouette boundaries. In the
experiments, the mapping function is defined as

Ô ′
p =

⎧⎪⎨
⎪⎩

1 if Ôp ≥ T (O) (fully visible),

W (O)Ôp if T (O) > Ôp > 0 (partially visible),

0 otherwise (invisible),

(26)

where T (O) and W (O) are, respectively, the user-defined threshold
and weight. In this way, Ô ′

p can be utilized as an alpha value to
blend a partially visible pixel with its background as shown in
Figure 7(c). To approximate the blending effects without sorting,
fully visible pixels are rendered first. We then keep the contents of
frame buffer and blend partially visible pixels that pass the depth
test. This correctly captures the order of a fully visible pixel and a
partially visible pixel, but disregards the blending effects between
two partially visible pixels. The resulting artifacts are ignorable in
practice since the amount of partially visible pixels is usually small.

For K-CTA, since mode-ωv basis matrices are sparse, the
reconstruction in step 7 can be computed from only their nonzero
entries. We achieve this by packing only the nonzero entries
of mode-ωv basis matrices in the corresponding texture, and
constructing another 2D texture to identify the cluster membership
of each resampled view direction. Since the reconstruction with
mixture clusters and mixing coefficients already resembles an
interpolation process, we currently only utilize the nearest neighbor
of the novel view direction for rendering. In our experience,
nearest-neighbor interpolation is usually unnecessary for K-CTA.
The proposed resampling scheme effectively leads to smooth
transitions when the viewpoint/object moves, at the cost of a dense
resampling rate for view directions (typically 256 × 256 in the
parabolic parameterization).

6.3.4 Results. Table II lists the experimental statistics of the
proposed all-frequency BRT algorithm in various configurations.
For macro-scale radiance transfer, we simulated light paths with
at most two inter-reflections to precompute a 6×32×32 radiance
transfer matrix at each vertex and approximated the raw BRT data
with a set of uniform SRBFs. Due to the enormous amount of BRT
data, we did not directly employ CTA to exploit inter-vertex coher-
ence, but first applied clustered principal component analysis [Sloan
et al. 2003a] to classify vertices, as suggested by Sun et al. [2007],
and fine-tuned cluster membership using CTA. The reduction of the
view mode was omitted to accelerate the compression process, and
the reduced ranks of the light and vertex modes were, respectively,
set to 64 and 12.

Figure 1 compares the rendered all-frequency BRT images based
on different tensor approximation algorithms for meso-structures.
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Table II. Statistics and Timing Measurements of the Proposed All-Frequency BRT Algorithm
Model Bunny BunnyPlane Cloth Teapot

Material(s) Sponge Fiber + Sponge Wool + Sponge RoughHole + Sponge
Vertices 36k 98k 55k 75k
SRBFs 642 2562 642 642

Raw data (GB) 40.11 108.35 69.23 123.26
Clusters 100 180 110 150

Compressed data (MB) 15.77 71.4 18.79 29.44
BRT computation time (hr) 1.78 16.41 4.95 7.21
MRT compression time (hr) 5.83 12.35 7.47 9.56
Frames per second (w/wo) -/147.42 71.58/93.27 -/81.22 52.29/66.74

In the row MRT compression time, the performance of compressing the macro-scale radiance transfer matrices is shown. In the
row Frames per second, we list the rendering performance with/without visibility antialiasing when the viewpoint changes. For
the configurations of each meso-scale material, please refer to Table I.

Fig. 8. Rendered results of the all-frequency BRT algorithm. The configurations of macro-scale and meso-scale radiance transfer are listed in Tables I and II.
The model Bunny was provided courtesy of Stanford Computer Graphics Laboratory [2011].

It shows that K-CTA achieves image quality comparable to
N -SVD, while providing almost the same rendering performance
as CTA. Although both CTA and K-CTA allow real-time rendering
performance, CTA sometimes produces noticeable artifacts
when the viewpoint/object moves (refer to the accompanying
video).

In Figure 8, we further present more rendered all-frequency BRT
images. From these images, the proposed BRT algorithm certainly
provides more reflectance and geometric details of meso-scale sur-
face appearance than previous PRT/BRT methods. Furthermore,
VOTFs particularly allow rendering complex geometric features
without consuming hundreds of thousands of polygons to explicitly
model the surface microgeometry.

6.4 Discussions

In general, N -SVD provides the best perceptual quality among
the three tensor approximation algorithms, but CTA and K-CTA
allow much more efficient rendering performance on GPUs for
complex meso-structures. Although the compression time of
K-CTA is slightly longer than N -SVD and CTA on average,
K-CTA effectively compromises between image quality and
runtime rendering performance.

Moreover, when the viewpoint/object moves at runtime, CTA
with linear interpolation from the three nearest view directions
sometimes produces noticeable artifacts. This is due to the intrinsic
nature of CTA in which the inter-cluster coherence is ignored, so
that significant discontinuities may occur at cluster boundaries,

especially when inappropriate clustered results were found. A
dense sampling rate for the view mode of the raw BTFs or
increasing the mode-ωv reduced rank would solve this issue for
CTA, but both of them will increase the amount of compressed data
and rendering time. The acquisition of densely sampled raw BTFs,
nevertheless, is also a challenging problem. By contrast, K-CTA is
less sensitive to the quality of clustering since approximation errors
are compensated by additional mixture clusters. This compensation
can be regarded as an optimal interpolation scheme in the least-
squares sense to enable smooth transitions across different view
directions.

It should also be noted that a related sparse representation
for BTFs, named Sparse Tensor Decomposition (STD), was
proposed in Ruiters and Klein [2009]. Although STD and K-CTA
were both inspired by K-SVD, they are essentially different
approximation algorithms. While STD simply applies K-SVD to
selected dimensions of the input BTF, K-CTA instead iteratively
refines the decomposed results to obtain a (locally) near-optimal
solution. In Figure 9, we compare the reconstructed BTF images
and rendered results between STD and K-CTA. From this figure, it
can be shown that under similar approximation errors, the runtime
rendering performance of K-CTA substantially outperforms that
of STD. Moreover, we also employ another configuration of STD
(with a much higher approximation error) for fast rendering rates,
but this still fails to match the runtime performance of K-CTA.

Note that the perceptual quality of rendered images may be sig-
nificantly different between STD and K-CTA, even with quantita-
tively similar signal-to-error ratios as in Figure 9(d) and Figure 9(e).
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Fig. 9. Comparisons of reconstructed BTF images (top) and rendered results (bottom) between STD [Ruiters and Klein 2009] and K-CTA. The signal-to-error
ratio and rendering performance of the compressed BTF are shown in parentheses. For STD, we let D1 = D2 = 256 and employ two configurations for k1 and
k2 [Ruiters and Klein 2009, Section 4.2]. The model Bunny was provided courtesy of Stanford Computer Graphics Laboratory [2011].

We believe that the proposed resampling scheme for K-CTA
(Section 6.3.2) particularly contributes to the difference, and is also
more effective and efficient at runtime than the conventional nearest-
neighbor or barycentric interpolation [Ruiters and Klein 2009].

7. CONCLUSIONS AND FUTURE WORK

Data-driven models have stimulated the development of sophis-
ticated approximation algorithms for large-scale visual datasets.
This article presents a sparse multilinear model, namely K-CTA,
to enable efficient rendering of complex objects for real-time
applications. K-CTA introduces the concept of sparse representa-
tion into multilinear models, and effectively integrates clustering,
sparse coding, and tensor approximation into a unified framework.
Moreover, KCTA can also exploit inter-cluster coherence for
smooth transitions across different physical conditions by mixing
the decomposed results of multiple clusters. Experimental results
demonstrate that K-CTA is a compact and efficient representation
for spatially varying surface appearance, such as BTFs, VOTFs, and
all-frequency BRT data. Furthermore, the signed-distance represen-
tation for visibility information especially preserves sharp silhou-
ettes at the meso-scale even after compression using tensor-based
methods.

In the future, we intend to improve both image quality and ren-
dering performance by combining K-CTA with functional approx-
imation approaches, such as specular lobe separation [Sun et al.
2007], to efficiently model highly specular spatially varying sur-
face appearance. Moreover, the proposed K-CTA algorithm is not
restricted to solve problems in computer graphics. They are indeed
general approximation algorithms that can be employed to analyze
various multidimensional datasets. We believe that K-CTA can be
applied to other data-driven models, such as the analysis of time-
varying materials and volume datasets, and may have an impact on
many fields outside computer graphics.

APPENDIXES

In the following sections, we present the mathematical proofs of the
proposed theorems and lemma in this article. Due to limited article
length, we only describe the main ideas and key points. Interested
readers may refer to Tsai [2009, Chapters 5.5 and 6.4] for more
details.

A. OBJECTIVE FUNCTIONS IN THE CLUSTERING
STAGE

In the clustering stage, each mode-m subtensor of A is sequentially
classified into Km mixture clusters using a greedy approach, while
the core tensor and basis matrices, except for the mode-m basis ma-
trix, of each cluster are fixed. Since the cluster membership and mix-
ing coefficients of each mode-m subtensor are independent, Eq. (8),
without the orthonormal constraints on Um,1, Um,2, . . . , Um,C , can
be separated into Im distinct constrained least-squares optimization
subproblems as

min{
(Um,c)i∗

}C

c=1

∥∥∥∥∥∥A〈mi 〉 −
C∑

c=1

⎛
⎝Zc ×m (Um,c)i∗

N

�n
n=1
n	=m

Un,c

⎞
⎠
∥∥∥∥∥∥

2

F

,

subject to

⎧⎨
⎩
∑C

c=1

∥∥∥(Um,c

)
i∗

∥∥∥
0

= KmRm,

∀c,

∥∥∥(Um,c

)
i∗

∥∥∥
0

∈ {0, Rm},

(27)

for i = 1, 2, . . . , Im. Note that the orthonormal constraints on
Um,1, Um,2, . . . , Um,C in (8) can be enforced from the optimized
results of (27) using the postprocessing approach as described in
Section 4.2.3.

A.1 First Mixture Cluster

Before proving Theorem 1, we first show the proof of Lemma 2.

PROOF OF LEMMA 2. The first mixture cluster ci1 of A〈mi 〉 is
selected as if Km = 1. Since the constraints in (27) can be enforced
by setting (Um,c)i∗ to zeros for all c 	= ci1 , the objective function in
(27) can be rewritten as∥∥∥∥∥∥ufm

(
A〈mi 〉

)− (
Um,ci1

)
i∗ufm

⎛
⎝Zci1

N

�n
n=1
n	=m

Un,ci1

⎞
⎠
∥∥∥∥∥∥

2

2

, (28)

where ‖·‖2 denotes the �2 norm of a vector. Eq. (28) can be easily
verified from the definitions of the mode-n unfolded matrix, the
mode-n product, and the Frobenius norm. Therefore, the optimal
solution of

(
Um,ci1

)
i∗ to (28) is the least-squares estimation of the

solution to the following linear equation. We have

ufm
(
A〈mi 〉

) = (
Um,ci1

)
i∗ufm

(
Zci1

)⎛⎜⎝ N⊗
n=1
n	=m

UT
n,ci1

⎞
⎟⎠ , (29)
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where

N⊗
n=1
n	=m

UT
n,ci1

= UT
1,ci1

⊗ · · · ⊗ UT
m−1,ci1

⊗ UT
m+1,ci1

⊗ · · · ⊗ UT
N,ci1

(30)

denotes a series of Kronecker products, and the symbol ⊗
specifies the Kronecker product operator. Eq. (29) comes from the
relation between the mode-n product and the Kronecker product
[De Lathauwer et al. 2000]. Since each basis matrix has orthonormal
columns, the least-squares solution of

(
Um,ci1

)
i∗ to (28) is

(
Um,ci

)
i∗ = ufm

(
A〈mi 〉

)
⎛
⎜⎝ufm

(
Zci

)
⎛
⎜⎝ N⊗

n=1
n	=m

UT
n,ci

⎞
⎟⎠
⎞
⎟⎠

+

= ufm

⎛
⎝A〈mi 〉

N

�n
n=1
n	=m

UT
n,ci1

⎞
⎠ ufm(Zci1

)+. (31)

Eq. (11) is thus proved.

Now we can finally prove Theorem 1 with the aid of Lemma 2.

PROOF OF THEOREM 1. After substituting (31) for
(
Um,ci1

)
i∗ in

(28), we have [Tsai 2009, Chapters 5.5 and 6.4.1]

∥∥∥A〈mi 〉
∥∥∥2

F
−
∥∥∥∥∥∥ufm

⎛
⎝A〈mi 〉

N

�n
n=1
n	=m

UT
n,ci1

⎞
⎠VT

m,ci1

∥∥∥∥∥∥
2

F

. (32)

Since the first term in (32) is a constant, the minimization of (32)
is equivalent to the maximization of the second term in (32). Theo-
rem 1 thus is proved by identifying that the cluster membership is
implicitly specified in the solution to (27).

A.2 Remaining Mixture Clusters

PROOF OF THEOREM 3. For the k-th mixture cluster cik of A〈mi 〉
other than ci1 , it is determined as if Km = k. When previously
selected clusters ci1 , ci2 , . . . , cik−1 and the corresponding mixing
coefficients are fixed, the objective function in (27) becomes∥∥∥∥∥∥R(k)

〈mi 〉 − Zcik
×m

(
Um,cik

)
i∗

N

�n
n=1
n	=m

Un,cik
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2

F

, (33)

where R(k)
〈mi 〉 is defined as (12). By following the same approach as

in the proof of Theorem 1 and Lemma 2, the minimization of (33)
is equivalent to the maximization of∥∥∥∥∥∥ufm

⎛
⎝R(k)

〈mi 〉
N

�n
n=1
n	=m

UT
n,cik

⎞
⎠VT

m,cik
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2

F

. (34)

Substituting (12) for R(k)
〈mi 〉 in (34) then yields the objective function

in (13).

B. OPTIMAL PROJECTION FOR MIXING
COEFFICIENTS

PROOF OF THEOREM 4. Suppose that total k mixture clusters
ci1 , ci2 , . . . , cik of A〈mi 〉 have been selected as if Km = k. Simi-
lar to (28), since the constraints in (27) can be satisfied by setting

(
Um,c

)
i∗ to zeros for all c /∈ {ci1 , ci2 , . . . , cik

}
, Eq. (27) can be sim-

plified into a standard unconstrained least-squares problem whose
objective function is∥∥∥∥∥∥ufm

(
A〈mi 〉

)
−

k∑
j=1

(
Um,cij

)
i∗ufm

⎛
⎝Zcij

N

�n
n=1
n	=m

Un,cij

⎞
⎠
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2

2

. (35)

By taking the first-order partial derivatives of (35) with respect to
each entry of

(
Um,ci1

)
i∗ and setting the resulting derivatives to zeros,

we have the following linear equation.

k∑
j=1

ufm
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N
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n=1
n	=m

Un,ci1

⎞
⎠ ufm

⎛
⎝Zcij

N

�n
n=1
n	=m

Un,cij

⎞
⎠

T (
Um,cij

)T
i∗

= ufm

⎛
⎝Zci1

N

�n
n=1
n	=m

Un,ci1

⎞
⎠ ufm

(
A〈mi 〉

)T
(36)

The right side of (36) can be rewritten as [Tsai 2009, Chapter 6.4.2]

ufm
(
Zci1

)
ufm

⎛
⎝A〈mi 〉

N

�n
n=1
n	=m

UT
n,ci1

⎞
⎠

T

= f
(ci1 )
m

(
A(ci1 )

〈mi 〉
)T

, (37)

where f (c)
m (·) is defined in (19). Similarly, the left side of (36) is

equal to

k∑
j=1

ufm

⎛
⎝Zci1

N

�n
n=1
n	=m

UT
n,cij

Un,ci1

⎞
⎠ ufm

(
Zcij

)T (
Um,cij

)T
i∗

=
k∑

j=1

f
(cij

)
m

(
Z

(cij
)

ci1

)(
Um,cij

)T
i∗. (38)

By following (36), (37), and (38) with respect to each entry of(
Um,cij

)
i∗ for all j , we have the following set of linear equations

k∑
j=1

f
(cij

)
m

(
Z

(cij
)

ci1

)(
Um,cij

)T
i∗ = f

(ci1 )
m

(
A(ci1 )

〈mi 〉
)T

,

...
...

k∑
j=1

f
(cij

)
m

(
Z

(cij
)

cik

)(
Um,cij

)T
i∗ = f

(cik
)

m

(
A(cik

)

〈mi 〉
)T

,

(39)

which can be further written in a matrix form as Z(k)
mi

u(k)
mi

= a(k)
mi

,
where u(k)

mi
, Z(k)

mi
, and a(k)

mi
are, respectively, defined in (16), (17), and

(18). We thus can conclude that (15) gives the least-squares solution
of
(
Um,ci1

)
i∗,
(
Um,ci2

)
i∗, . . . ,

(
Um,cik

)
i∗ to (35).

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their
profound comments and suggestions.

REFERENCES

AHARON, M., ELAD, M., AND BRUCKSTEIN, A. M. 2006. K-SVD: An algorithm
for designing overcomplete dictionaries for sparse representation. IEEE
Trans. Signal Process. 54, 11, 4311–4322.

ACM Transactions on Graphics, Vol. 31, No. 3, Article 19, Publication date: May 2012.



19:16 • Y.-T. Tsai and Z.-C. Shih

CHEN, S. S., DONOHO, D. L., AND SAUNDERS, M. A. 2001. Atomic decom-
position by basis pursuit. SIAM Rev. 43, 1, 129–159.

CHEN, Y., TONG, X., WANG, J., LIN, S., GUO, B., AND SHUM, H.-Y. 2004.
Shell texture functions. ACM Trans. Graph. 23, 3, 343–353.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004. Variational shape
approximation. ACM Trans. Graph. 23, 3, 905–914.

DANA, K. J., VAN GINNEKEN, B., NAYAR, S. K., AND KOENDERINK, J. J. 1999.
Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1,
1–34.

DANIELSSON, P.-E. 1980. Euclidean distance mapping. Comput. Graph. Im-
age Process. 14, 227–248.

DAVIS, G. M., MALLAT, S. G., AND AVELLANEDA, M. 1997. Adaptive greedy
approximations. Constr. Approx. 13, 1, 57–98.

DE LATHAUWER, L., DE MOOR, B., AND VANDEWALLE, J. 2000. On the best
rank-1 and rank-(R1, R2, . . . , Rn) approximation of higher-order tensors.
SIAM J. Matrix Anal. Appl. 21, 4, 1324–1342.

ELAD, M., FIGUEIREDO, M. A. T., AND MA, Y. 2010. On the role of sparse
and redundant representations in image processing. Proc. IEEE 98, 6,
972–982.

FILIP, J. AND HAINDL, M. 2009. Bidirectional texture function modeling: A
state of the art survey. IEEE Trans. Pattern Anal. Mach. Intell. 31, 11,
1921–1940.

HEIDRICH, W., DAUBERT, K., KAUTZ, J., AND SEIDEL, H.-P. 2000. Illuminat-
ing micro geometry based on precomputed visibility. In Proceedings of
SIGGRAPH’00 Conference. 455–464.

HEIDRICH, W. AND SEIDEL, H.-P. 1999. Realistic, Hardware-Accelerated
Shading and Lighting. In Proceedings of SIGGRAPH ’99 Conference.
171–178.

JOLLIFFE, I. T. 2002. Principal Component Analysis 2nd Ed. Springer.

KAMBHATLA, N. AND LEEN, T. K. 1997. Dimension reduction by local prin-
cipal component analysis. Neural Comput. 9, 7, 1493–1516.

KOLDA, T. G. AND BADER, B. W. 2009. Tensor decompositions and applica-
tions. SIAM Rev. 51, 3, 455–500.

KOUDELKA, M. L., MAGDA, S., BELHUMEUR, P. N., AND KRIEGMAN, D. J.
2003. Acquisition, compression, and synthesis of bidirectional texture
functions. In Proceedings of the Texture ’03 Conference. 59–64.

KREUTZ-DELGADO, K., MURRAY, J. F., RAO, B. D., ENGAN, K., LEE, T.-W.,
AND SEJNOWSKI, T. J. 2003. Dictionary learning algorithms for sparse
representation. Neural Comput. 15, 2, 349–396.

LAWRENCE, J., BEN-ARTZI, A., DECORO, C., MATUSIK, W., PFISTER, H.,
RAMAMOORTHI, R., AND RUSINKIEWICZ, S. 2006. Inverse shade trees
for non-parametric material representation and editing. ACM Trans.
Graph. 25, 3, 735–745.

LEFEBVRE, S. AND HOPPE, H. 2006. Appearance-Space texture synthesis.
ACM Trans. Graph. 25, 3, 541–548.

MALLAT, S. G. AND ZHANG, Z. 1993. Matching pursuits with time-frequency
dictionaries. IEEE Trans. Signal Process. 41, 12, 3397–3415.

MATUSIK, W., PFISTER, H., BRAND, M., AND MCMILLAN, L. 2003. A
data-driven reflectance model. ACM Trans. Graph. 22, 3, 759–769.

MCALLISTER, D. K., LASTRA, A., AND HEIDRICH, W. 2002. Efficient
rendering of spatial bi-directional reflectance distribution functions. In
Proceedings of Graphics Hardware ’02 Conference. 79–88.

MÜLLER, G., MESETH, J., AND KLEIN, R. 2003. Compression and real-time
rendering of measured BTFs using local PCA. In Proceedings of the
VMV ’03 Conference. 271–279.
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