
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 28, 537-554 (2012)

537

Performance Evaluation of Inter-Processor Communication
for an Embedded Heterogeneous Multi-Core Processor*

SHIAO-LI TSAO AND SUNG-YUAN LEE

Department of Computer Science
National Chiao Tung University

Hsinchu, 300 Taiwan

Embedded systems often use a heterogeneous multi-core processor to improve per-

formance and energy efficiency. This multi-core processor is composed of a general pur-
pose processor (GPP), which manages the program flow and I/O, and a digital signal pro-
cessor (DSP), which processes mass data. An inter-processor communication (IPC) mech-
anism is thus required to exchange data between a GPP and a DSP. This paper uses com-
prehensive experiments to evaluate the IPC performance of an embedded heterogeneous
multi-core processor under different design strategies. We further develop the IPC per-
formance model and suggest dynamic adjustment of IPC strategies under environmental
parameters and system resource constraints. Based on the results and findings, we im-
prove the IPC performance of a voice over IP (VoIP) phone. Experimental results dem-
onstrate that the GPP workload decreases significantly by 35% without sacrificing the
functionalities and voice quality of the VoIP system. Moreover, we apply the concept of
dynamic adjustment of IPC strategies to an embedded media gateway. The simulation
results demonstrate that the dynamic IPC strategy can considerably improve the system
performance of the media gateway compared with the static IPC design approach.

Keywords: multi-core, inter-processor communication, performance evaluation, embed-
ded system, heterogeneous multi-core processor

1. INTRODUCTION

Embedded systems handle both I/O and computation jobs. Using a general purpose
processor (GPP), which provides better I/O controls, or a digital signal processor (DSP),
which offers rich computational resources, to handle both I/O and computational jobs is
usually inefficient [1]. To improve energy and performance efficiency, many embedded
systems use a heterogeneous multi-core processor composed of GPPs and DSPs [2]. A
heterogeneous multi-core processor requires an inter-processor communication (IPC)
mechanism for exchanging data and control messages between the GPPs and DSPs. Ac-
cording to previous studies, this IPC mechanism is critical, especially for embedded sys-
tems involving frequent interactions between processors [3-5].

A number of studies have evaluated the IPC performance of a heterogeneous multi-
core processor. Gorgonio et al. [3] and Chiu et al. [4] examined IPC overhead and per-
formance of a task running on a GPP or DSP. Their studies assist the designers to map
the tasks to the GPP and DSP efficiently. For example, it is not always efficient to assign
computation-intensive tasks to the DSP through IPC, as this introduces a considerable
overhead. Luiz et al. [5] further proposed a formal model based on timed automata for

Received June 17, 2010; revised December 21, 2010 & March 23 & May 18, 2011; accepted July 13, 2011.
Communicated by Tei-Wei Kuo.
* This work was supported by MediaTek Inc. and the National Science Council of Taiwan for financially under

Contracts No. 100-2219-E-009-022, 100-2220-E-009-038, NSC 99-2220-E-009-045-, NSC 99-3113-P-006-
004, and NSC 99-2915-I-009-064.

SHIAO-LI TSAO AND SUNG-YUAN LEE

538

the IPC of a heterogeneous multi-core processor. Their model helps people understand
the details of the IPC mechanism. Other researchers have proposed several hardware and
software improvements for the IPC mechanism. Chen et al. [6] proposed a new bus ar-
chitecture to speed up IPC between GPPs and DSPs. For the software improvements,
Kluter et al. [7] suggested using scratchpad memory, i.e., internal memory, instead of
external memory as the shared memory for IPC data exchanges. This approach signifi-
cantly improves IPC performance, especially for streaming applications which involve
frequent IPCs. Brisolara et al. [8] presented a method for aggregating several IPC re-
quests into a single request, reducing the number of IPCs between the GPP and DSP.
This technique also eliminates certain IPC overheads.

Unfortunately, previous studies fail to consider combining the design factors above,
or compare IPC performance under different design strategies. Therefore, this paper pre-
sents a test-bed and evaluates the IPC mechanism through comprehensive experiments.
Based on results and findings, we further develop the IPC performance model and sug-
gest dynamic adjustment of IPC strategies under environmental parameters and system
resource constraints. The main contributions of this paper are (1) to establish a precise
evaluation environment for IPC procedures and compare the performance of different
IPC design strategies and their combinations, and (2) to develop the IPC performance
model and suggest dynamic adjustment of IPC strategies under environmental parameters
and system resource constraints. The study provides designers with a reference for choo-
sing appropriate IPC designs for embedded systems.

The rest of the paper is organized as follows. Section 2 describes the IPC mecha-
nism and presents different IPC design strategies. Section 3 introduces the performance
evaluation test-bed, methodologies, and results. Section 4 suggests dynamic adjustment
of IPC strategies based on environmental parameters and system resource constraints.
Based on the experimental results and findings, we apply appropriate IPC designs to a
VoIP phone. Moreover, we apply the concept of dynamic adjustment of IPC strategies to
an embedded media gateway. Section 5 presents and discusses these results. Finally, sec-
tion 6 offers conclusions.

2. INTER-PROCESSOR COMMUNICATION MECHANISM
AND DESIGN PARAMETERS

2.1 IPC Mechanism

The generic procedures of the IPC mechanism from the GPP to DSP include five
steps illustrated in steps 1 to 5 of Fig. 1. Before the IPC process starts, the GPP program
first downloads the DSP programs to the DSP internal memory so that they can be exe-
cuted when the GPP program invokes the DSP functions. Once the GPP program has a
job to assign to the DSP, the GPP program makes a DSP function call in the DSP library.
The DSP library then initiates an IPC, which transfers the control message and data to
the DSP.

During the IPC process, the GPP first copies the data to the shared memory, which
can be accessed by both the DSP and GPP in step 1. Then, in step 2, the GPP prepares a
control message that specifies the request information, such as the address, length of the

PERFORMANCE EVALUATION OF IPC FOR MULTI-CORE PROCESSOR

539

GPP DSP

Data buffer

Data buffer

Shared
Memory

1

3

5

10 6

8

9
2 4

7

Interrupt
or

Polling

Control messages

IPC triggered by the GPP to DSP

IPC triggered by the DSP to GPP
Fig. 1. Generic procedures of IPC triggered by the GPP to DSP, and the DSP to GPP.

data, and the DSP function invoked by the GPP program, and stores this control message
in the shared memory. The control messages are structured as a list to allow the GPP
program to continuously send new requests to the DSP, and the DSP can process the
DSP function requests one by one. Both the GPP and DSP have to know the format and
address of the control message in the shared memory before the IPC process begins. In
step 3, the GPP uses an interrupt or other mechanism to notify the DSP that the GPP
program has a request for the DSP. Platforms such as Texas Instruments (TI) DaVinci
and The Industrial Technology Research Institute (ITRI) PAC (Parallel Architecture
Core) [14] provide the mailbox hardware. When the GPP writes data to the mailbox, an
interrupt signal is automatically generated and sent to the DSP. Therefore, steps 2 and 3,
steps 7 and 8 might be combined. When the DSP is notified, it reads the control mes-
sages from the list in step 4. In step 5, the DSP finds the data to be processed based on
the control message and starts to process the request. Steps 1 to 5 illustrates the generic
procedures of an IPC triggered by the GPP.

After the DSP finishes the job, the DSP can initiate another IPC process and reports
the results and/or status to the GPP. The DSP copies the processed data to the shared
memory in step 6 so that the GPP can access the results. Like the procedure of the GPP
notifying the DSP, the DSP must prepare a control message indicating the address and
length of the processed data in the shared memory in step 7. In step 8, the DSP uses an
interrupt or other means to notify the GPP that the request has been processed. After
notification, the GPP reads the response message in step 9. Finally, the GPP obtains the
processed data in step 10. Steps 6 to 10 illustrates the generic procedures of an IPC from
the DSP to GPP. The IPC introduces extra GPP and DSP workload to handle memory
copies, request messages, response messages, and interrupts. The following subsection
discusses the IPC design strategies that may influence IPC performance.

2.2 IPC Design Strategies

The first IPC design consideration is the granularity of the IPC request, i.e. the size

SHIAO-LI TSAO AND SUNG-YUAN LEE

540

of the data block to be passed from the GPP to the DSP. A possible design choice here is
to merge several DSP function calls and their associated data blocks into one request,
invoking only one IPC [8]. This approach reduces both the number of IPCs and the IPC
overhead. However, in this case, more shared memory is required to store the data blocks,
and the response time of the DSP function call may increase since function calls are de-
ferred, merged, and sent to the DSP together.

Another design strategy is to utilize different types of shared memory for the IPC
data exchanges. A common approach is to use the external SDRAM attached to the sys-
tem bus as shared memory. Another possible choice is to allow the GPP internal memory
to be accessed by the DSP, or vice versa. Using the internal memory as shared memory
can significantly speed up memory access for both the GPP and DSP [7], speeding up
IPC as a result. However, internal memory is much smaller and more expensive than
external memory, and internal memory should be carefully managed to maximize cost-
efficiency of an embedded system.

In another design, the GPP and DSP use an interrupt or polling mechanism to notify
the other processor when there is an IPC request or response. A common approach is to
use an interrupt for this notification, but the interrupt involves an interrupt handling pro-
cedure and introduces a considerable overhead. Another approach is to use a polling
mechanism for this notification. The polling mechanism simply sets and resets a flag in
the shared memory when there is a request or response. For example, after steps 1 and 2,
the GPP sets a flag in a particular address in the shared memory. The DSP checks the
flag by reading the memory address to see if there is a new request from the GPP. If the
flag is set, the DSP reads the request message and processes the data. Reading an internal
memory address produces much less overhead than an interrupt service routine. However,
knowing when the DSP and GPP should poll the flag is a challenge of the polling ap-
proach. If the DSP or GPP polls the flag frequently, the overhead increases. On the other
hand, the function call latency increases if the GPP polls the flag infrequently. Therefore,
the timing of polling IPC requests or responses should be carefully managed.

3. EVALUATION OF THE IPC MECHANISM

3.1 Evaluation Test-Bed and Methodologies

To examine IPC performance under different design parameters, this study first pre-

sents an evaluation test-bed. A Texas Instruments (TI) DaVinci DM6446 [9], which has
an ARM926-EJS processor and TI C64 DSP, was used for the experiments in this study.
Embedded Linux and DSP/BIOS were run on the ARM processor and DSP as the oper-
ating systems. ARM programs on Embedded Linux call DSP functions through the DSP
library. The DSP library further utilizes the DSP/BIOS Link [10], which implements IPC,
to transfer requests from the ARM processor to the DSP. The DSP/BIOS Link is a Linux
kernel driver that can communicate with the DSP/BIOS to realize IPC.

To evaluate the IPC mechanism, we developed user-space testing programs on the
ARM processor and DSP. We also modified the Linux kernel and DSP/BIOS Link to
track the IPC procedures and measure the latency for each IPC phase. This study only
investigates IPC performance from the ARM processor point of view. This is mainly be-

PERFORMANCE EVALUATION OF IPC FOR MULTI-CORE PROCESSOR

541

Heterogeneous multi-core processor (TI DaVinci DM6446)

ARM
program

Embedded
Linux/

DSP/BIOS
Link

DSP
program

DSP/BIOS

A

B D

C

E

Fig. 2. Measurements of IPC phases.

cause that the DSP usually serves as a slave co-processor that is dedicated to processing
the data. The ARM processor, on the other hand, usually handles multiple tasks. There-
fore, designers are more concerned about the IPC delay and the ARM resources occupied
by the IPC.

The IPC procedures carried out by a GPP include the manipulation of requested and
response data in the memory, notification of an IPC request to the DSP and handling
procedures of an IPC response from the DSP. If we consider the DSP workload, the IPC
procedures on a DSP are the handling procedures of an IPC request, manipulation of the
requested and response data in the memory, and notification to the GPP for the task com-
plete. The same evaluation environment presented in this paper can be also applied to the
DSP and can examine the DSP workload for handling IPC requests.

To examine the detail performance of the IPC, we divided the IPC process into the
five major phases shown in Fig. 2 and measured the latency of each phase. In phase (A),
the ARM program copies the data block to be processed from a user space memory to
the kernel space memory. The kernel space memory is directly mapped to the shared
memory space that both the ARM processor and DSP can access to avoid additional
memory copies in the kernel space. Phase (A) corresponds to step 1 shown in Fig. 1.
Phase (B) prepares the control message and sends an interrupt to the DSP. Phase (B)
corresponds to steps 2 and 3 in Fig. 1. Phase (C) includes all the DSP procedures during
an IPC, and corresponds to steps 4 to 8 in Fig. 1. Phase (D) is the interrupt handling
procedure for receiving the results, and corresponds to step 9 of Fig. 1. Finally, phase (E),
i.e. step 10 of Fig. 1, involves a memory copy of the processed data from the kernel
space to the user space.

To precisely measure the latency of each IPC phase and minimize the instrument
overhead, we implemented our own timer driver instead of using the standard gettime
ofday() library in the Linux. The standard gettimeofday() provides microsecond
(μs)-level accuracy, but our own driver, which utilizes the TI DaVinci 64-bit general-
purpose timer, offers 1/27μs precision. This approach also significantly reduces the over-
head of retrieving the timer. Experimental results shows that the user programs and ker-

SHIAO-LI TSAO AND SUNG-YUAN LEE

542

nel programs take 11.85μs and 5.87μs, respectively, to retrieve the current time using the
standard gettimeofday() library. On the other hand, this process only takes 3.63μs
and 0.44μs using our driver. Since we inserted timer retrieval codes in the testing pro-
gram and kernel to gather the latency of a specific procedure, the instrument overheads
must be deducted from the measurement results.

3.2 Experimental Results

The first experiment considers different granularities of data blocks passed from the

ARM processor to the DSP. Since we are only concerned about IPC performance, the
DSP testing program in this experiment does not perform any tasks, and simply sends the
same data block back to the ARM processor. In this experiment, an interrupt mechanism
notifies the ARM processor and DSP when there is an IPC request or response. Further,
external SDRAM served as the shared memory for exchanging IPC data. Fig. 3 illus-
trates the latency of each IPC phase for different block sizes. This figure shows that the
IPC spends a lot of time in phases (A) and (E), which perform data copies between the
user space memory and kernel space memory. The latency of phases (A) and (E) depends
on the block size. Phases (B) and (D) both process control messages and handle interrupt
notifications. Since the DSP program does not perform any task in this experiment,
phase (C) consumes only 70μs – 80μs. These experimental results indicate that if the
block size is small, such as 128bytes, the control message process and notification over-
heads, i.e., phases (B) and (D), are significant. The overhead for notifying processors
through interrupts is similar to the overhead of the memory copy for small data blocks.
Therefore, merging multiple small-block requests and performing fewer IPCs could im-
prove the overall IPC performance. For example, it takes 34ms, 10ms, and 8ms to ex-
change a total of 32K between the ARM processor and DSP through thirty-two 1Kbyes
IPCs, two 16Kbytes IPCs, and one 32Kbytes IPC, respectively.

The second experiment considers different types of shared memory, e.g., internal
memory or external memory, for exchanging IPC data. Specifically, this experiment com-
pares the IPC performance using the ARM internal SRAM and the external SDRAM. The
latency of the memory accesses is the primary factor influencing the data copies in phases

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

(A) (B) (C) (D) (E)

M
ic

ro
se

co
nd

IPC phase

128 bytes 1K bytes
16K bytes 32K bytes

Fig. 3. Latency of each IPC phase.

PERFORMANCE EVALUATION OF IPC FOR MULTI-CORE PROCESSOR

543

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

128 Bytes 1K Bytes 4K Bytes 8K Bytes

M
ic

ro
se

co
nd

Block size

External shared memory

Internal shared memory

Fig. 4. Comparison of IPC data copies through internal and external shared memory.

(A) and (E). This experiment only measures the delay in the kernel space caused by
copying different sizes of data blocks from the user space to the internal or external
shared memory. The results illustrated in Fig. 4 are less than those shown in Fig. 3 since
the delay shown in Fig. 3 includes the latency for executing the user library, system call,
and kernel code to process the memory copy. Obviously, memory copies through the
internal memory are much faster than those through the external memory. For example,
the latency to perform an 8Kbytes IPC data copy using the ARM internal SRAM is 94%
less than that using the external SDRAM. This experiment indicates that using internal
memory as the shared memory considerably improves IPC performance.

The interrupt notification mechanism introduces serious overheads for small-block
and frequent IPCs. Therefore, the next experiment uses the polling mechanism to notify
the ARM processor instead of using an interrupt approach. Experimental results show
that the notification latencies of a DSP function call introduced by the interrupt and poll-
ing mechanisms are 76.3μs and 2.3μs, respectively. The polling notification approach sig-
nificantly reduces latency by 95% compared with the interrupt notification approach. For
embedded applications that generate frequent and periodical IPCs with small block sizes,
the polling notification approach is a better design choice, and can minimize IPC over-
head.

4. RUN-TIME ADJUSTMENT OF IPC STRATEGIES

For an embedded system with multiple tasks, these tasks, called IPC tasks, may gen-
erate IPC requests simultaneously and compete the GPP, DSP and memory resources
with each other. Moreover, the embedded system may suspend and resume some of the
tasks and functionalities at run-time due to environmental changes. Therefore, IPC strate-
gies and parameters should be adjusted dynamically to accommodate different IPC re-
quests under the system resource constraints. We use an embedded video conference sys-
tem as an example. A multi-party video conference system may have different number of

SHIAO-LI TSAO AND SUNG-YUAN LEE

544

concurrent video sessions and may change the settings of audio and video codecs dyna-
mically according to the available network bandwidth. The changes of the number of
concurrent video sessions and codec settings such as audio frame length, video frame
rate, and video frame size, influence the decisions of IPC strategies and parameters. One
possible scenario is that a video conference system begins with an audio-only communi-
cation session due to insufficient network bandwidth. The audio processing task gener-
ates IPC requests with small amount of audio data so that it can use the internal memory
for its IPC requests. While the network throughput improves, the video conference sys-
tem enables another two video communication sessions. However, the internal memory
may not be sufficient to accommodate the data generated by the audio and video proc-
essing tasks if all tasks use the internal memory for the IPC requests. Therefore, the
video conference system may rearrange the IPC strategies and parameters such as the
granularity of IPC requests, IPC notification mechanisms, and use of the internal or ex-
ternal memory for each audio and video processing task to minimize the GPP workload.
We thus propose below performance models for an embedded system so that the system
can dynamically adjust the IPC strategies under environmental parameters and system
resource constraints. In the below model, we only consider periodical IPC tasks. Also,
we develop a simplified model based on average cases. To precisely evaluate the GPP
resources, delay and memory requirements for IPC, the probability models and/or queu-
ing theory are required. The analytic model of the IPC overheads and the comparison of
the model with experimental results are out of scope of this paper and will be our future
work.

In this paper, we only consider periodical IPC requests. For an embedded system
with k tasks which generate periodical IPC requests, denoted as IPCi, and IPCi requests
occur every PIi seconds. For each IPC request, the GPP sends a block with the size of BI

i
bytes to the DSP. The DSP processes it and returns the result at BO

i bytes. An embedded
system may choose the type of the IPC shared memory, the IPC notification mechanism
for each IPC task, and the granularity of an IPC request, which also influences the fre-
quency of IPC requests. We define Mi = 1 if the external memory is used for exchanging
data between the GPP and DSP. Otherwise, Mi = 0 implies that the internal memory is
used for exchanging data between the GPP and DSP. RE and RI denote the access rates of
the external and internal memory, respectively. Ii = 1 denotes that the interrupt-based
mechanism is used to notify the GPP when the DSP finishes the IPC request. Otherwise,
Ii = 0 implies that the polling-based mechanism is used for the IPC notification, and the
GPP performs the polling procedure every PPi seconds. Although, using the internal
memory as the shared memory significantly improve IPC performance, the internal mem-
ory is a limited resource and shared by IPC requests. Moreover, using polling-based no-
tification achieves a better performance than interrupt-based notification. Polling-based
notification requires more memory to temporarily buffer the data between the GPP and
DSP. We should carefully decide the granularities of IPC requests, IPC notification
mechanisms, and allocate the internal or external memory to IPC requests under the sys-
tem resource constraints. To evaluate the GPP resources that IPCi occupies, we define

 () (1)

I O
i i i

IPC i I i P
i i E i I

i
i

PI B BC I C I I CPP M R M R
U

PI

+
+ × + − × × +

× + − ×
=

PERFORMANCE EVALUATION OF IPC FOR MULTI-CORE PROCESSOR

545

as the overhead for processing IPCi requests. In the above equation, CI is the overhead
for the interrupt-based IPC notification. CP is the overhead for performing the IPC status
polling. CIPC is the overhead for handling an IPC request, and it includes the procedures
for initializing and completing an IPC request. The embedded system may have hard-
ware and software requirements which impose constraints for the selection of the IPC
strategies. For example, an embedded system has a limited internal memory so that the
size of the internal memory that IPC requests can use for exchanging data must not ex-
ceed the size of the internal memory. We assume that the DSP uses the same memory
area that the GPP stores the requested data to return the results after completing the task.
Hence, for an IPC request using interrupt-based notification, it requires Max(BI

i, BO
i)

memory to temporarily buffer the requested and returned data. By using polling-based
notification, the system has to allocate more memory to the IPC since the IPC requests
are continually generated and processed. The polling process clears and returns the
shared memory periodically. Therefore, we reserve the maximal buffer at

 1 i

i

PP
PI

⎛ ⎞⎢ ⎥+ ×⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
 Max(BI

i, BO
i)

bytes for each IPC request using polling-based notification. The internal memory that all
IPC tasks use must not exceed the total size of the internal memory, defined as Bintl. The
buffer constraint must be satisfied. That is:

 1{ Max(,) + (1) (1+) Max(,)} .k iI O I O
i i i i i i intli

i

PP
M B B M B B B

PI=
⎢ ⎥× − × × ≤⎢ ⎥⎣ ⎦

∑ (1)

On the other hand, each IPC request may have its own delay constraint. For an IPC re-
quest using interrupt-based notification, the maximal latency, say di, for an IPC request is
the time to process the request. That is:

+
= + ,

(1)

I O
i i

i IPC I DSP
i E i I

B B
d C C C

M R M R
+ +

× + − ×
 if Ii = 1,

where CDSP is the latency that the DSP processes the request. If the system employs poll-
ing-based notification and the polling frequency is faster than the IPC request frequency,
the maximal latency for an IPC request becomes

+ + + .

+ (1)

I O
i i

IPC P DSP
i E i I

B B
C C C

M R M R
+

× − ×

If the polling frequency is slower than the IPC request frequency, the latency for an IPC
request increases to

+ + .
+ (1)

O
i

i P
i E i I

B
PP C

M R M R× − ×

SHIAO-LI TSAO AND SUNG-YUAN LEE

546

Therefore, we could model the maximal latency for an IPC request if polling-based noti-
fication is applied as:

 = Max(+ + + + +),
(1)(1)

if = 0.

O I O
i i i

i i P IPC P DSP
i E i Ii E i I

i

B B B
d PP C C C C

M R M RM R M R
I

+
× + − ×′× + − ×

The latency constraint for IPCi, denoted as Di, should be satisfied. That is:

Ii × di + (1 − Ii) × di ≤ Di, ∀i. (2)

Based on the models mentioned above, we can dynamically adjust the parameters of
the k periodical IPC tasks in order to minimize GPP resources in performing IPC proce-
dures, i.e. to minimize

1 ,k
ii U

=∑ without violating the delay and internal memory cons-
traints. Assume IPCi has IPCg

i design choices, i.e. IPCg
i IPC granularities. IPCg

i IPC
granularities imply that an IPC requested block and returned block for IPCi also have
IPCg

i sizes. For each IPC task, it can use either polling-based notification or inter-
rupt-based notification for its IPC requests. Also, each IPC request can use either the in-
ternal or external memory as its IPC shared memory. Therefore, a system can generate a
total of 1 2 2k g k k

ii IPC
=

× ×∏ design combinations. When the environmental parameters
change, the system can perform internal memory and delay constraint checks based on
Eqs. (1) and (2), evaluate different IPC strategies and parameters for each IPC task, and
dynamically adjust the strategies and parameters of every IPC task. We further apply this
dynamic adjustment concept to an embedded media gateway and evaluate its perform-
ance in section 5.2.

5. IPC IMPROVEMENT FOR TWO CASE STUDIES

5.1 Case Study 1: VoIP Phone

The experiments above show that depending on the characteristics of an embedded
system, designers may prefer different IPC strategies. This section applies different IPC
strategies to a VoIP phone. The GPP runs a VoIP client and the DSP compresses and
decompresses voice packets. The two processors frequently conduct IPC, e.g., every 20
ms for the G.711 voice codec, and the size of the IPC data block is usually small, e.g.,
160 bytes for the G.711 voice codec.

The VoIP test-bed in this study consists of a public SIP server which handles VoIP
calls and two client nodes which can establish a VoIP communication. One VoIP client
runs Linphone [11], an SIP user agent, on a PC, and the other VoIP client uses the TI Da-
Vinci DM6446 evaluation board. We ported and modified Linphone [11] on the embed-
ded evaluation board to evaluate its performance. The two VoIP clients first registered
with the public SIP server, and then established a VoIP communication through the SIP
server. These experiments evaluated the ARM processor workload of the TI DaVinci
board after the VoIP call was established and voice packets were transmitted between the
two clients. We used a popular CPU workload monitor tool, called Top, on Linux, to

PERFORMANCE EVALUATION OF IPC FOR MULTI-CORE PROCESSOR

547

measure the ARM processor workload.
The VoIP client running on the ARM processor periodically calls the DSP function

to encode and decode voice frames. For example, if the G.711 codec is used, the VoIP
client calls the G.711 library every 20ms for decoding and encoding voice packets. Ac-
cording to our findings, the polling notification approach is preferred for the VoIP phone
since the application generates periodical IPC requests with small block sizes. Therefore,
we modified the DSP/BIOS Link to support polling notification and compared its per-
formance with the conventional interrupt approach. To implement polling notification on
the ARM processor, the ARM processor first prepared the control messages and data
blocks in the shared memory. Since the ARM and DSP programs perform their own
tasks asynchronously, it is necessary to prepare a number of blocks in the shared memory
to allow the ARM program to continually generate requests for the DSP program to
process. The blocks in the shared memory are implemented as a circular buffer. The
ARM program sends a request to the DSP by setting the flag. After the DSP finishes the
task, it resets the flag in the shared memory.

The conventional VoIP application has a periodical software timer which is used to
trigger the audio capture, audio process, packetization, and packet transmission. The ARM
sends an audio process request to the DSP via IPC periodically. If interrupt-based notifi-
cation for an IPC request is applied, an additional hardware interrupt and interrupt ser-
vice handling routine are introduced. On the other hand, if polling-based notification is
employed, we check the IPC status flag when the original software timer expires. If the
flag is reset, the ARM program understands that the task has finished, and then accesses
the results in the shared memory. Therefore, neither an additional hardware interrupt nor
an additional software timer is introduced if polling-based notification for an IPC request
is applied. We could increase the polling frequency by shortening the interval of the
software timer, but the ARM workload increases. Table 2 shows our experimental results
by applying different polling frequencies, i.e. different software timer intervals. Experi-
mental results show that the workload only increases by 0.5% when the polling fre-
quency is doubled on the ARM processor.

Small IPC block size is another important characteristic of VoIP applications. For
example, the G.711 voice frame is 1280 bits, or 160 bytes. The IPC block size becomes
smaller when using a low-bit-rate codec, such as G.723. This small data block size
makes it affordable to use the internal memory to exchange the IPC data. Thus, we used
the internal memory rather than the external memory for the IPC data exchanges.

Table 1 illustrates the ARM processor workload under different IPC strategies. The
first design strategy only uses the ARM processor to handle both the VoIP client and the
voice codec. In other words, the DSP is not involved in this case. This approach con-
sumes 47% ARM processor’s resources. The DSP handles the voice codec in the second
design configuration, requiring IPC. In this case, IPC uses external SDRAM as the shared
memory and uses interrupt mechanism for notifications. This approach significantly re-
duces the ARM workload by 50%. The third configuration uses the polling mechanism
to replace the interrupt mechanism. The ARM program initiates a 20ms polling timer to
periodically check the completion of the DSP task. These experiments indicate that the
ARM workload can be further reduced by 8% using polling notification. The fourth con-
figuration uses internal memory as the shared memory. A comparison of design configu-
rations 2 and 4 shows that using internal memory for IPC data exchanges reduces the

SHIAO-LI TSAO AND SUNG-YUAN LEE

548

Table 1. ARM processor workload under different design configurations.
Design Configurations ARM Workload (%)

1. ARM 46.53
2. ARM + DSP + Intr + Extl 22.73
3. ARM + DSP + Poll + Extl 20.92
4. ARM + DSP + Intr + Intl 16.37
5. ARM + DSP + Poll + Intl 14.84

Table 2. The ARM processor workload and the maximal latency of the DSP function call
under interrupt and polling notification approaches.

 Interrupt Polling (5ms) Polling (10ms) Polling (15ms) Polling (20ms)
ARM workload (%) 16.71 16.02 15.35 15.18 14.87

Maximal latency of the
DSP function calls (ms) 6.83 10.28 10.31 17.35 20.42

ARM processor workload by 28%. For an embedded system with small IPC blocks, using
internal memory can significantly improve IPC performance. Finally, the fifth design con-
figuration uses both internal memory and polling technologies. Experimental results in-
dicate that this approach can reduce the ARM processor workload by 35% compared
with the second design configuration.

When using the polling notification mechanism, the time that ARM can detect the
completeness of the DSP function may increase slightly compared with the interrupt ap-
proach. This is because the interrupt notification can interrupt the ARM processor as
soon as the DSP function is complete. However, the detection of the DSP function com-
plete on the ARM processor may be delayed for one polling period if the DSP resets the
flag just after the ARM program polls the flag.

One concern with using the polling approach is that the VoIP application may have
extra packet delay and/or packet delay jitters. Therefore, we measured the packet delay
and delay jitters using WireShark [12] in the test-bed. Experimental results show that the
polling approach results in additional 6ms to 10ms delays for each voice packet, but does
not introduce additional delay jitters. A VoIP phone using the polling and interrupt noti-
fication approaches offers the same voice quality. This is mainly because most current
VoIP clients maintain a receiving buffer with two to three voice packets, i.e., a 40ms to
60ms jitter buffer, to accommodate network delays and jitter. Therefore, the receiving
buffer can easily accommodate IPC notification latencies. The proposed approach of
using internal memory and the polling approach can reduce the ARM processor work-
load by 35% without sacrificing VoIP functionalities or voice quality.

Although the polling mechanism does not influence applications that can tolerate a
slight DSP function call delay, some real-time embedded systems may require a fast and
guaranteed response time for each DSP task. Therefore, we evaluated the maximal la-
tency of the DSP function calls by applying the polling and interrupt approach using the
same VoIP program. Table 2 shows the maximal latency of the DSP function calls and
corresponding ARM processor workload for polling intervals of 5ms, 10ms, 15ms, and
20ms, respectively. This table shows that the ARM workload increases with polling timer
frequency. On the other hand, the complete of a DSP function call can be detected earlier

PERFORMANCE EVALUATION OF IPC FOR MULTI-CORE PROCESSOR

549

using a frequent polling timer, which reduces the maximal latency of DSP function calls.
Table 2 also shows that when using a 5ms polling interval, the ARM processor workload
increases, but the latency of the DSP function calls cannot decrease. This is because the
DSP programs spend about 6ms to process the task in this VoIP example. If we poll the
flag every 5ms, it may be necessary to poll the flag twice to determine if the task is com-
plete or not. In this case, the maximal latency of the DSP function call becomes 10ms
using a 5ms polling interval.

With asynchronous software pipelining design, a stream application such as VoIP
can continue generating IPC requests to the DSP, and does not have to wait for the DSP
process of IPC requests and IPC responses. The DSP processing latencies of the IPC
requests might be hidden. The IPC overhead can be further reduced by exploiting both
DLP (data-level parallelism) and TLP (thread-level parallelism). For example, a compli-
cated DSP task may require large data buffer for IPC. The available resources may not
be sufficient to accommodate this request if a programmer wants to use the internal
memory as the Ping-Pong buffer and apply the asynchronous software pipelining design
to hide the IPC overheads. On the other hand, the programmer may carefully adjust the
jobs, modify the algorithms, and then may divide the complicated DSP task into a num-
ber of small DSP sub-tasks. In that case, the internal memory may become sufficient to
accommodate data requests from these small DSP sub-tasks. More efficient IPC mecha-
nisms and asynchronous software pipelining design can thus be applied, and the IPC
overheads may be further hidden and/or reduced.

5.2 Case Study 2: Media Gateway

Based on the above experimental results, we can obtain the parameters of the IPC

performance models such as CIPC, CI, CP, RE, and RI for TI DaVinci platform. We apply
the dynamic adjustment strategy to a media gateway and simulate the ARM workload for
handling different IPC requests. A media gateway is an embedded device and can be used
in a VoIP communication system. It decodes, encodes, and/or converts multiple audio
and video streams simultaneously. We assume that the media gateway encodes G.711
audio streams at 64Kbps, and H.263 video streams at 10 frames/second, SQCIF (128 ×
96) resolution, and 64Kbps. The conventional media gateway forks an encoding thread
when it receives an encoding request of an audio or video session. Here, we assume that
the IPC strategy for an audio encoding thread can be different from that for a video en-
coding thread, but the IPC strategies for all audio encoding threads and for all video en-
coding threads should be the same, respectively. The IPC strategies for all encoding
threads are determined during the system design phase and they are fixed no matter how
many tasks that the media gateway currently handles. We call this conventional approach
as the static IPC design. Therefore, the static approach must consider the worst-case
situation, and decides the IPC strategy for an audio and video encoding thread. Different
from the static approach, our suggestion is to modify the audio and video encoding thread
to dynamically adjust the IPC strategies based on the current running tasks, environ-
mental parameters and system resource constraints. The dynamic adjustment approach
first generates all design combinations of IPC strategies for audio and video encoding
threads, and then decides the optimal IPC solutions for these threads under system re-
source constraints. With the dynamic adjustment approach, IPC strategies for every audio

SHIAO-LI TSAO AND SUNG-YUAN LEE

550

and video encoding thread can be different, and the audio and video encoding thread can
change their IPC strategies during run-time.

We simulate the ARM workload under different running tasks and system resource
constraints. Fig. 5 illustrates the simulation results under three system configurations.
Figs. 5 (a)-(c) consider the media gateway with 1K, 16K and 32K internal memory bud-
get, respectively. The ARM workload is the overhead for handling IPC requests. We
target the system to support up to three audio and three video encoding sessions. 1A, 2A,
1A + 1V, 2A + 2V, and 3A + 3V mean that the media gateway currently handles one
audio encoding, two audio encoding, one audio and one video encoding, two audio and
two video encoding, and three audio and three video encoding sessions, respectively. If
the ARM workload is over 100%, the current ARM is not able to handle the tasks and a
more powerful ARM is required. In Fig. 5 (a), the system only has 1K internal memory.
For the static IPC strategy, the memory is only sufficient if three audio encoding threads
all apply interrupt-based notification and use the internal memory, and video encoding
threads use the external memory and polling-based notification. By applying the static
IPC strategy, the current system cannot support two audio and two video encoding ses-
sions. The dynamic adjustment approach can dynamically adjust the IPC strategies for
each individual encoding thread depending on workload and the remaining internal
memory. When the system only handles one audio encoding session, the internal mem-
ory is sufficient to support polling-based notification and the use of the internal memory

0

20

40

60

80

100

120

140

160

180

1A 2A 1A+1V 2A+2V 3A+3V

A
R

M
 w

or
kl

oa
d

(%
)

Tasks

1K-Static
1K-Dynamic

0

20

40

60

80

100

120

140

160

1A 2A 1A+1V 2A+2V 3A+3V

A
R

M
 w

or
kl

oa
d

(%
)

Tasks

16K-Static
16K-Dynamic

(a) (b)

0

20

40

60

80

100

120

140

160

1A 2A 1A+1V 2A+2V 3A+3V

A
R

M
 w

or
kl

oa
d

(%
)

Tasks

32K-Static
32K-Dynamic

(c)

Fig. 5. ARM workload under different running tasks and internal memory budgets.

PERFORMANCE EVALUATION OF IPC FOR MULTI-CORE PROCESSOR

551

as the shared memory. The dynamic approach can reduces 12% ARM workload if the
system handles only one audio session. If the system handles two audio encoding ses-
sions and the dynamic IPC strategy is employed, the internal memory is sufficient for
one audio session using the internal memory and polling-based notification, the other
audio session using the external memory and polling-based notification. The dynamic
approach can reduces 6% ARM workload if the system handles two audio sessions.

While the system increases the internal memory budget to 16K, the internal memory
budget is sufficient for the static IPC approach to support three audio encoding sessions
using polling-based notification and internal memory. However, the internal memory is
not sufficient to provide all three video encoding sessions for using the internal memory.
On the other hand, our proposed dynamic adjustment of IPC strategy allows individual
video encoding session to change IPC strategies and parameters during run-time, and the
IPC strategies for three different video encoding sessions can be different. In Fig. 5 (b),
the dynamic approach allows one video encoding session using the internal memory and
polling-based notification, the other video encoding session using external memory and
polling-based notification, and two audio encoding sessions using the internal memory
and polling-based notification. The dynamic approach significantly reduces the ARM
workload by 30%. Moreover, the static IPC approach cannot support three audio and
three video encoding sessions, but the dynamic approach can handle all six tasks. While
the system increases the internal memory budget to 32K, the dynamic approach can re-
duce the ARM workload by 40% to 61% for handling both audio and video encoding
sessions compared with the static approach. It is important to note that the dynamic ap-
proach optimizes the IPC strategies under system resource constraints. Fig. 5 already
shows the best performance by employing the dynamic adjustment of IPC strategies. If
there is unlimited internal memory budget, the optimal solution is to use the internal
memory and polling-based notification for all periodical IPC tasks. For example, the
ARM workload reduces to 57% but the system requires 76K internal memory for the 3A
+ 3V case. Since the GPP workload can be reduced by employing the dynamic adjust-
ment approach, we could consider a low-end GPP for the media gateway at the system
design phase, support more number of audio and video streams, and/or adjust the GPP
voltage and frequency to save the energy at run-time.

We further applied the dynamic adjustment approach to an embedded system with
one GPP and two DSPs. We assume that each DSP has 32K internal memory, and the
embedded system aims to support four audio and four video encoding sessions. For the
static approach, each DSP handles two audio and two video sessions. The audio sessions
can use the DSP internal memory and polling-based notification, but the video sessions
have to use the external memory and polling-based notification due to insufficient DSP
internal memory. The GPP workload is almost 200% when it handles four audio and four
video sessions. If the dynamic approach is employed, for each DSP, the audio sessions
can use the DSP internal memory and polling-based notification, one video session can
use the DSP internal memory and push-based notification, and the other video session
can use the DSP internal memory and polling-based notification. The GPP workload is
only 80% and can handle all IPC tasks. The dynamic approach can also significantly
reduce the GPP workload for handling IPC tasks on an embedded system with multiple
DSPs.

SHIAO-LI TSAO AND SUNG-YUAN LEE

552

6. CONCLUSIONS

This paper investigates different IPC design strategies for a heterogeneous multi-
core processor using an experimental test-bed, and measures precise IPC latencies under
different configurations. Experimental results reveal that different IPC strategies signifi-
cantly influence IPC performance, and that designers should select IPC strategies based
on the characteristics of the embedded system.

Based on the findings above, we suggest dynamic adjustment of IPC strategies for
an embedded heterogeneous multi-core processor. With the proposed IPC performance
models, the system can estimate the IPC performance at run-time and dynamically ad-
justs the IPC strategies under environmental parameters and system resource constraints.

We provided two case studies. In the first case study, we applied the internal shared
memory and polling notification techniques to improve the IPC performance of a VoIP
phone. Experimental results show that we could reduce the GPP workload by 35% com-
pared with the conventional approach without sacrificing VoIP functionalities and voice
quality. In the second case study, we employed the concept of dynamic adjustment of
IPC strategies to an embedded media gateway. The simulation results reveal that the dy-
namic approach outperforms the static IPC design approach.

We outlined the future work. First, the simplified performance model of IPC over-
head presented in section 4 only considers average cases and it is mainly to assist system
designers in adjusting run-time IPC strategies. A detail analytic model of IPC overhead
based on probability models and/or queuing theory are required to precisely evaluate the
GPP resources, delay and memory requirements for IPC. Second, the partition of DSP
tasks and the asynchronous software pipelining design for the IPC can further improve
the IPC performance. These application- and algorithm-specific optimizations may very
well be our next goals. Third, cell processor composes of a GPP, a number of DSPs, lo-
cal memory of the GPP and DSPs, and external memory [13]. The IPC procedures of the
GPP and DSPs are similar to IPC procedures mentioned in this paper. The evaluation
environment of the IPC procedures and IPC design strategies can be applied to Cell pro-
cessor. The proposed dynamic adjustment scheme of IPC strategies presented in this pa-
per can be extended and applied to Cell processor. For example, the system can further
consider the current workload of every DSP and the use of the DSP internal memory as
the shared memory, and thus dynamically determine the strategies and parameters for
IPC requests under system resource constraints. More advanced technologies for apply-
ing dynamic adjustment of the IPC strategies to the architectures with multiple DSPs
such as Cell processor are research issues for our future work.

REFERENCES

1. D. Talla and J. Gobton, “Using DaVinci technology for digital video devices,” IEEE
Computer, Vol. 40, 2007, pp. 53-61.

2. H. Y. Hsieh, S. F. Liang, L. W. Ko, M. Lin, and C. T. Lin, “Development of a real-
time wireless embedded brain signal acquisition/processing system and its applica-
tion on driver’s drowsiness estimation,” in Proceedings of IEEE International Con-
ference on Systems, Man and Cybernetics, Vol. 5, 2006, pp. 4374-4379.

PERFORMANCE EVALUATION OF IPC FOR MULTI-CORE PROCESSOR

553

3. U. S. Gorgonio, H. R. B. Cunha, E. X. L. de Filho, S. O. D. Luiz, and A. Perkusich,
“Application profiling in a dual-core platform,” in Proceedings of International Con-
ference on Consumer Electronics, 2008, pp. 1-2.

4. C. N. Chiu, C. T. Tseng, and C. J. Tsai, “Tightly-coupled MPEG-4 video encoder
framework on asymmetric dual-core platforms,” in Proceedings of IEEE Interna-
tional Symposium on Circuits and Systems, Vol. 3, 2005, pp. 2132-2135.

5. S. O. D. Luiz, G. de M. Vasconcelos, and L. D. da Silva, “Formal specification of
DSP gateway for data transmission between processor cores of OMAP platform,” in
Proceedings of ACM Symposium on Applied Computing, 2008, pp. 1545-1549.

6. T. Chen, G. Chen, H. Dai, and Q. Shi “A function-based on-chip communication de-
sign in the heterogeneous multi-core architecture,” in Proceedings of International
Conference on Multimedia and Ubiquitous Engineering, 2007, pp. 1086-1092.

7. T. Kluter, P. Brisk, E. Charbon, and P. Ienne “MPSoC design using application-spe-
cific architecturally visible communication,” in Proceedings of the 4th International
Conference on High Performance Embedded Architectures and Compilers, 2009, pp.
183-197.

8. L. Brisolara, S. I. Han, X. Guerin, L. Carro, R. Reis, S. I. Chae, and A. Jerraya, “Re-
ducing fine-grain communication overhead in multithread code generation for het-
erogeneous MPSoC,” in Proceedings of the 10th International Workshop on Soft-
ware and Compilers for Embedded Systems, 2007, pp. 81-89.

9. Texas Instruments, TMS320DM6446 Digital Media System-on-Chip, March, 2007.
10. Texas Instruments, DSP/BIOS Link User Guide, April, 2006.
11. Linphone, http://www.linphone.org/index.php/eng.
12. WireShark, http://www.wireshark.org/.
13. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy,

“Introduction to the cell multiprocessor,” IBM Journal of Research and Develop-
ment, Vol. 49, 2005, pp. 589-604.

14. The Industrial Technology Research Institute (ITRI) PAC (Parallel Architecture Core),
http://pac.itri.org.tw/.

ACKNOWLEDGMENT

The authors would like to thank Industrial Technology Research Institute, MediaTek
Inc. and the National Science Council of Taiwan.

Shiao-Li Tsao (曹孝櫟) earned his Ph.D. degree in Engi-
neering Science from National Cheng Kung University in 1999.
His research interests include embedded software and system,
and mobile communication and wireless network. From 1999 to
2003, Dr. Tsao joined Computers and Communications Research
Labs (CCL) of Industrial Technology Research Institute (ITRI) as
a researcher and a section manager. He was a visiting scholar at
Bell Labs, Lucent technologies, U.S.A., in the summer of 1998, a
visiting professor at Department of Electrical and Computer En-

SHIAO-LI TSAO AND SUNG-YUAN LEE

554

gineering, University of Waterloo, Canada, in the summer of 2007, and Department of
Computer Science, ETH Zurich, Switzerland, in the summer of 2010 and 2011. Dr. Tsao
is currently an Associate Professor of Department of Computer Science of National
Chiao Tung University. Prof. Tsao has published more than 75 international journal and
conference papers, and has held or applied 18 U.S. patents. Prof. Tsao received the
Young Researcher Award of Pan Wen-Yuan Foundation, Young Engineer Award from
the Chinese Institute of Electrical Engineering in 2007, Outstanding Teaching Award of
National Chiao Tung University, and K. T. Li Outstanding Young Scholar Award from
ACM Taipei/Taiwan chapter in 2008.

Sung-Yuan Lee (李松遠) received his M.S. degree in Com-
puter Science from National Chiao Tung University, Taiwan, in
2009. His research interests include wireless networks and em-
bedded systems.

