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Exploiting Multi-Spatial Correlations of
Motion Data in a Body Sensor Network

Chun-Hao Wu and Yu-Chee Tseng, Fellow, IEEE

Abstract—Human body motions usually exhibit a high degree
of coherence and correlation in patterns. This allows exploiting
spatial correlations of motion data being captured by a body
sensor network. Since human bodies are relatively small, earlier
work has shown how to compress motion data by allowing a
node to overhear at most κ = 1 node’s transmission and exploit
the correlation with its own data for data compression. In this
work, we consider multi-spatial correlations by extending κ = 1 to
κ > 1 and constructing a partial-ordering directed acyclic graph
(DAG) to represent the compression dependencies among sensor
nodes. While a minimum-cost tree for κ = 1 can be found in
polynomial time, we show that finding a minimum-cost DAG is
NP-hard even for κ = 2. We then propose an efficient heuristic
and verify its performance by real sensing data.

Index Terms—Body sensor network, data compression, inertial
sensor, pervasive computing, wireless sensor network.

I. INTRODUCTION

A BODY SENSOR NETWORK (BSN) consists of a set
of sensor nodes deployed on a human body to moni-

tor physiological signs, such as motions. Nodes periodically
report sensing data to a sink via wireless links. This work is
motivated by two observations. First, since a BSN is likely
fully connected, overhearing among nodes is possible. This
opens a space to relieve collision and contention among trans-
missions. Second, since human body motions have inherent
rhymes, it typically results in strong spatial correlations among
measurements of different nodes. This opens another space to
compress sensing data when overhearing is possible.

How to exploit spatial correlations has been extensively
considered in wireless sensor networks (WSNs). In multi-hop
WSNs, data compression may be performed by relay nodes
via data aggregation [1]–[4]. For slow-changing environments,
model-driven data acquisition models are proposed in [5]–
[7]. Recently, overhearing-based data compression has been
considered in [8], [9]. In [8], how to exploit single-spatial
correlations of motion data is studied. Reference [9] adopts a
simplified model for single-spatial correlations and considers
data collection in multi-hop WSNs.

In this letter, we extend [8] by considering multi-spatial
correlations of motion data in a BSN. By overhearing multiple
nodes, the spatial correlations of motion data can be better
exploited, resulting in better compression ratios. However,
such an extension is nontrivial. To solve the overhearing
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dependencies among nodes, we formulate the problem as one
of finding an optimal DAG that minimizes the total amount
of transmissions in a BSN. We show this problem to be NP-
hard and propose a heuristic. Experimental results with real
BSN motion data are presented, which show more than 50%
improvement over [8].

II. MULTI-SPATIAL DATA COMPRESSION

A. Problem Definition

We consider a BSN with n sensor nodes v1, v2, . . . , vn
deployed on a human body. Each node has an inertial sensor.
Via wireless links, nodes periodically report their readings
to a sink in a round-by-round fashion. Since a human body
is relatively small, nodes are assumed to be mostly fully
connected and thus overhearing is possible.

In order to reduce transmission, a node may conduct data
compression. Let us consider three models. In Fig. 1(a), each
node simply compresses its own data individually. In Fig. 1(b),
a node may compress its data based on its spatial correlation
with another node. In Fig. 1(c), the compression may be based
on correlations with multiple nodes. Reference [8] adopts the
model in Fig. 1(b) and uses an offline phase to learn the
spatial correlations among sensors. A case study in Pilates
exercises shows significant compression effect using the model
in Fig. 1(b).

In this work, we extend [8] by considering the multi-spatial
data compression (κ-MDC) problem. A node vi may compress
its data based on overhearing the data of a set Si of nodes.
The average size of the compressed data sent by vi is denoted
by c(vi |Si). Note that when no spatial correlation is applied,
Si = ∅. Our goal is to find a proper set Si for each vi such
that

∑n
i=1 c(vi |Si) is minimized. To be more practical, we

enforce |Si| ≤ κ for a constant κ.
The problem can be formulated as follows. We model the

links of the BSN by a complete directed graph G = (V,E),
where V = {v1, v2, . . . , vn}. The operation of letting vi
overhear Si ⊆ V \ {vi} is formulated as finding a subset
Ei ⊂ E such that 〈vj , vi〉 ∈ Ei iff vj ∈ Si. So there are(
n−1
0

)
+
(
n−1
1

)
+ · · ·+(

n−1
κ

)
combinations for the selection of

Si. The corresponding transmission cost is c(vi |Si). It follows
that any DAG G′ = (V,E′ ⊂ E) found from G represents an
acyclic overhearing relation among nodes and has a total cost
of

∑n
i=1 c(vi |Si). The concept is shown in Fig. 2. Our goal

is to find the minimum-cost DAG. From G′, the transmission
sequence can be determined by a topological sort on G′ [10].

Note that c(vi |Si) may be represented by conditional en-
tropies and should be learned in advance from offline training.
Also note that in practice vi may fail to overhear some nodes
in Si. In this case, vi may either transmit only c(vi) or

1089-7798/12$31.00 c© 2012 IEEE



WU and TSENG: EXPLOITING MULTI-SPATIAL CORRELATIONS OF MOTION DATA IN A BODY SENSOR NETWORK 663

collision zone

1( )c v(1)

sink

4v
3v
2v
1v

2( )c v(2)

(3)

(4)

3( )c v

4( )c v

(a) individual

collision zone

1( )c v(1)

sink

4v
3v
2v
1v

2 1( | )c v v(2)

3 2( | )c v v(3)

4 3( | )c v v(4)

(b) single-spatial

collision zone

3( )c v(1)

sink

4v
1v
2v
3v

2 3( | )c v v(2)

1 2 3( | , )c v v v(3)

4 1 2( | , )c v v v(4)

(c) multi-spatial

Fig. 1. Data compression models. c(vi |Si) means the compressed size of
vi’s data after vi overhears Si.
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Fig. 2. An example of 2-MDC: (a) G, (b) all dependency relations, (c) a
possible DAG G′, and (d) a topological sort of G′.

suboptimal c(vi |S′
i) such that the transmissions of nodes in

S′
i have been overheard by vi. That is, the DAG G′ represents

the best strategy, but each node can dynamically change its
compression strategy at a higher cost when needed.

B. Complexity Analysis

In [8], it is shown that finding a minimum-cost DAG for
κ = 1 can be solved efficiently in polynomial time. Below,
we show that even for the simplest generalization of κ = 2,
finding an optimal DAG is NP-hard. The proof is based on a
variant of the feedback arc set (FAS) problem, a well-known
NP-hard problem [11].

Definition 1. Given a digraph Gf = (Vf , Ef ), the FAS
problem is to find a feedback arc set E′

f ⊆ Ef with the
minimal size |E′

f | such that G′
f = (Vf , Ef \ E′

f ) is a DAG.

Lemma 2. The FAS problem remains NP-hard for in-degree-2
digraphs, where each node has at most two incoming arcs.

Proof: It is known that the FAS problem remains NP-
hard for digraphs in which the total in-degree and out-degree
of each node is no more than three [12]. By noting that in
such digraphs, no node with three incoming arcs can be in a
cycle, the lemma follows directly.

Theorem 3. The κ-MDC problem is NP-hard for κ ≥ 2.

Proof: We will show the case of κ = 2, and other cases
can be shown similarly. The proof is based on reduction from
Lemma 2. Given an in-degree-2 digraph G = (V,E) of the

FAS problem, we construct an instance of the κ-MDC problem
G′ = (V,E′ ⊇ E), a complete digraph whose cost c(· | ·) is
described later. Note that both problems ask for finding DAGs,
the former by removing arcs from G and the latter by selecting
arcs from G′. Hence, the cost of removing an arc from G is
translated to the additional cost when this arc is not selected
from G′.

Below, we show how to assign c(vi |S) for any vi and S.
For each vi that has no incoming arc in G, we let c(vi) = 0
and all other c(vi |S) = ∞ (or a value large enough). For
each vi that has only one incoming arc 〈vj , vi〉 in G, we let
c(vi) = 1, c(vi | {vj}) = 0, and all other c(vi |S) = ∞.
Note that an additional cost is incurred when 〈vj , vi〉 is not
selected from G′. Similarly, for each vi that has two incoming
arcs 〈vj , vi〉 and 〈vk, vi〉 in G, we let c(vi) = 2, c(vi | {vj}) =
c(vi | {vk}) = 1, c(vi | {vj , vk}) = 0, and all other c(vi |S) =
∞. The additional cost depends on how many of 〈vj , vi〉 and
〈vk, vi〉 are not selected from G′.

By this construction, the total cost of a DAG found from
G′ is the number of arcs to be removed from G. Hence, once
the minimum-cost DAG is found from G′, the optimum FAS
of G is found.

C. A Greedy Cycle Breaker Heuristic

To the best of our knowledge, there is no known approxi-
mation for the κ-MDC problem. We thus propose a heuristic
called greedy cycle breaker (GCB), which is inspired by the
FAS problem. Given a complete digraph G = (V,E), it works
by selecting an optimal subgraph and then breaking cycles
greedily.

1) For each vi, find the set S∗
i ⊆ V \ {vi} such that

|S∗
i | ≤ κ and c(vi |S∗

i ) is minimized. Then, for each
vj ∈ S∗

i , add arc 〈vj , vi〉 to set E′. This forms an
optimal subgraph G′ = (V,E′).

2) If the above G′ contains no cycle, then G′ is the
minimum-cost DAG and the algorithm terminates.
(There are many polynomial time algorithms to identify
cycles in a graph.) Otherwise, continue to step 3.

3) Find a set U ⊆ V such that for each vi ∈ U , S∗
i ⊆ U

and the overhearing relations among U is a DAG. Note
that U may be empty. Below, we will add nodes to U
iteratively.

4) For each vi ∈ V \U , compute a suboptimal set U∗
i ⊆ U

such that the additional cost c(vi |U∗
i ) − c(vi |S∗

i ) is
minimal. Among all these nodes, choose the one, say
vi, such that the additional cost is minimal. Then, we
add vi to U and set its overhearing set to be U∗

i .
5) Repeat step 4 until U = V .

In our experience, such a greedy method is quite effective
for motion data. Experimental results in Section III show that
GCB is quite close to the optimum in most cases.

III. EXPERIMENTAL RESULTS

We conduct experiments on real BSN motion data to verify
the performance of GCB as well as the effects brought by
multi-spatial correlations.
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Fig. 3. The distributions of c(v | S) by |S|.

A. Environment

We place n = 10 nodes on a human body to capture
motions. Two nodes are placed on each limb, and the rest two
are placed around the waist. Each node is a Jennic JN5139
microprocessor [13] with a ZigBee-compliant module and an
ADXL345 triaxial accelerometer [14]. Each piece of raw data
in each axis is 16 bits, and the sampling rate is set to 20 Hz.
For ease of presentation, we use only one axis. The results
can be straightforwardly extended to multiple axes.

We collect three sets of motion data: (a) walking, (b) walk-
ing upstairs, and (c) running. For each motion, we compare
three data compression methods.

• 1-MDC: This is the single-spatial compression method
in [8].

• 2-GCB: This is our GCB method with κ = 2.
• 2-OPT: This is an exhaustive search for the optimum

results of 2-MDC.

B. Compression under Ideal Channels

First, we consider ideal wireless channels as follows. We
assume that nodes can overhear all intended packets without
loss. Toward this end, we collect all nodes’ raw data first and
use two-third of them for learning inter-node correlations and
the rest for testing. From the learning data set, we obtain the
cost functions c(vi |Si) through Huffman compression for all
possible Sis. Its distribution is shown in Fig. 3. The results
verify that multi-spatial correlations are worth exploiting.

Based on these c(vi |Si)s, we then develop different com-
pression schemes. Then, we use the testing data set and run
a simulation program to make comparison. The results are
shown in Fig. 4. For motion (a), each piece of compressed
data without overhearing is about 8 bits (refer to Fig. 3).
The 1-MDC and 2-GCB methods reduce the data sizes to
4.3 bits and 2.1 bits, respectively. The optimum size by 2-
OPT is 1.7 bits. The trends for other motions are similar. This
verifies the effectiveness of GCB.

C. Compression under Lossy Channels

From the same learning and testing data sets, we further
simulate environments with lossy channels as follows. Let
pij(t) be the probability that a packet sent by vi at time t may
be lost at vj . We consider both static and dynamic channels.
For the former, we consider a fixed value ps for all pij(t)s. For
the latter, we let each pij(t) be randomly drawn from [0, pd],
where pd is a constant. When a node vi loses any intended
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Fig. 4. Comparison of compressed data sizes under ideal channels.
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Fig. 5. Comparison of compressed sizes under lossy channels.

packet, it simply compresses by itself (thus the cost is c(vi)
bits). The results are shown in Fig. 5. When ps = 0 or pd = 0,
it represents the ideal channels. Evidently, a higher ps or pd
would impair our schemes since there is a less chance for
overhearing. One possible solution deserving investigation is
to adaptively fall back to 1-MDC when the channels are found
lossy.
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IV. CONCLUSIONS AND FUTURE WORK

We have demonstrated how to exploit multi-spatial corre-
lations in sensor data compression. We model the problem
in a BSN and prove its relation with NP-hardness. We then
propose a heuristic and verify its effectiveness through real
experimental data under different channel models. For future
work, it is desirable to consider more body motions and non-
fully-connected networks.
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