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Abstract: A frequency bin-wise nonlinear masking algorithm is proposed
in the spectrogram domain for speech segregation in convolutive
mixtures. The contributive weight from each speech source to a time-
frequency unit of the mixture spectrogram is estimated by a nonlinear
function based on location cues. For each sound source, a non-binary
mask is formed from the estimated weights and is multiplied to the
mixture spectrogram to extract the sound. Head-related transfer func-
tions (HRTFs) are used to simulate convolutive sound mixtures perceived
by listeners. Simulation results show our proposed method outperforms
convolutive independent component analysis and degenerate unmixing
and estimation technique methods in almost all test conditions.
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1. Introduction

Segregating sound streams from a sound mixture is a typical task for people in daily
lives but is very challenging for machines. Solving this “cocktail party problem” has
drawn a lot of interests and is referred to as the blind source separation (BSS) research
field. The “blind” means that only the mixed signals are available while the source sig-
nals and the mixing process are all unknown. Based on different assumptions, many
algorithms have been proposed for the BSS problem. For instance, independent com-
ponent analysis (ICA) algorithms assume that source signals are mutually independent
and aim to maximize the independence between separated signals.1–5 The well-known
FastICA (Ref. 2) and InfomaxICA (Ref. 3) algorithms were developed using kurtosis
and mutual information as measurements of independence. These algorithms were
originally developed for the time-domain instantaneous mixing condition where sound
mixtures are linearly combined from individual sound signals. To deal with the
convolutive mixing condition, conventional ICA algorithms were modified to trans-
form signals from the time domain to the frequency domain to convert the time-
domain convolutive mixtures to the frequency bin-wise instantaneous mixtures. Such
an approach is referred to as the convolutive ICA (cICA). Although the idea is intui-
tive, certain problems such as permutation and amplitude scaling need to be carefully
addressed.4,5

Another approach to solve the BSS problem is the sparse component analysis
(SCA),6–8 which adopts the sparse assumption of speech signals to segregate sound
streams. A signal is called sparse when most of its values are zero or close to zero. The
property that the probability of two or more sparse sources being active simultaneously
is very low leads to a favorable condition for speech segregation. SCA algorithms
developed for the instantaneous mixing condition generally estimate the mixing matrix
by identifying the principal directions in the scatter plot. To deal with the convolutive
mixing condition, SCA algorithms also transform sound mixtures into the frequency
domain using short-time Fourier transform (STFT). Based on the sparse assumption of
spectrograms, SCA algorithms estimate the source index of each time-frequency (T-F)
unit and generate a binary mask to extract each sound stream. For example, the
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degenerate unmixing and estimation technique (DUET) estimates source indexes using
magnitude and phase differences between received spectrograms of sound mixtures.8

However, the binary mask would inevitably generate musical noise in separated sound
streams.

In this paper, we propose a frequency bin-wise nonlinear masking (NM) algo-
rithm to generate a non-binary mask to segregate sound streams with less musical
noise. Simulation results show our proposed algorithm outperforms cICA and DUET
in almost all test conditions. The rest of this paper is organized as follows. Back-
grounds of the convolutive mixing model and the sparse assumption are given in Sec.
2. Our proposed algorithm is described in detail in Sec. 3, and experimental results are
given in Sec. 4. We end in Sec. 5 with a conclusion and future works.

2. Mixing model and sparse assumption

Consider N source signals s1,…, sN and M received mixtures x1,…, xM in the time do-
main. The corresponding vector forms are written as an Nx1 vector s¼ [s1,…, sN]T and
a Mx1 vector x¼ [x1,…, xM]T. The instantaneous mixing model can be written as
x(t)¼As(t), where A is the MxN mixing matrix. The goal of conventional ICA algo-
rithms is to find a de-mixing matrix W such that W�A�1. In that case, the separated
signal y(t) can be written as yðtÞ ¼WxðtÞ ¼ ŝðtÞ.
2.1 Convolutive mixing

In real world environments, however, speech signals are mixed in a convolutive man-
ner due to reverberations. The convolutive mixing model is written as

xiðtÞ ¼
X

k

bikðtÞ � skðtÞ ¼
X

k

X1
d¼0

bikðdÞskðt� dÞ (1)

where * is the time domain convolution and bik(t) is the room impulse response meas-
ured from source k to microphone i. Equation (1) can be transformed to the frequency
domain using STFT so that convolutive mixtures become instantaneous mixtures in
each frequency bin xj (Refs. 4, 5):

Xðxj; tÞ ¼ BðxjÞSðxj ; tÞ (2)

where the capital letters stand for the Fourier domain representation of the signals in
lower case letters. Therefore, ICA algorithms for instantaneous mixing can be applied
to each frequency bin of convolutive mixtures. At the end, spectrograms of separated
signals can be obtained by assembling de-mixing results from all frequency bins.

2.2 Sparse assumption

If two time-domain signals are sparse, they are seldom active at the same time, and
their scatter plot would produce two orthogonal lines as shown in the left panel of Fig.
1. After applying the instantaneous mixing matrix A, the principal directions in the
scatter plot will change accordingly. Therefore identifying the principal directions in
the scatter plot is a typical SCA approach for separating instantaneous mixtures.

Speech signals are also assumed sparse in transformed domains by some SCA
algorithms. For example, the DUET assumes spectrograms of two speech signals are
W-disjoint orthogonal,8 i.e., for a given window function w(t), the supports of the win-
dowed Fourier transforms of s1(t) and s2(t) are disjoint. The STFT of si(t) is defined as

Siðx; sÞ ¼
X

t

siðtÞwðt� sÞe�jxt (3)

where s is the frame index in the time domain. The W-disjoint orthogonality can be
expressed as
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S1ðx; sÞS2ðx; sÞ ¼ 0; 8x; s; (4)

which says T-F units of spectrograms of s1(t) and s2(t) are not active simultaneously.

3. Proposed nonlinear masking algorithm

Without loss of generality, we describe our algorithm in segregating two sources from
two mixtures in this section. The algorithm can be extended to segregate multiple sour-
ces from two mixtures. First, the two mixtures are transformed into spectrograms
X1(x,t) and X2(x,t) using the 512-point STFT. The two magnitude spectrograms at
each frequency bin xj are then treated as a new set of mixtures, i.e.,
Zðxj; tÞ ¼ X1ðxj; tÞ

�� ��; X2ðxj; tÞ
�� ��� �

. As in cICA algorithm, the X1ðxj; tÞ
�� �� and X2ðxj; tÞ

�� ��
at frequency bin xj are now instantaneous mixtures. Moreover, based on the sparse
assumption of mixed spectrograms, there shall be only two principal directions in
the scatter plot of Z(xj,t) for the two sources. The nonlinear projection column
masking (NPCM) technique9 is used to detect principal directions in the scatter plot.

3.1 Principal direction detection using NPCM

For the frequency bin xj, the sample point at time instant t in the scatter plot can be
represented by the vector Zt, which is short for Z(xj, t). If the principal direction is a,
the projection length of the sample point Zt onto the direction vector a can be written
as yt ¼ Ztk k cos]ða;ZtÞj j, where ]ða;ZtÞ is the angle between a and Zt. Principal com-
ponent analysis (PCA) is then used to search a vector from all possible a such that
JðaÞ ¼ E½y2

t � is maximized. However, the chosen a using PCA might not be close to
the true principal direction due to interferences from far-away samples. To deal with
this problem, the NPCM technique was proposed to approximate true principal direc-
tions for instantaneously mixtures by masking any far-away samples.9

The NPCM technique modifies the projection length yt as
yt ¼ Ztk kf ðcos]ða;ZtÞÞ, where f �ð Þ is a nonlinear decaying function to mask samples
far away from the vector a. The exponential function f(r)¼ exp(�qr2) with q¼ 107 is
used in our algorithm. The following criterion is then considered to find the principal
direction a.

max
a

JðaÞ ¼
X

t

Ztk kf ðcos]ða;ZtÞÞ: (5)

The left panel of Fig. 2 shows an example of the scatter plot of Zt and the estimated
principal directions using q¼ 107. The right panel shows the trajectory of J(a), where
a¼ [cosu, sinu]T and u 2 ½0; p=2� is the angle between the principal direction and the
x-axis of the scatter plot. One can observe that the two principal directions correspond
to the two local maxima of the trajectory of J(a).

FIG. 1. (Color online) Scatter plots of sparse speech mixtures before (left panel) and after (right panel) the
time-domain instantaneous mixing. Obviously, principal directions encode the instantaneous mixing matrix.
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3.2 Nonlinear masking

According to the W-disjoint orthogonality property, only one source is assumed active
at each T-F unit of spectrograms. A reasonable approach would assume T-F units
close to a principal direction in the scatter plot belong to that specific sound source. In
other words, to extract a sound stream, we only need to synthesize T-F units close to a
particular principal direction vector a while mask other T-F units. However, the spec-
trogram built using the binary decision on “closeness” would inevitably produce musi-
cal noise as in all other binary mask algorithms, such as the DUET.

To diminish musical noise, a non-binary mask is generated based on measures
of the “closeness” of T-F units to a particular principal direction by a nonlinear func-
tion. The masking value of the T-F unit Zt to the source k at the frequency xj is for-
mulated as:

ukðxj; tÞ ¼ expð�j cos2
]ðak;ZtÞÞ (6)

where j serves as a masking constant, and the larger the j, the faster the exponential
function decays. The non-binary masking value uk becomes larger or smaller when Zt
is closer to or further away from ak. After calculating the masking function uk(xj, t),
we estimate the magnitude spectrogram of source k (k¼ 1, 2) at frequency xj by

Ŝkðxj; tÞ ¼ ukðxj ; tÞ � ZðkÞIP ðxj; tÞ (7)

where � represents the point-wise multiplication between matrices and ZðkÞIP ðx; tÞ is the
magnitude spectrogram of source k received by the ipsilateral ear. The ZðkÞIP ðx; tÞ is deter-
mined by

ZðkÞIP ðx; tÞ ¼
X1ðx; tÞj j if uk � p=4
X2ðx; tÞj j otherwise:

�
(8)

After assembling the target magnitude spectrogram from all frequency bins, the over-
lap-and-add method is applied to restore the magnitude spectrogram Ŝkðx; tÞ combined
with the original phase spectrogram received by the ipsilateral ear to sound ŝkðtÞ.

Figure 3 shows an original clean spectrogram and non-binary masks generated
for a sample convolutive mixing condition using j¼ 102, 104, and 106, respectively.
One can observe that the non-binary mask preserves fewer T-F units of the target sig-
nal when j is larger and the mask keeps more residue noise when j is smaller. In our

FIG. 2. (Color online) Detecting principal directions in a certain frequency bin of magnitude spectrograms of
sample convolutive speech mixtures. Left panel shows two principal directions superimposed on the scatter plot
of magnitude spectrograms with q¼ 107. Right panel shows the trajectory of J(a). The two principal directions
correspond to the two local maxima of the trajectory of J(a).
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algorithm, the parameter j is set to 104 to have a proper balance between target speech
distortion and residue noise in segregated speech streams. Discussions about the choice
of j are given in Sec. 4.

3.3 Permutation problem

The cICA or other frequency bin-wise methods need to deal with the permutation
problem by correctly assigning separated signals from each frequency bin to the target
source. Conventional approaches, such as considering direction-of-arrival (DOA) or
correlation across frequency bins, require extra computations and always show a
trade-off between robustness and correctness.10 In our proposed algorithm, the permu-
tation problem is fairly easy to deal with. Although the direction vectors a correspond-
ing to a particular speech source at all frequency bins may not be exactly the same,
they are actually quite similar across frequencies because they encode the spatial infor-
mation of that source. Therefore we only need to group T-F units associated with close
principal directions across frequency bins as from a specific speech source.

4. Experimental evaluations

To model sound mixtures perceived by listeners, we used HRTFs to simulate the con-
volutive mixtures of speech signals. The locations at the left, front, and right sides of
the head were assigned �90	, 0	, and 90	, respectively, in our simulations. In following
discussions, the (h1, h2) in degree is used to represent the locations of source 1 and
source 2. Rather than using the signal-to-interference ratio (SIR), we used the signal-
to-interference distortion ratio (SDR) as the performance measure. The SDR takes
both speech quality and suppression of interference into consideration, while the SIR
only considers suppression of interference.11 The SDR was defined as

SDR ¼ 10 log10
starget
�� ��2

einterf þ eartifk k2 (9)

where starget(t) is the estimated target source, einterf(t) is the interference from unwanted
sources, and eartif(t) indicates artificial noise (such as musical noise) induced by

FIG. 3. Original spectrogram of a sample speech and non-binary masks generated by the proposed algorithm
for different j.
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separation algorithms. Both s(t) and e(t) were decomposed from the segregated signal
ŝ tð Þ using the BSS_EVAL Toolbox.12

Four sentences (by 2 male and 2 female speakers) and another eight sentences
(by 4 male and 4 female speakers) were selected from the TIMIT database as source 1
and source 2, respectively. All sentences were extracted from different speakers of the
database. The average SDR of two segregated signals from all 32 mixing pairs at five
location settings are given in Table 1 for DUET, cICA, and the proposed NM algo-
rithm. We tested parameter j from 101, 102 to 109, and the overall averaged SDR
from all locations raised from 1 dB (j¼ 101), topped around 6 dB (j¼ 104) and
dropped to �3 dB (j¼ 109). Therefore, j was set to 104 in our simulations.

The results in Table 1 show the proposed NM method outperforms cICA and
DUET by a large margin in almost all test conditions except being 1 dB less than
cICA in the (30	, �30	) condition. It is worth noting that the second peak of magni-
tude and phase histograms in DUET analysis is weaker than the first peak such that
more artificial noise emerges in the second segregated speech stream and damages the
average SDR score. On the other hand, our proposed method with non-binary masks
achieves a better balance between speech quality and interference suppression for all
segregated sounds.

5. Conclusion

A frequency bin-wise nonlinear masking algorithm is proposed for speech segregation
in convolutive mixtures in this paper. Unlike the DUET, the proposed algorithm gen-
erates non-binary masks based on estimated “closeness” in the scatter plot to reduce
musical noise in segregated speech. Simulation results show SDR scores of the pro-
posed algorithm outperform scores of cICA and DUET in almost all test conditions.
However, our algorithm strongly depends on principal directions detected from fre-
quency bin-wise scatter plots. If too many sound sources are present or sound sources
are too close to each other, our algorithm would perform poorly due to the wrongly
estimated principal directions such as in the (�60	, �40	) test condition. However,
these conditions are also very difficult for other algorithms.

Our algorithm only utilizes magnitude spectrograms for speech segregation
while the DUET considers both magnitude and phase information of spectrograms. To
enhance the spatial resolution of our algorithm, phase cues will be considered in the
future.
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