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Abstract: Spectro-temporal modulations of speech encode speech
structures and speaker characteristics. An algorithm which distinguishes
speech from non-speech based on spectro-temporal modulation energies
is proposed and evaluated in robust text-independent closed-set speaker
identification simulations using the TIMIT and GRID corpora. Simula-
tion results show the proposed method produces much higher speaker
identification rates in all signal-to-noise ratio (SNR) conditions than the
baseline system using mel-frequency cepstral coefficients. In addition,
the proposed method also outperforms the system, which uses auditory-
based nonnegative tensor cepstral coefficients [Q. Wu and L. Zhang,
“Auditory sparse representation for robust speaker recognition based
on tensor structure,” EURASIP J. Audio, Speech, Music Process. 2008,
578612 (2008)], in low SNR (< 10 dB) conditions.
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1. Introduction

Many algorithms have been developed over the last two decades for speaker recogni-
tion applications. Briefly speaking, speaker recognition tackles two problems: speaker
identification and speaker verification.! Speaker identification is an M-ary testing prob-
lem, in which the identity of the speaker from M candidates is to be determined. In
contrast, speaker verification is a binary testing problem, in which the system accepts
or rejects a speaker’s claim of his/her identity. Conventional algorithms for these two
problems adopt short-term spectral features such as mel-frequency cepstral coefficients
(MFCCs) to build speaker models. These short-term spectral features basically encode
short-term smoothed spectral profiles. Systems using these features usually achieve
high recognition rates in clean and matched test conditions.> However, recognltlon
rates are significantly degraded in mismatched test conditions where speech is cor-
rupted by unknown convolutive or additive noise. Hence the robustness of speaker
recognition has drawn attentions from researchers.®> ¢ In the literature on the robust-
ness, speaker identification research usually considers additive noises in a single-session
(microphone) setup while speaker verification research usually considers the multi-
session variability.

It has been demonstrated that human hearing is very robust against noise in
many kinds of recognition tests. " Hence, it is intuitive to include properties of human
hearing in speech processing systems for potential performance enhancement, such as the
speaker identification systerns using auditory features.*> Meanwhile, the ideal binary
mask (IdBM) was proposed and multiplied to the noisy spectrogram to improve speech
intelligibility in various additive background interferences.”'® Not surprisingly, estimating
the IdBM became a feasible way to boost speech 1nte111g1b111ty perceived by human sub-
jects.'" However, the IdBM, which is derived from prior known local signal-to-noise
ratios (SNRs) of time-frequency (T-F) units of the noisy spectrogram, is not closely
related to hearing perception. Humans process sounds in time and frequency domains
simultaneously so that people are not affected seriously by pure temporal or pure spectral
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interferences. Both spectral contents and temporal behaviors of the sound are known
prominent identifying features to human hearing. In other words, dynamic spectral
shapes, which are presented by spectro-temporal (S-T) modulations of the spectrogram,
carry vital information of a sound. These S-T modulations encode structures of the
sound'>!® and are related to speech intelligibility such that objective speech intelligibility
measures can be derived by assessing degradations of these modulations.'* In this paper,
we propose a T-F mask based on perception-related spectro-temporal modulation ener-
gies (STMESs) to improve speaker identification rates in noisy environments.

Simulations in this paper were conducted in the setup of a single-session text-
independent speaker identification system using the TIMIT and GRID (Ref. 15) cor-
pora. Identification rates by applying the proposed mask are compared with rates from
systems using conventional MFCC features and the newly developed auditory-based
nonnegative tensor cepstral coefficient (ANTCC) features.” The rest of this paper is
organized as follows. A brief review of the S-T auditory model, which analyzes S-T
modulation energies, is given in Sec. 2. The STME based mask is then proposed in
Sec. 3. Performance evaluations for speaker identification are demonstrated in Sec. 4
and conclusions are given in Sec. 5 with discussions.

2. Auditory model and features

The S-T analytical auditory model consists of two computational modules.'? The first
module models the function of spectral analysis of the cochlea, and the second module
models the function of S-T modulation analysis of the auditory cortex (Al). A brief
review of the auditory model is given in this section and much more detailed descrip-
tions of both modules can be found in Ref. 12.

2.1 Cochlear module and auditory cepstral coefficients (ACCs)

This cochlear module models the peripheral auditory system. As described in Ref. 12,
the module is firstly comprised of a bank of 128 overlapping asymmetric constant-Q
(O3 g =~ 4) bandpass filters, which are evenly distributed over 5.3 octaves to reflect the
frequency selectivity of the cochlea. The output of each filter is fed into a non-linear
compression stage, a lateral inhibitory network (LIN), and an envelope extractor. The
non-linear compression stage models the high-gain saturation of inner hair cells and to-
gether with the LIN accounts for the frequency masking effect. In this paper, a simpli-
fied linear version which bypasses the non-linear compression stage is used. All tested
speech signals were normalized in advance to avoid the non-linear compression of hair
cells. Accordingly, outputs of this simplified linear module at various stages can be
written as

J’ch[ﬂfi} = SM *¢ h[l;fiL
Vinlt, fi] = Opyen(t. fil = yenlt, fi] = yen[t. fi-1], (1)
yab‘[tvfi} = max(y/m[t,fi}, 0) *q .u[[; ‘L'],

where s[7] is the input acoustic signal; A[z; f] is the impulse response of the ith con-
stant-Q filter with center frequency f;, i=1,..., 128; *, is the time-domain convolution;
verlt, fi 1s the output of the ith filter, and y,[¢, f7] is the corresponding output of the
LIN. The envelope extractor is implemented by a half-wave rectifier followed by a
low-pass filter, whose impulse response u[t;7] = e /7 - u[f] models the current leakage
along the neural pathway to the midbrain and u[f] is the unit step function.

The y,t, f], which is the final output of all cochlear filters and is referred to
as the auditory spectrogram, represents the T-F envelope/energy distribution of the
input sound. Similar to the deviation of MFCCs, auditory cepstral coefficients
(ACCIn]) are defined by taking the logarithm and then the discrete cosine transform
(DCT) on each frame of the auditory spectrogram as
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128
ACCln; 1] = log(yas(t, fi])cos (nn (i — %) /128) . 2)
i=1

-
2.2 Cortical module and rate-scale representation

The second module models the S-T selectivity of cortical neurons. In the auditory model,
the auditory spectrogram is further analyzed by Al neurons which are modeled by two-
dimensional filters tuned to different S-T modulation parameters, rate and scale.> The
rate parameter o (in Hz) depicts how fast/slow the energy of the auditory spectrogram
varies along the temporal axis. The scale parameter Q (in cycle/octave) characterizes how
broad/narrow the energy of the auditory spectrogram distributes along the log-frequency
(in octave) axis. In addition, these two-dimensional filters also tune to the upward or
downward sweeping direction of modulations. This direction selectivity is encoded by the
sign of the rate parameter (positive/negative for downward/upward direction). Therefore,
the four-dimensional output 7z, f, w, Q] of this cortical module can be formulated as

(.S 0, Q] = yas[t,f] #y STIR[t, [ 0,9, A3)

where STIR[t, f; ®, Q] is the joint two-dimentional impulse response of the direction
selective modulation filter tuned to @ and Q; and #, is the two-dimensional convolu-
tion in the time and log-frequency domains. More detailed formulations of the STIR[t,
1 o, Q] are available in Ref. 12.

The local energy of the four-dimensional output is then computed as

Elt.f,0,9Q] = |r[t,f, 0, Q] + jH[r[t.f, ®, Q]| (€))]

where H|-| is the Hilbert transform along the log-frequency axis. Therefore, for any T-
F unit in an auditory spectrogram, the E[w, Q; z, f], which is referred to as the rate-
scale representation, displays local modulation energies pertaining to different combi-
nations of parameters (w, Q). As shown in Fig. 1, the left panel demonstrates a sample
auditory spectrogram and right panels are corresponding rate-scale representations of
the two T-F units indicated by “x” in the auditory spectrogram. Evidently, these two x
units have local modulations dominated around {4-16Hz, 2-4 cycle/octave, upward}
and {4 Hz, 1-4 cycle/octave, downward}, respectively. Briefly speaking, the dominant
rate represents the local speaking rate and the dominant scale characterizes the local
harmonic spacing of the T-F unit.

3. Spectro-temporal modulation energy based T-F mask

We have shown that joint S-T modulations less than 32 Hz and 4 cycle/octave are highly
associated with speech structures such that objective speech intelligibility measures can
be derived based on degradations of these modulations.'* In contrast, white noise
strongly activates higher rates (> 64 Hz) and higher scales (2-8 cycle/octave) as shown in
Ref. 16. It indicates that modulations of speech are mostly smoother than modulations
of white noise along the time and the log-frequency axes. In this paper, the spectro-
temporal modulation parameter space @ = {(w,Q) : 8 < |w| < 32,1 < Q < 4} is consid-
ered critical in detecting speech. Scales within the range of 1 < Q < 4 (cycle/octave) pro-
vide high frequency resolution to detect harmonic structures of speech while rates within
the range of 8 < |w| < 32 (Hz) offer high temporal resolution to detect onsets/offsets of
speech. Accordingly, a T-F mask M, 1] is proposed by calculating the critical STME to
distinguish speech from non-speech unit by unit. The mask is formulated as

M[Zia.];] - 17 if Z EI:(})7 Q’ thj"] Z Jdmax Z E[CO, Q’ t,f] 7 (5)

(0.0)€0 Y\ (waeo
n, else,
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Fig. 1. Rate-scale representation of the cortical module. The left panel shows the auditory spectrogram of a
sample utterance “one three” and right panels demonstrate corresponding rate-scale representations of the two
T-F units marked by “X.” Evidently, the T-F unit around 250 ms has modulations dominated around 4-16 Hz,
2-4 cycle/octave with the upward direction. The other T-F unit around 800 ms has strong modulations around
4 Hz, 1-4 cycle/octave with the downward direction.

where ¢ acts as a simple threshold on the STME and 5 as a floor parameter. The val-
ues of these two parameters were determined by a pilot simulation as described in
Sec. 4. The masked auditory spectrogram is then produced by multiplying the mask
M[t, f] to the original noisy auditory spectrogram. Finally, ACCs are extracted from
the masked auditory spectrogram for robust speaker identification.

4. Experimental evaluations

In this section, we demonstrate speaker identification rates from our proposed method
and compare with rates from systems using MFCCs and ANTCCs. The ANTCCs,
which are extracted from the higher-order tensor structure of the cochlear power feature
of different speakers, were proposed and shown in Ref. 5 outperforming other two com-
monly used features, linear predictive cepstral coefficients (LPCCs) and RASTA percep-
tual linear predictive (RASTA-PLP) coefficients,'” in speaker identification simulations.
In the cited research,’ the cochlear power feature was very similar to the auditory spec-
trogram used in our method and noise was removed as minor components in the tensor
space. From the functional point of view, the cited research and our proposed method
are similar in the way that noisy speech is first represented by an auditory spectrogram
then enhanced by a noise reduction mechanism. Hence, we followed the experimental
settings in Ref. 5 and compared our identification results with their results.

Two speech corpora, TIMIT and GRID, were used in our simulations. The
TIMIT corpus contains clean speech spoken by 630 speakers. As in Ref. 5, 70 speakers
were randomly selected from the train folder of TIMIT for evaluations. The first eight
utterances and the remaining two utterances per speaker were used as the training and
the test sets, respectively. In the GRID corpus, 1000 three-second phrases are spoken by
each of the 34 speakers (18 males and 16 females). As in Ref. 5, 50 and 60 sentences per
speaker were randomly selected as the training and the test sets. As suggested in Ref. 4,
30 ACCs (excluding the Oth coefficient) per frame were used as our feature vector. The
cepstral mean subtraction (CMS) was also adopted for feature normalization.
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To focus on evaluating our proposed method, the simple conventional speaker
identification algorithm of using Gaussian mixture model (GMM) was considered
rather than some sophisticated recognizers. The GMM uses a finite number of multi-
variate Gaussian functions to approximate the observed probability density function
(PDF) of features of a speaker. With its simplicity, fast convergence and good per-
formance, the GMM has become the default reference recognizer in most speaker iden-
tification systems. In our system, clean speech was used to build a 32-mixture GMM
for each speaker and three types of noises (factory, pink and white) from Noisex-92
database were added in a wide range of SNRs (0, 5, 10, and 15dB) for test. In addi-
tion, the speaker adaptation technique of using a universal background model'®
(UBM) was also considered in our simulations. The UBM, a large GMM constructed
from a large amount of speech signals, is usually set with 256-2048 mixtures based on
the size of the training data. Lower numbers of mixtures are often used in applications
with constrained speech (such as digits or a fixed vocabulary), while 2048 mixtures are
more suitable for applications with unconstrained speech (such as the spontaneous
speech). In our simulations, a 256-mixture UBM was built using the “sal” and “sa2”
sentences (fixed vocabulary) from all 630 speakers of the TIMIT corpus. The model of
each speaker was then derived by adapting parameters of the UBM using his/her train-
ing speech signals via the maximum a posteriori estimation technique. In our imple-
mentations, the relevance factor, which can be viewed as an adaptation coefficient, was
fixed to 16 and only the mean of individual GMM speaker model was adapted as sug-
gested in Ref. 18. Detailed formulations and implementations for GMM and UBM
can be found in Ref. 18.

To determine the threshold 6 and the floor parameter # in Eq. (5), a pilot sim-
ulation was conducted using GRID corpus data. Speaker identification rates by our
proposed method with various parameter settings in additive pink noise are presented
in Table 1. It can be observed that a larger ¢ (= 0.35) is preferred for lower SNR con-
ditions (5 and 0dB) but detrimental to higher SNR conditions (15 and 10dB). There-
fore, the two parameters were empirically selected as  =0.3 and n=0.3 to have better
performance under high SNR conditions in our simulations.

Speaker identification rates using MFCCs (the baseline), our proposed ACCs,
ACCs with the STME mask (STME_ACC), the STME_ACC with the UBM speaker
adaptation technique (STME_ACC_UBM), and the ANTCCs from Ref. 5 are pre-
sented in Table 2 for speech samples from the TIMIT and the GRID corpora. Identifi-
cation rates of using the TIMIT and the GRID corpora are listed on the left and right
sides of the slash, respectively. The highest identification rate in each test condition is
in boldface. From these test results, one can observe (1) ACCs significantly outperform
MFCCs in all test conditions; (2) identification rates are higher using the GRID corpus
than using the TIMIT corpus in almost all tests due to the fact that more training data
are available for each of the fewer target speakers in the GRID corpus; (3) the
STME_ACC produces higher identification rates than ACCs except in the 0 dB GRID
corpus condition; and (4) adopting the speaker adaptation technique further improves

Table 1. Speaker identification rates (in %) in additive pink noise with different ¢ and » parameters using
GRID data.

0=0.25 0=0.3 0=0.35

15dB 10dB 5dB 0dB 15dB 10dB 5dB 0dB 15dB 10dB 5dB 0dB

n=0.5 90.8 82.2 548 250 90.9 81.2 59.0 228 85.7 74.2 546 134
n=0.3 91.7 82.7 50.2 146 90.5 81.5 60.6  19.7 85.9 74.6 573 319
n=0.1 90.2 80.4 302 6.86 89.6 83.8 637 174 85.4 78.3 67.5 41.7
n=0.01 88.0 78.0 239 343 90.1 83.5 663 9.41 85.5 81.6 758  52.0
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Table 2. Speaker identification rates (in %) of 70 speakers (140 sentences) from TIMIT corpus and of 34 speak-
ers (2040 sentences) from GRID corpus.

Noise MFCC ACC STME_ACC STME_ACC_UBM ANTCC
type SNR  TIMIT/GRID TIMIT/GRID TIMIT/GRID TIMIT/GRID TIMIT/GRID
Factory 0dB 2.86/5.69 6.43/20.3 11.4/12.3 16.4/45.7 2.43/8.82
5dB 11.4/24.5 27.9/52.3 57.1/55.8 62.1/80.6 12.9/44.6
10dB 32.9/51.7 52.9/73.6 75.0/84.5 85.0/90.3 49.5/87.8
15dB 65.0/73.3 82.1/86.3 85.0/89.7 92.1/92.8 78.1/97.6
Pink 0dB 2.86/5.83 4.29/22.5 12.1/19.7 10.0/42.0 2.43/9.31
5dB 5.00/22.6 18.6/47.9 45.0/60.6 56.4/80.9 13.8/45.1
10dB 21.4/48.0 42.1/70.8 64.3/81.5 78.6/89.4 51.0/87.8
15dB 46.4/69.1 73.6/83.9 80.0/90.5 88.6/92.8 78.6/95.6
White 0dB 2.86/8.92 11.4/32.1 12.1/19.7 15.0/46.2 2.86/10.3
5dB 10.0/27.5 20.7/40.2 37.9/45.8 52.1/74.6 3.81/38.2
10dB 18.6/38.6 34.3/55.5 51.4/72.7 68.6/84.6 29.5/69.6
15dB 36.4/52.2 51.4/72.3 67.9/83.3 83.6/88.9 64.3/95.6
clean 100/100 98.6/95.7 98.6/94.1 98.6/95.0 97.6/100

performance of STME_ACC. Comparing with results in Ref. 5, the STME_ACC sig-
nificantly outperforms ANTCCs in all test conditions using TIMIT data and in low
SNR conditions (<5dB) using GRID data. However, ANTCCs performs the best in
15dB conditions using GRID data. A possible reason is that a more distinctive tensor
space was constructed for ANTCCs when dealing with speech samples with higher
SNRs from the GRID corpus, which contains more training utterances for each of the
fewer target speakers.

5. Conclusion and discussions

Human hearing is not only sensitive to spectral contents of a sound, but also to
dynamic changes of its frequency components. Such joint S-T properties are very im-
portant to speech perception. For instance, the pitch track is strongly emphasized
when analyzing the prosody of speech and is considered a vital cue to speech emotions.
In this paper, we propose an algorithm to estimate each T-F unit of the noisy auditory
spectrogram as either speech or non-speech by assessing its STME. Unlike conven-
tional frame-by-frame energy-based voice activity detection algorithms, which distin-
guish speech from non-speech by the total energy per frame, our proposed method
detects speech by measuring the energy of critical S-T modulations of each T-F unit.
A cleaned auditory spectrogram can then be generated by applying the unit-by-unit
speech activity mask and is shown to provide robust ACC features to enhance speaker
identification rates especially in low SNR test conditions.

In our proposed method, two parameters, the threshold ¢ and the floor param-
eter 77, are involved in generating the STME based mask. As shown in Table 1, these
two parameters roughly bear the tradeoff between the amounts of speech distortion
and the residue noise.

Therefore, the optimal selection of the parameter values should be SNR-
dependent. Estimating the SNR of the test signal to adopt corresponding optimal pa-
rameter values will be pursued in the future. In addition, the proposed T-F mask
would inevitably create discontinuities in the cleaned auditory spectrogram along the
time and the log-frequency axes. The discontinuities along the log-frequency axis are
smoothed by the DCT in Eq. (2) and those along the time axis are not detrimental to
performance since temporal trajectories of parameters are seldom considered in speaker
identification systems. In contrast, for speech recognition applications, where the
temporal trajectory is critical to system performance, a missing-data reconstruction
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algorithm similar to the one in Ref. 19 is needed to estimate missing T-F units from a
pre-trained clean speech model. Incorporating the STME based mask in speech recog-
nition systems is another one of our future interests.
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