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Abstract—This paper investigates transmit antenna selection
for linearly precoded multiuser multiple-input–multiple-output
(MU-MIMO) systems. First, in some precoded single-user MIMO
systems, using all transmit antennas does not always lead to the
best performance due to ill-conditioned channel matrices. This
condition motivates us to investigate whether a similar result can
be obtained in MU-MIMO systems. Based on the derived analyti-
cal results, we found that, for a given number of transmit antennas,
decreasing the number of active transmit antennas [number of
radio frequency (RF) units] always degrades system performance
in the linearly precoded MU-MIMO systems. However, in practi-
cal systems, RF units are expensive. To reduce the hardware cost,
antenna selection is usually used to reduce the number of RF units.
Thus, we further analyze the performance loss due to transmit
antenna selection (TAS). These analytical results provide good
design references for using TAS in practical systems. Moreover,
based on the analytical results, we proposed several simple TAS
algorithms for linearly precoded MU-MIMO systems. Complexity
analysis and simulation results show that the computational com-
plexity of the proposed algorithms can significantly be reduced,
whereas the performance is still comparable with the optimal
selection scheme. As a result, the analyzed results enable us to
better understand how TAS affects the MU-MIMO systems. In
addition, the proposed algorithms make TAS more feasible to be
used in practical systems.

Index Terms—Minimum mean square error (MMSE), multi-
user multiple-input–multiple-output (MU-MIMO) linear precod-
ing zero-forcing (ZF), transmit antenna selection (TAS).

I. INTRODUCTION

MULTIPLE-INPUT–multiple-output (MIMO) techniques
are widely used in wireless communications to achieve

high throughput [1], [3]. For single-user transmission with MT

transmit antennas at the base station (BS) and MR receive
antennas at the mobile station (MS), the capacity gain is known
to be roughly min{MT ,MR} times of signal-input–single-
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output (SISO) systems [1], [2]. Recently, multiuser MIMO
(MU-MIMO) systems have attracted extensive attention. In
downlink MU-MIMO systems, the BS simultaneously trans-
mits signals to several MSs using the same frequency band;
the desired signals for one user hence lead to interference
to other users. Such interference seriously degrades system
performance. Hence, research has been conducted to mitigate
interference and maximize transmission capacity for downlink
MU-MIMO systems; for example, see [4]–[6].

Dirty paper coding (DPC) was shown to achieve the sum
capacity of downlink MU-MIMO channels [7], [9]–[11]. How-
ever, implementing DPC may be difficult in practical systems
due to its high complexity of coding procedure. Thus, several
linear precoding schemes that can nearly achieve the perfor-
mance of DPC have been proposed for offering reasonable
tradeoffs between complexity and performance. Beamforming
(BF) is a popular linear precoding [4]–[6], [22], [23]. In [23],
the authors designed BF vectors from an orthogonal codebook
to maximize the received signal-to-interference-plus-noise ratio
(SINR) for each data stream. However, for finite users, or-
thogonal BF cannot completely eliminate the interference; the
residual interference hence limits the capacity. This problem
cannot be solved, even if we increase the transmit power.
Several solutions were proposed for this issue. For example,
zero-forcing (ZF) precoding in [22] chooses the precoding
vectors to mitigate interference among users. However, if some
users’ channel conditions are strongly correlated, the received
power of certain users will be small due to the use of ZF
precoding [22]. Hence, when the total transmit power is small,
some users suffer from low receive signal-to-noise ratio (SNR).
Therefore, compensation for transmit power is required to
maintain satisfactory performance for these users. In receiver
design [12], the minimum-mean-square-error (MMSE) scheme
can be used to mitigate noise enhancement. Similarly, MMSE
precoding performs similar to transmit matched filter to enlarge
the receive signal power in the region of low transmit power
[13] and can be used to improve system performance.

In addition to the aforementioned precoding methods, se-
lection diversity is another popular solution for increasing the
receive SINR in MIMO communications. Antenna selection
is a common form of selection diversity, and much related
research has been studied in single-user MIMO systems, either
at the transmitter or the receiver [14]–[18]. A comprehensive
overview of MIMO antenna selection techniques was provided
in [28] and [29]. In [15], antenna selection was proposed that
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minimizes the error rate for spatial multiplexing systems. Opti-
mal and suboptimal receive antenna selection algorithms were
proposed in [17] and [18] to maximize capacity for spatial mul-
tiplexing systems. However, in downlink MU-MIMO channels,
each user may not obtain channel information of other users,
and the techniques used in single-user communications cannot
directly be applied. Because precoding can be used to maximize
the receive SINR or mitigate interference from other users,
combining precoding and selection techniques could be a good
solution for improving performance in MU-MIMO systems.
With a large number of users [21]–[24], the BS can select
users with favorable channel conditions to improve system
throughput due to multiuser diversity [19], [20]: a selection
diversity among users. Moreover, orthogonal BF [23] and ZF
precoding [22] were shown to be asymptotically optimal in
terms of capacity when the number of users tends to infinity.

Similar to user selection, transmit antenna selection (TAS)
can be used in multiuser environments, that is, we can let the
number of transmit antennas of a BS be larger than the number
of radio frequency (RF) units. Then, an appropriate transmit
antenna set is determined to achieve selection diversity; for
example, see [26]. In [26], several design criteria for select-
ing transmit antennas in MU-MIMO systems are proposed.
However, these designs demand exhaustive search to find the
best antenna set, and the computational complexity is usually
extremely high. Moreover, although the performance of TAS
has extensively been studied for single-user MIMO systems (for
example, see [8] and [28]), little research has been conducted
to analyze how TAS affects the MU-MIMO systems. These
conditions motivate us to analyze the performance of TAS
in MU-MIMO systems and propose low-complexity antenna
selection algorithms with only slight performance degradation
for MU-MIMO systems.

In this paper, we analyze the performance of TAS for ZF and
MMSE precoded MU-MIMO systems, respectively. The theo-
retical result shows that, if the BS adopts equal transmit power
for all users, decreasing the number of active transmit antennas
always degrades the performance (sum throughput performance
for ZF precoding and MSE performance for MMSE precoding).
Note that this result stands contrary to other precoding systems
in [14] and [31]. In [14] and [31], respectively, it is shown that
using all transmit antennas does not always lead to the maxi-
mum throughput [14] in single-user MIMO systems and equal
gain BF systems, because some transmit antennas may cause
ill-conditioned matrices; in this case, removing these antennas
and redistributing the power to the selected antennas result in
higher throughput. Moreover, because decreasing the number of
active transmit antennas always leads to a performance loss, we
further analyze this performance loss and derive an upper bound
of the sum throughput loss for selecting transmit antennas in
ZF-precoded MU-MIMO systems. The derived upper bound
is quite close to the simulation result for a moderately high
SNR. The simulation result matches the upper bound when the
SNR tends to infinity. As a result, the derived upper bound
may provide a good design reference for trading the number
of RF units and the system performance in ZF-precoded MU-
MIMO systems. For MMSE precoding, directly analyzing the
sum throughput is difficult. As an alternative, we use the mean-

square-error (MSE) criterion instead of the sum throughput
criterion to analyze the system performance. Simulation result
shows that using the MSE or sum throughput criterion to
select transmit antennas leads to nearly the same performance.
Similar to ZF precoding, we show that removing active transmit
antennas always increases the MSE. Furthermore, based on
the derived theoretical results, we propose several transmit
selection algorithms for linearly precoded MU-MIMO sys-
tems. Complexity analysis and simulation results show that
the computational complexity can greatly be reduced from
exponential order to polynomial order, whereas the throughput
loss is within only 5% of the overall sum throughput. Finally,
simulation results are provided to show the advantages of the
proposed TAS algorithm. The simulation results corroborate the
theoretical results.

This paper is organized as follows. In Section II, we intro-
duce the system model. In Section III, we review the ZF and
MMSE linear precoding approaches in MU-MIMO systems. In
Section IV, we give the performance analysis of using TAS
in linearly precoded MU-MIMO systems. Several fast TAS
algorithms are proposed in Section V. Complexity analysis
and comparison are provided in Section VI, and simulation
results are demonstrated in Section VII. Conclusions follow in
Section VIII.

Notations: All vectors are in lowercase boldface, and matri-
ces are in uppercase boldface. (·)T , (·)H , and (·)† denote the
transpose, conjugate transpose, and pseudoinverse of a matrix,
respectively. X(i,j) denotes the element in the ith row and
jth column of a matrix X. Diag{x1, x2, . . . , xn} is an n × n
diagonal matrix, with the elements being x1, x2, . . . , xn. tr(·)
is the trace of a square matrix. E{·} denotes the expectation.
‖ · ‖ is the Euclidean vector norm. |S| is the size of set S.

II. SYSTEM MODEL OF DOWNLINK MULTIUSER

MULTIPLE-INPUT–MULTIPLE-OUTPUT CHANNELS

The block diagram of a downlink MU-MIMO system with
MT transmit antennas and K users is shown in Fig. 1. The BS is
equipped with MF RF transmission units. Assume K ≤ MF ≤
MT . Each user has one receive antenna so that the total number
of receive antennas is K. Let xk be the transmitted symbol of
the kth user, with E{|xk|2} = 1. xk is first multiplied by

√
pk,

where pk represents the transmission power allocated to the kth
user. Then, it is passed to an MF × 1 precoding vector wk. The
signals for all K users after precoding are summed to form
an MF × 1 vector s. The vector s is passed to MF RF units
and then transmitted to a MIMO channel through the selected
antennas. The MIMO channel is assumed to be quasistatic and
flat with Rayleigh distribution. Let H = [h1 h2 · · ·hMT

] be
the K × MT MIMO channel, where the K × 1 vector hi is
the channel vector that corresponds to the ith transmit antenna.
Due to the use of TAS, i.e., selecting MF from MT antennas,
the effective MIMO channel is a K × MF matrix given by
HS = [h̃T

1 ; h̃T
2 ; · · · ; h̃T

K ], where the subscript S is an antenna
set of MF selected transmit antennas, and HS is a submatrix
of H, obtained by selecting MF columns from H; the 1 × MF

vector h̃T
j is the jth row of HS , representing the channel vector



1700 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 4, MAY 2012

Fig. 1. Downlink MU-MIMO system with TAS.

of the selected transmit antenna set from the BS to the jth user.
The received signal yk for the kth user is given by

yk = h̃T
k

√
pkwkxk + h̃T

k

K∑
l=1,l �=k

√
plwlxl + nk (1)

where nk is the noise of the kth user that has independent and
identically distributed (i.i.d.) complex Gaussian distribution
with zero mean and variance σ2 (assume that all users have the
same noise statistic). The second term of (1) represents the in-
terference from other users. Let WS = [w1 w2 · · ·wK ] be the
MF × K precoding matrix for all users. Then, the relationship
between the transmitted symbol vector x = [x1 x2 · · ·xK ]T

and the received symbol vector y can be expressed as

y = HSWSPSx + n (2)

where PS = diag{√p1,
√

p2, . . . ,
√

pK} is the K × K power
allocation matrix, and n = [n1 n2 · · ·nK ]T is the noise vector
with covariance matrix Rn = σ2I. We assume that the channel
information of all users is perfectly known to the BS.

III. REVIEW OF LINEAR PRECODERS IN MULTIUSER

MULTIPLE-INPUT–MULTIPLE-OUTPUT SYSTEMS

Let us review two popular linear precoders for the precoding
matrix WS , i.e., the ZF and the MMSE precoders, and their
performance.

A. ZF Precoding and Its Performance

In ZF precoding [22], the precoding vectors are designed to
completely cancel the interference that arose from other users,
i.e., determining wl so that h̃T

k wl = 0 for ∀l �= k. To achieve
this interference-free property, WS can be designed as the
pseudoinverse of HS , i.e.,

WS = H†
S = HH

S
(
HSHH

S
)−1

. (3)

Based on (3), HSWS = I. The sum throughput using ZF
precoding is then given by

RZF = log
(

det
(
I +

1
σ2

P2
S

))
s.t. tr

(
WSP2

SW
H
S

)
≤ P

(4)

where P is the constraint of the total transmit power. Assume
that the transmit power of all users is equal. That is, pk =

βZF = P/tr(WH
S WS) for k = 1, . . . ,K. Then, the power

matrix PS =
√

βZFI, and (4) becomes

RZF = K log
(

1 +
βZF

σ2

)
. (5)

ZF precoding makes all individual users enjoy the
interference-free property. The transmission for each user can
thus be treated as a single-user system in multiple-input–single-
output channels. However, if some users are with serious fading
channels, i.e., channel gains ‖hk‖ are small for some k, the
elements of WS in ZF precoding tend to be large to compensate
for the serious channel fading. This condition deteriorates the
throughput RZF, because the scaling factor βZF is small.

B. MMSE Precoding and Its Performance

MMSE precoding may be used to overcome the drawback of
ZF precoding. Similar to the well-known MMSE receiver, we
can apply MMSE precoding at the transmit side [13]. Based on
(1), the MMSE precoder designs the precoding matrix such that
the MSE is minimized, i.e.,

min
WS

K∑
k=1

∣∣∣xk − yk/E(k,k)
S

∣∣∣2 (6)

where E(k,k)
S is the kth diagonal element of matrix HSWSPS .

Based on (1) and (2), E(k,k)
S =

√
pkh̃T

k wk. In addition to the
channel-state information, to solve (6), the BS is assumed to
know the covariance matrix of noise Rn. The MMSE precoding
matrix is given by

WS =
(
HH

S HS +
tr(Rn)

P
I
)−1

HH
S . (7)

Similar to ZF precoding, equal transmit power for all users
is assumed for MMSE precoding in our discussion, i.e.,
PS =

√
βMMSEI; βMMSE is a scaling factor that is deter-

mined by the power constraint P given by [13] βMMSE =
P/tr((T−1

S HH
S )H(T−1

S HH
S )), where

TS = HH
S HS +

tr(Rn)
P

I. (8)

The throughput of using MMSE precoding with equal user
power is expressed as (see [13])

RMMSE =
K∑

k=1

log(1 + SINRk) (9)

where SINRk represents the SINR of the kth user, which is
given by

SINRk =
βMMSE

∥∥∥h̃T
k wk

∥∥∥2

∑K
j=1,j �=k βMMSE

∥∥∥h̃T
k wj

∥∥∥2

+ R(k,k)
n

. (10)
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IV. PERFORMANCE ANALYSIS OF USING

TRANSMIT ANTENNA SELECTION IN

LINEARLY PRECODED MULTIUSER

MULTIPLE-INPUT–MULTIPLE-OUTPUT SYSTEMS

In single-user MIMO systems, using all transmit antennas
does not always lead to the best performance [14] and [31].
The reason is that some transmitting branches may cause ill-
conditioned matrices; in this case, removing these antennas
and redistributing the power to the selected antennas result in
better performance. In MU-MIMO systems, we are interested
to know how TAS affects the performance of linearly precoded
MU-MIMO systems. In this section, we theoretically prove that
removing transmit antennas from linear precoded MU-MIMO
systems always degrades the performance. The upper bound of
the performance degradation due to removing transmit antennas
is also derived.

A. Performance Analysis for ZF Precoding

In MU-MIMO systems with ZF precoding, the sum through-
put of all users is usually used as the design criterion. Thus,
we analyze how the sum throughput varies due to TAS. The
following three lemmas are needed before reaching the main
conclusion.

Lemma 1: Let H = [H1 H2], where HHH and H1HH
1 are

both nonsingular. We have(
H1HH

1

)−1
= Q + QH2

(
I − HH

2 QH2

)−1
HH

2 Q (11)

where Q = (HHH)−1.
Proof: Because H = [H1 H2], HHH = H1HH

1 +
H2HH

2 . Using (12) [30], we have

(Z+UVH)−1 =Z−1−Z−1U(I+VHZ−1U)−1VHZ−1. (12)

The inverse of (H1HH
1 ) can be rewritten as(

H1HH
1

)−1
=

(
HHH − H2HH

2

)−1

=Q + QH2

(
I − HH

2 QH2

)−1
HH

2 Q.

�
Lemma 2: For any matrix A ∈ C

m×n with rank(A) = m,
it satisfies

tr
(
QAc

(
I − AH

c QAc

)−1
AH

c Q
)

> 0 (13)

where Q = (αI + AAH)−1, α ≥ 0 is a constant, and Ac is an
m × k matrix, with its columns chosen from the columns of A,
for 1 ≤ k ≤ (n − m).

Proof: See Appendix A. �
Lemma 3: Let S and S′ be two transmit antenna

sets in ZF-precoded MU-MIMO systems, where S ⊂ S′ ⊆
{1, 2, . . . ,MT }. Let S̄ = S′ − S. Then, the difference of
the sum throughput between these two sets, i.e., RD(S̄) =
R(S′) − R(S), is given by

RD(S̄) = K log

×
(

1 +
SNR · tr(ΛS̄)

(tr(QS′)2 + tr(QS′)(SNR + tr(ΛS̄))

)
> 0 (14)

where QS′ = (HS′HH
S′)−1, SNR = P/σ2, and ΛS̄ =

QS′HS̄(I − HH
S̄ QS′HS̄)−1HH

S̄ QS′ .
Proof: See Appendix B. �

Now, we are ready to introduce how TAS affects the system
performance in the following theorem.

Theorem 1: Let the transmit power constraint and the num-
ber MT of transmit antennas be fixed. Then, the maximum
achievable sum throughput is monotonically increasing with the
number MF of active transmit antennas in ZF precoded MU-
MIMO systems, where MF ≤ MT . That is, let the two transmit
antenna sets Sopt1 and Sopt2 be two subsets of {1, 2, . . . ,MT }
so that they lead to the maximum sum throughput for MF =
|Sopt1| and MF = |Sopt2|, respectively. We have

R(Sopt1) < R(Sopt2), if |Sopt1| < |Sopt2|. (15)

Proof: See Appendix C. �
Theorem 1 shows the fact that the maximum sum through-

put always decreases after removing transmit antennas. Thus,
we may regard RD(S̄) as throughput loss due to removing
antennas.

Now, we would like to derive an upper bound for the through-
put loss in the following lemma and theorem.

Lemma 4: If a function f of x is given by

f(x) = log
(

1 +
ax

b2 + b(a + x)

)
, for a, b ∈ R

+ (16)

then f(x) is monotonically increasing with x when x > 0.
Proof: The first derivative of f(x) is

df(x)
dx

=
1

1 + ax
b2+b(a+x)

(
ab(a + b)

(b2 + b(a + x))2

)
> 0, for x > 0

which completes the proof. �
Theorem 2: For the antenna set S̄ = S′ − S, where S ⊂

S′ ⊆ {1, 2, . . . ,MT }, the throughput loss RD(S̄) in Lemma
3 is monotonically increasing with the SNR and can be upper
bounded by

RD(S̄) ≤ K log

(
1 +

tr(ΛS̄)

tr
(
HS′HH

S′
)−1

)
. (17)

Moreover, RD(S̄) approaches this bound when the SNR tends
to ∞.

Proof: See Appendix D. �
Note that the bound does not depend on the SNR. According

to Theorem 2, for any given transmit antenna set, we can
upper bound the corresponding sum throughput loss. Later
simulation result shows that, when SNR > 20 dB, the simulated
throughput loss matches this bound very closely. As a result,
this proposed bound provides a useful design reference for
TAS in ZF-precoded MU-MIMO systems. For example, the
designers could use this bound to determine the number of RF
elements MF and the corresponding performance loss; then, a
good tradeoff can be made between hardware complexity and
system performance.
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B. Performance Analysis for MMSE Precoding

Similar to ZF-precoded systems, we would like to investigate
how the TAS affects MMSE-precoded MU-MIMO systems.
However, it is difficult to obtain a closed-form solution of the
sum throughput loss caused by removing transmit antennas in
MMSE precoding systems. Fortunately, based on the simulation
results, we know that the resulting sum throughput that was
obtained by the maximum sum throughput criterion in (9) is
almost the same as the one obtained by the MMSE criterion
in (6); similar observation was also found in [25]. Thus, we
use the MSE criterion instead of the sum throughput criterion
to analyze the performance of TAS. More specifically, refer-
ring to (6), TAS attempts to find the transmit antenna set S
such that the MSE of MMSE-precoded MU-MIMO systems is
minimized, i.e.,

min
S

min
WS

K∑
k=1

∣∣∣xk − yk/E(k,k)
S

∣∣∣2. (18)

For a channel matrix HS , the MSE of the MMSE precoder has
been shown to be [13]

δ(S) = tr
[(

αI + HSHH
S

)−1
]

(19)

where α = tr(Rn)/P . Therefore, if the design criterion is
MSE, the desired transmit antenna set Sopt is determined by

Sopt = arg min
S

δ(S). (20)

Now, we show that the MSE in (19) is monotonically decreasing
with the number of active transmit antennas in the following
theorem.

Lemma 5: In MMSE-precoded MU-MIMO systems, for
two transmit antenna sets S and S′, where S ⊂ S′ ⊆
{1, 2, . . . ,MT }, the MSE difference between these two sets is

δD(S̄) = δ(S′) − δ(S)

= − tr
(
AS′HS̄

(
I − HH

S̄ AS′HS̄
)−1

HH
S̄ AS′

)
< 0 (21)

where we define AS′ = (αI + HS′HH
S′)−1 and S̄ = S′ − S.

Proof: See Appendix E. �
Theorem 3: Let the transmit power constraint and the num-

ber MT of transmit antennas be fixed. Then, the MMSE is
monotonically decreasing with the number MF of active trans-
mit antennas in MMSE-precoded MU-MIMO systems, where
MF ≤ MT . That is, let the two transmit antenna sets Sopt1 and
Sopt2 be the subsets of {1, 2, . . . ,MT } so that they lead to the
MMSE for MF = |Sopt1| and MF = |Sopt2|, respectively. We
have

δ(Sopt1) > δ(Sopt2), if |Sopt1| < |Sopt2|. (22)

Proof: See Appendix F. �

V. PROPOSED TRANSMIT ANTENNA

SELECTION ALGORITHMS

Based on the analytical results, we propose TAS algorithms
for linearly precoded MU-MIMO systems in this section.

A. TAS for ZF Precoding

According to Lemma 3 and Theorem 1, the sum throughput
always decreases if TAS is used. In addition, we regard this
decrease as throughput loss. Hence, the optimal TAS that max-
imizes the sum throughput is equivalent to TAS that minimizes
the throughput loss. That is, the optimal transmit antenna set
Sopt can be obtained by

Sopt = arg max
S

R(S) ≡ arg min
S

RD(S̄) (23)

where S̄ = S′ − S. Using the following theorem, the computa-
tions in (23) can further be simplified.

Proposition 1: In ZF-precoded MU-MIMO systems, the
computational complexity of the optimal TAS that minimizes
the throughput loss can be reduced, because (23) can be re-
placed by

Sopt = arg min
S

tr(ΛS̄) (24)

where S̄ = S′ − S, |S| = MF , and S′ = {1, 2, . . . ,MT }.
Proof: Based on (23), the selection rule that maximizes

the sum throughput can be replaced by the approach that min-
imizes (34). By Lemma 4, the throughput loss is an increasing
function with tr(ΛS̄) if both tr((HS′HH

S′)−1) and SNR (P/σ2)
are fixed. Because tr((HS′HH

S′)−1) and the SNR are, indeed,
fixed, (23) can be rewritten as

Sopt = arg min
S

RD(S̄) ≡ arg min
S

(tr(ΛS̄)) . �

Although the computational complexity of the optimal TAS
has been reduced, it still demands exhaustive search and, thus,
huge computational effort. More specifically, the whole search
space is CMT

MF
; the computational complexity soon becomes

prohibitively high as MT grows. For example, let MT = 20
and MF = 6. There are C20

6 ≈ 3.9 × 104 possible antenna sets.
The huge search complexity may make the optimal solution
impractical in real systems. To overcome this problem, we
find that a greedy search algorithm may be a good solution,
which not only has low complexity but achieves a performance
close to the optimal scheme as well. Many different types of
TAS algorithms that apply the concept of greedy search have
extensively been studied, e.g., antenna selection in single-user
MIMO systems [17] and user selection in downlink MU-MIMO
systems [22], [27]. However, TAS for downlink MU-MIMO
systems has not yet been widely discussed. Here, we apply
the greedy concept to select transmit antennas for linearly
precoded MU-MIMO systems. This algorithm always removes
one transmit antenna from the current antenna set so that the
resulting sum throughput is maximized until the number of
elements in the set is equal to MF . The greedy TAS for linearly
precoded MU-MIMO systems is described in Algorithm 1.
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Algorithm 1: Greedy TAS for linearly precoded MU-MIMO
systems.

1: Let S = {1, 2, . . . ,MT } and |S| = MT .
2: while |S| > MF do

m = arg maxr R(Sr) for the ZF precoder
3:

m = arg minr δ(Sr) for the MMSE precoder
s.t. tr(PSr

) ≤ P , where Sr = S − {r},
and r ∈ S.

4: S = S − {m}.
5: end while
6: The resulting set S is the desired transmit antenna set.

Proposition 2: By applying the greedy method, each time
only one transmit antenna instead of an antenna set S̄ is
removed, let the index of the removed antenna be m. Then, the
computational complexity in (24) can further be reduced to

m = arg min
r

∥∥∥hH
r

(
HSHH

S
)−1

∥∥∥2

1 − hH
r

(
HSHH

S
)−1 hr

(25)

where S is the current antenna set, and r ∈ S.
Proof: Because only one transmit antenna is removed in

each iteration, tr(Λ(S̄)) reduces to ‖hH
r (HSHH

S )−1‖2/1 −
hH

r (HSHH
S )−1hr, which is a scalar that reflects that the rth

antenna is removed. Therefore, the selection problem becomes

m = arg min
r

RD(r) ≡ arg min
r

tr(Λr)

≡ arg min
r

∥∥∥hH
r

(
HSHH

S
)−1

∥∥∥2

1 − hH
r

(
HSHH

S
)−1 hr

. �

Applying Proposition 2, the fast algorithm of the greedy
TAS for ZF-precoded MU-MIMO systems is summarized in
Algorithm 2.

Algorithm 2: Fast algorithm of the greedy TAS for ZF-
precoded MU-MIMO systems.

1: Let S = {1, 2, . . . ,MT }, |S| = MT , and
HS = [h1 h2 · · ·hMT

]. Define AS = (HSHH
S )−1.

2: while |S| > MF do
3: m = arg min

r

‖hH
r AS‖2

1−hH
r AShr

, where r ∈ S.

4: AS = AS + AShmhH
mAS

1−hH
mAShm

.

5: S = S − {m}.
6: end while
7: The resulting set S is the desired transmit antenna set.

B. TAS for MMSE Precoding

For the MMSE precoder, according to Theorem 3, the MSE
increases as the number of active antennas decreases. The

selection problem of minimizing the MSE in (20) is equivalent
to minimizing the increased amount of MSE after removing
antennas, i.e.,

Sopt = arg min
S

δ(S) ≡ arg min
S

∣∣δD(S̄)
∣∣ (26)

where S̄ = S′ − S, |S| = MF , and S′ = {1, 2, . . . ,MT }.
Proposition 3: By applying the greedy method, each time

only one transmit antenna instead of an antenna set S̄ is
removed, let the index of the removed antenna be m. Then, the
computational complexity in (26) can further be reduced to

m = arg min
r

∥∥hH
r AS

∥∥2

1 − hH
r AShr

(27)

where S is the current antenna, r ∈ S, and AS = (αI +
HSHH

S )−1.
Proof: Because only one transmit antenna is removed in

one iteration, |δD(S̄)| reduces to (‖hH
r AS‖2/1 − hH

r AShr),
which is a scalar that reflects that the rth antenna is removed.
Therefore, the selection problem becomes

arg min
r

δD(r) ≡ arg min
r

∥∥hH
r AS

∥∥2

1 − hH
r AShr

. �

Using Proposition 3, the fast algorithm of the greedy TAS
for MMSE-precoded MU-MIMO systems is summarized in
Algorithm 3.

Algorithm 3: Fast algorithm of the greedy TAS for MMSE-
precoded MU-MIMO systems.

1: Let S = {1, 2, . . . ,MT }, |S| = MT , and
HS = [h1 h2 · · ·hMT

]. Define AS = (αI + HSHH
S )−1.

2: while |S| > MF do
3: m = arg min

r

‖hH
r AS‖2

1−hH
r AShr

, where r ∈ S.

4: AS = AS + AShmhH
mAS

1−hH
mAShm

.

5: S = S − {m}.
6: end while
7: The resulting set S is the desired transmit antenna set.

VI. COMPLEXITY ANALYSIS

In this section, let us analyze the computational complexity
for the proposed algorithms in Section V. A floating-point
operation (flop) [30] is used to quantify the complexity. A real
addition, multiplication, or division requires a flop. To simplify
the procedure of analysis, let us first give the complexity for
some matrix operations. Suppose that X is a q × p matrix, Y
is a p × r matrix, and Z is an n × n nonsingular matrix. Let
complexity order O(·) represent the arithmetic order of flops.
The complexity orders for matrix multiplication X · Y and
matrix inversion Z−1 are of O(pqr) and O(n3), respectively.
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A. Complexity Analysis for ZF Precoding

For the optimal TAS algorithm in Section V-A, the total
number of possible combination sets is

CMT

MF
=

MT !
MF !(MT − MF )!

=
MT × (MT − 1) × · · · × (MT − MF + 1)

MF !

=
MMF

T + · · ·
MF !

= O
(

MMF

T

MF !

)
. (28)

In each set, we need to calculate ΛS̄ in (24). Because S′ is
the total antenna set, the calculation of (HS′HH

S′)−1, which
contains one matrix multiplication and one matrix inversion,
only needs to be calculated for one time. Because the dimension
of HS′ is K × MT , the complexity order is on the order
of O(K2MT ) for two multiplications and O(K3) for matrix
inversion. Then, to obtain ΛS̄ , four matrix multiplications and
one matrix inversion are needed, and the total computational
complexity for each set is on the order of O(2K2(MT −
MF ) + 2K(MT − MF )2 + (MT − MF )3). Therefore, based
on (28), the overall complexity to obtain the optimal antenna
set is on the order (29), shown at the bottom of the page.

Now, considering the computational complexity of the
greedy search method in Algorithm 2, the total number of
transmit antenna sets is

MT∑
l=MF +1

l. (30)

Because the selection rule is replaced by (25), the term AS is
initially needed, and the corresponding computations contain
one matrix multiplication, i.e., O(K2MT ), and one inversion,
i.e., O(K3). Then, to determine which transmit antenna to
remove, the complexity order of the selection rule in (25)
is O(2K2), because the orders of both the numerator and
denominator are O(K2). AS can be updated when the antenna
to be removed is determined. We need to update AS for
MT − MF times, and each time is on the order of O(K2) for
matrix multiplications in (25). Therefore, the complexity order
of Algorithm 2 is

O
(

K2MT + K3 + 2K2
MT∑

l=MF +1

l + K2(MT − MF )

)

≈ O
(
K2

(
M2

T − M2
F

))
.

B. Complexity Analysis for MMSE Precoding

The number of possible antenna sets using the exhaustive
search is shown in (28). As the selection rule in (21), the overall
computational complexity is almost the same as the exhaustive
search in ZF precoding, except that some additions can be

TABLE I
COMPLEXITY COMPARISON OF VARIOUS ANTENNA SELECTION

ALGORITHMS WITH LINEAR PRECODING

ignored, i.e., (αI + HS′HH
S′). Hence, we can conclude that the

overall complexity for obtaining the optimal antenna set in the
sense of minimizing the MSE is also on the order shown in (29).

In Algorithm 3, instead of calculating the sum throughput of
each transmit antenna set, the MSE criterion in (20) is used to
remove the antennas. Not unlike exhaustive search, the search
is similar to Algorithm 2, and the overall complexity is also al-
most the same as Algorithm 2, i.e., O(K2(M2

T − M2
F )). Table I

summarizes the analyzed computational complexity for all pro-
posed antenna selection algorithms introduced in Section IV.

VII. SIMULATION RESULTS

In this section, simulations are given to show that the derived
upper bound in Section IV is close to the simulation results in
high-SNR regions and the performance of the proposed TAS
algorithms in Section V. In all simulations, 16-QAM signaling
and 5000 MU-MIMO channel realizations are used. Without
loss of generality, we assume σ2 = 1.

Example 1: Derived Upper Bound for Throughput Loss: Let
MT = 16 and K = 4. Fig. 2 shows the simulated sum through-
put loss and the theoretical upper bound derived in (17) as
functions of SNR values for MF = 4, 6, and 8. Observe from
the simulated result that, for a fixed MF , the sum throughput
loss is monotonically increasing with the SNR and eventually
reaches the derived upper bound when the SNR is sufficiently
high (SNR from 10 dB to 18 dB for MF from 8 to 4). These
observations corroborate the theoretical results in Theorem 2.
Therefore, the derived upper bound provides a good design
reference to trade off between the number of RF units and the
sum throughput for ZF-precoded MU-MIMO systems.

Example 2: Performance Comparison of Exhaustive Search
and Greedy Search: Let MF = 4 and K = 4. The average
sum throughput as a function of MT for ZF- and MMSE-
precoded MU-MIMO systems is shown in Figs. 3 and 4,
respectively. For ZF-precoded systems, we consider equal
power (EP) allocation and water-filling (WF) power allocation.
For the MMSE scheme, we consider EP allocation only, be-
cause WF power allocation needs an iterative algorithm and
is not easy to be applied due to the interference from other
users [32]. Based on the figures, the proposed greedy transmit
selection algorithms with a throughput criterion can achieve

O
(

K2MT +
(
2K2(MT − MF ) + 2K(MT − MF )2 + (MT − MF )3

)
MMF

T

MF !

)
(29)
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Fig. 2. Sum throughput loss and the derived theoretical upper bound for using
TAS in ZF-precoded MU-MIMO systems (MT = 16, K = 4).

Fig. 3. Sum throughput of various TAS algorithms for MF = K = 4 and
SNR = 10 dB in ZF-precoded MU-MIMO systems.

above 95% sum throughput of the optimal exhaustive search,
with much lower computational complexity (see the circled and
diamond curves). Moreover, if we apply the optimal WF power
allocation in the ZF precoder, the WF procedure is needed to
determine the power allocation matrix for every iteration of sum
throughput calculation, and this may lead to high computational
complexity. To overcome this issue, we can apply the equal
gain power allocation for every iteration of sum throughput
calculation; whenever the equal gain precoder is determined,
we simply apply the WF procedure for one time. This approach
can significantly reduce the computational complexity due to
the WF procedure, and the corresponding performance is shown
in the triangular curve. We see that the triangular and the dia-
mond curves are almost the same. Furthermore, we compare the
performance between the proposed algorithm and the algorithm
proposed in [26], which maximizes the minimum eigenvalue
of the channel matrix instead of the sum throughput. It is ob-
served that the performance using the sum throughput criterion
outperforms the performance using the eigenvalue criterion in
[26]. Note that the computational complexity of the greedy
algorithms can further be simplified with no performance loss
using the fast algorithms in Algorithms 2 and 3 for the ZF
and MMSE precoders, respectively. As a result, the proposed

Fig. 4. Sum throughput of various TAS algorithms for MF = K = 4 and
SNR = 10 dB in MMSE-precoded MU-MIMO systems.

Fig. 5. Sum throughput loss for MT = 16 and K = 4 in ZF-precoded
MU-MIMO systems.

TAS algorithms can achieve a performance comparable to the
optimal TAS algorithm, with much lower computational com-
plexity. Finally, we see that, in the MMSE precoded systems,
using the MSE criterion in (18) to select transmit antennas
performs almost the same as using the sum throughput criterion
(see the crossed and the diamond curves in Fig. 4).

Figs. 5 and 6 show the sum throughput loss for ZF precoding
and MSE increase for MMSE precoding as functions of
the number of RF units MF . The two figures show that
the performance loss is, indeed, monotonically decreasing
with MF ; that is, using more RF units always improves the
performance in linearly precoded MU-MIMO systems, which
corroborates the theoretical results in Theorems 1 and 3.
Moreover, in Fig. 5, we can observe that the performance gap
between EP and WF power allocation in the ZF precoder also
decreases as MF increases. This is reasonable, because the
smaller the number of MF , the smaller the equivalent channel
gain of each user becomes, and thus, the more pronounced the
advantage of WF is in this case.

Example 3: Sum Throughput Comparison for Different Num-
bers of RF Units: When the hardware complexity is con-
sidered, using fewer RF units to achieve satisfactory sum
throughput is generally preferred. This example evaluates how
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Fig. 6. MSE increase for MT = 16 and K = 4 with MMSE-precoded
MU-MIMO systems.

Fig. 7. Sum throughput as a function of MF for the proposed TAS in
Algorithms 2 and 3, with MT = 8 and K = 2.

the number MF of RF units affects the sum throughput. Let
MT = 8, which is the number of users, be K = 2. SNR =
0, 5, and 10 dB. Fig. 7 shows the sum throughput as a function
of MF for the ZF precoding with Algorithm 2 and the MMSE
precoding with Algorithm 3. In general, letting MF be around
two times of K can achieve 85% of the sum throughput
obtained by letting MF = MT . This figure can be used as
a design reference to determine a reasonable MF value to
reduce hardware complexity. Moreover, we observe that, when
the SNR is low and the number of RF units is small, the
sum throughput of the MMSE precoder outperforms the sum
throughput of the ZF precoder whereas the performance gap
decreases as the SNR value or the number of MF increases.

Example 4: BER Comparison for Different Numbers of RF
Units: Let K = 2. The bit-error-rate (BER) performance for
the proposed ZF- and MMSE-precoded TASs is given in Fig. 8
for different numbers MF and MT . According to [33], the
diversity order of a signal-user system with the ZF or MMSE
receiver or precoder is max(M,N) − min(M,N) + 1 at high-
SNR regions, where M and N are the numbers of active trans-
mit and receive antennas, respectively. Now, K = 2; thus, for
MT = MF = 2, the system does not have selection diversity,

Fig. 8. BER performance for the proposed TAS in Algorithms 2 and 3.

and therefore, the diversity order is 1. For MT = 4 and MF =
4, the system has a diversity order of 3. For MT = 4 and MF =
2 or 3, the systems still have a diversity order of 3. Therefore,
we can conclude that, by using TAS (MF < MT ), the system
can achieve full diversity order, which can be obtained using all
transmit antennas (MF = MT ). Moreover, increasing MF only
provides an antenna gain that shifts the BER curve from right
to left at high-SNR regions [34]. Finally, we observe that, when
the diversity order is 1, i.e., when MT = 2, the MMSE precoder
outperforms the ZF precoder. However, when the diversity is
greater than 1, i.e., MT > 2, the performance gap between the
ZF and MMSE precoders becomes less pronounced, because
TAS can significantly improve the MIMO channel condition.

VIII. CONCLUSION

Antenna selection is an effective method of reducing the
use of RF units. In this paper, we have theoretically analyzed
how performance is affected by TAS in linearly precoded MU-
MIMO systems. Unlike the results in the work of Gore et al.
and Tsai for single-user MIMO systems that removing active
transmit antennas sometimes leads to the best performance if
these antennas result in ill-conditioned channel matrices, the
analytical results in this paper have shown that removing active
transmit antennas always degrades the system performance in
linearly precoded MU-MIMO systems. In addition, we have
defined the performance loss due to removing active antennas
and derived an upper bound of the performance loss for ZF-
precoded MU-MIMO systems. This performance bound is tight
when the SNR is moderately high. Consequently, this derived
performance bound can provide a good reference for making a
tradeoff between the number of RF components and the system
performance. Moreover, it is known that the optimal TAS
exhaustively demands search, and in general, its computational
complexity is extremely large. To overcome this issue, we
have formulated the problem based on the analytical results
and proposed several TAS algorithms that can significantly
reduce the computational complexity. The complexity analysis
showed that the proposed algorithms can reduce the computa-
tional complexity from exponential order to polynomial order,
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whereas the system performance can still be kept comparable
with the optimal algorithm. Simulation results were provided to
show the accuracy of the analytical results and the advantages
of the proposed algorithms. We concluded that the analyzed
results enable us to better understand how TAS affects the MU-
MIMO systems. In addition, the proposed algorithms make
TAS more feasible to be used in practical systems.

APPENDIX A
PROOF OF LEMMA 2

Applying the singular value decomposition to A yields
A = UΣVH , where Σ is an m × n matrix, with its diagonal
elements {σ1, σ2, . . . , σm} being the singular values of A.
Then, we can write Ac = UΣVH

c , where VH
c is an n × k ma-

trix, with the columns chosen from the corresponding indexed
columns of V. Recall that Q = (αI + AAH)−1. Based on the
aforementioned conditions, we have

tr
((

QAc

(
I − AH

c QAc

)−1
AH

c Q
)

= tr
(
ΣH

(
(αI + ΣΣH)−1

)2
ΣVH

c G−1Vc

)
(31)

where we define G = Vc(I − ΣH(αI + ΣΣH)−1Σ)VH
c Let

Vc = [Vc1 Vc2 ], where Vc1 and Vc2 are k × m and k × (n −
m) matrices, respectively. Then

G = [Vc1 Vc2 ]
[
D 0
0 I

] [
VH

c1

VH
c2

]
=Vc1DVH

c1
+ Vc2V

H
c2

(32)

where

D =

⎡
⎢⎣

α
α+σ2

1
· · · 0

...
. . .

...
0 · · · α

α+σ2
m

⎤
⎥⎦ .

Using (32), for α ≥ 0, the last equation in (31) can further be
manipulated as

tr
(
ΣH

(
(αI + ΣΣH)−1

)2
ΣVH

c G−1Vc

)
=

m∑
j=1

νjj

σ2
j

> 0

where νjj is defined as the jth diagonal element of VH
c G−1Vc.

This case completes the proof of Lemma 2.

APPENDIX B
PROOF OF LEMMA 3

Based on (3)–(5), we have

R(S′) − R(S) =K log

(
1 +

P

σ2tr
(
WH

S′WS′
)
)

− K log

(
1 +

P

σ2tr
(
WH

S WS
)
)

=K log

⎛
⎜⎝1 + SNR

tr
(
(HS′HH

S′)
−1

)
1 + SNR

tr
(
(HSHH

S )−1
)

⎞
⎟⎠ . (33)

Applying Lemma 1 into (33) yields

RD(S̄) = K log

⎛
⎜⎝ 1 + SNR

tr
(
(HS′HH

S′)
−1

)
1 + SNR

tr
(
(HS′HH

S′)
−1

)
+tr(ΛS̄)

⎞
⎟⎠ . (34)

Manipulating (34) leads to the first equation in (14). Moreover,
using Lemma 2 and setting α = 0, we find the fact that tr(ΛS̄)
is nonnegative. As a result RD(S̄) > 0.

APPENDIX C
PROOF OF THEOREM 1

Using the result in Lemma 3 yields

R(Sopt1) < R(S2), if Sopt1 ⊂ S2.

Because we assume that Sopt1 and Sopt2 are the optimal
transmit antenna sets that achieve the maximum throughput for
MF = |Sopt1| and MF = |Sopt2|, respectively, this results in

R(Sopt1) < R(S2) ≤ R(Sopt2) for |Sopt1| < |S2| = |Sopt2|

which completes the proof of Theorem 1.

APPENDIX D
PROOF OF THEOREM 2

By Lemma 4, it is obvious that the throughput loss RD(S̄)
in (14) is a monotonically increasing function of the SNR. In
addition, based on (14), we have

RD(S̄) =K log

⎛
⎝1 +

tr(ΛS̄)
(tr(QS′ ))2

SNR + tr(QS′)
(

1 + tr(ΛS̄)
SNR

)
⎞
⎠

≤K log
(

1 +
tr(ΛS̄)
tr(QS′)

)
(35)

where QS′ = (HS′HH
S′)−1. Furthermore, by letting the SNR

tend to ∞ for the second equation in (35), we have

lim
SNR→∞

RD(S̄) = K log

(
1 +

tr(ΛS̄)

tr
(
HS′HH

S′
)−1

)
.

APPENDIX E
PROOF OF LEMMA 5

Based on (19), the MSE difference is

δ(S′)−δ(S)= tr
((

αI+HS′HH
S′

)−1
)

−tr
((

αI + HSHH
S

)−1
)

= tr
(
AS′−

(
αI+HS′HH

S′−HS̄H
H
S̄

)−1
)

. (36)

By applying the result of Lemmas 1 and 2, (36) becomes
−tr(AS′HS̄(I − HH

S̄ AS′HS̄)−1HH
S̄ AS′) < 0.
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APPENDIX F
PROOF OF THEOREM 3

Using the result in Lemma 5, we can conclude the following:

δ(Sopt1) > δ(S2), if Sopt1 ⊂ S2.

Because we assume that Sopt1 and Sopt2 are the optimal
transmit antenna sets with the MMSE when MF = |Sopt1| and
MF = |Sopt2|, respectively, we have

δ(Sopt1) > δ(S2) ≥ δ(Sopt2) for |Sopt1| < |S2| = |Sopt2|

which completes the proof of Theorem 3.
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