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Abstract 
 

To provide active notification and enhance drivers’ awareness of their surroundings, a 

vision-based collision warning system that detects and monitors surrounding vehicles is 

proposed in this paper. The main objective is to prevent possible vehicle collisions by 

monitoring the status of surrounding vehicles, including the distance to the other vehicles in 

front, behind, to the left and to the right sides. In addition, the proposed system collects and 

integrates this information to provide advisory warnings to drivers. To offer the correct 

notification, an algorithm based on features of edge and morphology to detect vehicles is also 

presented. The proposed system has been implemented in embedded systems and evaluated on 

real roads in various lighting and weather conditions. The experimental results indicate that 

the vehicle detection ratios were higher than 97% in the daytime, and appropriate for real road 

applications. 
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1. Introduction 

Recently, the number of deaths resulting from traffic accidents has sharply increased, with 

careless driving identified as the main factor behind such accidents. Drivers usually focus on 

the vehicles in front of them, and only occasionally examine the status of those at their sides 

and behind them. While driving, a motorist needs to pay attention to the surrounding traffic, 

dashboard displays, and a variety of information on the road, such as traffic lights and road 

signs. S/he may even be inclined to talk to passengers and talk on a cell phone. These are all 

factors that can cause the driver to become distracted, and may result in collisions with other 

vehicles or, at the very least, deviation from the lane. These misfortunes can be avoided if the 

drivers are notified ahead of time with warning messages. Therefore, knowledge of 

surroundings plays an important role in safe driving. In our research, we are developing 

technologies that provide drivers with information on the status of vehicles surrounding them 

at the front, to the rear, and on both sides in order to enhance their awareness. 

Many researchers have focused on the development of advanced driver assistance systems 

(ADAS) to improve driving safety and driver performance. Some researches focus on the 

inter-vehicle communication technologies [1], while others aim at assistance systems for the 

vehicle itself. Projects such as VaMP [2], GOLD [3], and ARGO [4] have also proposed to 

develop various functions to assist drivers. To develop an intelligent vehicle, sensors are 

necessary and essential for collecting information on the environment. Two kinds of sensors, 

active and passive [5], are widely used in the development of ADAS. Active sensors require 

input energy from a source other than that which is being sensed. Radar-based [6], laser-based 

[7], and acoustic-based [8] sensors are all active sensors. Wijesoma et al. [9] used laser radars 

(ladar) to scan road curbs to obtain the status of lanes. Their system triggers warning messages 

when the driving status is identified as irregular. Sheu et al. [10] proposed a distance and 

direction awareness system for intelligent vehicles (DDAS) that provides information on the 

surroundings using smart antennas so as to enable drivers to maintain proper behavior. In the 

advanced safety vehicles project of Toyota [11], the driver has to wear a wristband to measure 

his/her heart rate, while Mitsubishi is reportedly utilizing steering wheel sensors in their AVS 

system [12] to assess the vehicle’s behavior and thereby determine if a driver is drowsy or not. 

However, these systems may be too expensive as they require more equipment, leading to an 

increase in cost and other limitations compared to image-based processing systems. 

Other kinds of driver assistance systems proposed are based on machine vision and only 

require several cameras and processing units to compute the algorithms. Some research focus 

on the assessment of a driver’s condition, such as level of drowsiness and vigilance. Hayami et 

al. [13] used eye status to monitor drivers’ condition to determine whether they were drowsy. 

To improve accuracy and robustness, six parameters were calculated and combined using a 

fuzzy classifier to infer the level of inattentiveness of the driver [12]. These methods primarily 

resolve the problem of possible hazardous situations caused when drivers fall asleep. However, 

even when drivers do not doze, dangerous actions such as lane departure, and too short a 

distance between cars may still occur due to other factors. 

The detection of vehicles and lane markings is another approach that can be utilized by 

ADAS to overcome the above shortcomings resulting from only detecting a driver’s behavior. 

Three kinds of methods, motion-based, stereo-based, and knowledge-based, are widely used to 

detect objects of interest in the image. Motion-based methods estimate the motion of the 

ground plane and then detect those obstacles whose motions differ from that of the ground 
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[14][15][16]. In these methods, it is necessary to make a tracking trajectory about the motion 

among images for large displacements and, as a consequence, the assumption of rectilinear 

motions in optical flow-based methods is invalid. Since the scenes vary very much among the 

images, it is difficult to identify the pixel correspondence. If the size of the search area is too 

small, the correct matching for the corresponding pixels may be missed. On the other hand, if 

the size is too large, too many possibilities may exist. In addition, motion-based approaches 

incur expensive computational costs. 

Stereo-based approaches take advantage of inverse perspective mapping (IPM) [17] to 

estimate the locations of vehicles and obstacles in images. Bertozzi et al. [3] computed the 

IPM both from the left and right cameras. By comparing the two IPMs, they were able to find 

objects that were not on the ground plane. Using this information, they determined the free 

space in front of the vehicle. In [18], the IPM was used to wrap the left image to the right 

image. Knoeppel et al. [19] developed a stereo-system that detects vehicles up to 150 m away. 

The main problem with stereo-based methods is that they are sensitive to the recovered camera 

parameters. Accurate and robust methods are required to recover these parameters because of 

vehicle vibrations due to vehicle motion or windy conditions [20]. Principal component 

analysis (PCA) templates were used to recover the structure and posture of vehicles in [21]; 

while Haar wavelet features were extracted to match with template features in [22]. PCA 

templates and Haar wavelet features need models that match different vehicle types so storing 

those models in a memory-limited embedded system is impractical. 

Knowledge-based methods employ a priori knowledge to locate the vehicles in an image. 

Symmetry, color, shadow, and geometrical features are all representative information used in 

knowledge-based methods. Symmetry is one of the main signatures, and has been used for 

vehicle detection in several studies [23][24]. Although the use of color information takes more 

effort than mono images, it is a very useful feature for obstacle detection. Several prototype 

systems have been developed to follow lanes and roads [25], or segment vehicles from 

background [26]. Shadow information is used as a feature for vehicle detection in [27]. 

Because the area underneath a vehicle is (usually) distinctly darker than any other areas on a 

road, the vehicle can be located from the position of its shadow. However, the intensity of the 

shadow depends on the illumination of the image, and a fixed threshold cannot be used to 

detect the shadow. An adaptive threshold is necessary for different environments. 

A vehicle contains many horizontal and vertical structures, such as a rear window and a 

bumper. The use of constellations of vertical and horizontal edges is a strong feature to 

identify a vehicle [28]. Matthews et al. [29] used edge detection to find strong vertical edges, 

and to localize the left and right positions of a vehicle. They used a triangular filter to smooth 

the edges, and searched the local maximum peaks of the vertical edge to find the left/right 

boundary of a vehicle. A coarse-to-fine search method using edge information to detect distant 

cars was proposed in [30]. The coarse search checked the entire image to see if prominent 

edges exist in order to decide on a refined region. After acquiring the result of the coarse 

search, the refined search process would then start in that region. In [31], both vertical and 

horizontal edges are used and two constraint filters—rank filter and attached line edge 

filter—are utilized to segment vehicles from their background. Bucher et al. [32] used detected 

lane information to search for candidate vehicles by scanning each lane starting from the 

bottom to a certain vertical position. The candidate vehicles were obtained if a strong 

horizontal edge segment within the lane was found. If the prior knowledge is designed 

reasonably well, knowledge-based methods can also obtain robust results similar to the 

above-mentioned methods without any significant increase in complexity. Therefore, our 

system primarily uses knowledge-based methods to realize vehicle detection. 
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In this study, a vision-based collision warning system that detects and monitors surrounding 

vehicles is proposed. Our work has been implemented in an embedded system. The main 

objective is to monitor the driver’s surroundings and actively provide real-time notification in 

order to avoid possible collisions. The vehicle is equipped with four cameras to capture images 

in front, at the rear, and in the blind spots of the vehicle, as depicted in Fig. 1. 
 

Blind Spot

Blind Spot

FrontRear

 

Fig. 1.The areas monitored by the proposed system 

Both lane markings and vehicles are recognized, and the distances between the host vehicle 

and surrounding vehicles are estimated. The information is collated and warning alarms are 

raised when the system considers that the driver is in a dangerous situation. The main 

contribution of the proposed system is the provision of driver protection in all aspects, and the 

reduction of driver stress. 

The remainder of this paper is organized as follows: Section 2 presents the camera model 

and explains how to build the relationship between the image and world coordinates. Section 3 

addresses the algorithm used for vehicle detection in the front, at the rear, and in the blind 

spots. Section 4 presents experimental results obtained from the evaluation of the system 

under various road and weather conditions. Finally, a brief conclusion and a discussion of 

possible implications are given in Section 5. 

2. Camera Model for Image and World Coordinates Transformation 

To know the status of the surrounding vehicles, 3D to 2D projection is necessary for the 

vision-based system. The scene point (Xc, Yc, Zc) in the camera coordinate system is captured 

by a camera and projected onto the image pixels in the image coordinate system, as illustrated 

in Fig. 2. 

 

Fig. 2. The camera coordinate system 
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The projection relationship from camera coordinates (Xc, Yc, Zc) to the image plane (u, v) is 

shown as follows: 

/u c cu e X Y= ⋅                                                       (1) 

/u c cv e Z Y= ⋅                                                       (2) 

where (u, v) and (Xc, Yc, Zc) are the image and camera coordinates, respectively. eu and ev 
indicate the intrinsic parameters of the camera and are denoted as (3) and (4), respectively. 

/ue f du=                                                       (3) 

/ve f dv=                                                       (4) 

du and dv represent the physical width and height of an image pixel, respectively, while f is the 

focal length of the camera. (1) and (2) are the non-linear equations that transform the 3D scene 

point of the camera into 2D image pixels. Fig. 3 illustrates the relationship between the camera 

and world coordinate systems. 

 

Fig. 3. The camera and world coordinate systems 

The points in the world coordinate system are indicated as (Xr, Yr, Zr). In Fig. 3, α represents 

the tilt angle; β , the pan angle; γ , the swing angle; and H, the height of the camera. The 

points in the world coordinate can transform to the image coordinate by means of translation 

and rotation. In our system, the tilt angle α and the swing angle γ are set at 0° when the 
cameras are installed. For front and rear vehicle detection, the cameras are installed on the 

windscreen of the vehicle. Hence, the pan angle β is set at 0°. The projection equations from 

the world space to the image plane are (5) and (6) below. 

/u r ru e X Y= ⋅                                                       (5) 

( ) /u r rv e Z H Y= ⋅ −                                                       (6) 

On the other hand, for blind spot vehicle detection, the cameras are installed on the side 

mirrors of the vehicle. The pan angle β has to be considered when the cameras are installed. 

The projection equations from the world space to the image plane become 
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In the global coordinates, the road surface is modeled as a plane with an inclined angleθ . The 
relationship between Yr and Zr becomes 

tanr r rZ Y Y mθθ= ⋅ = ⋅                                                       (9) 

where mθ  is represented as tanθ  for convenience. Next, we combine (5), (6), and (9) to 

produce 

u
r

v v

euH
X

e m v eθ

= ⋅
−

                                                      (10) 
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e m vθ

=
−

                                                      (11) 
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                                                      (12) 

Using (10), (11), and (12), the points (u, v) in the image coordinate system can be transformed 
to corresponding points in the world coordinate (Xr, Yr, Zr). When the system detects the 
position of the vehicle to the front or rear side, the distance can be calculated using the above 
formulas. 
For blind spot vehicle detection, by combining (7), (8), and (9) the formulas become as 

follows. 
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We observe that whether the derived formulas contain the pan angle β  or not, parameter mθ  

still has to be determined. Because an incorrect parameter affects the accuracy of the result, 
calibration is necessary in the system. To achieve this purpose, we model the lane geometry in 
the form of a polynomial as follows 

2

r r rX kY mY b= + +                                                       (16) 

By substituting (10)–(12) into (9), parameter mθ  can be derived from coefficient m. Thence, 
with the verified data (Xr, Yr), coefficients k, m, and b can be determined by the weighted least 
squares (WLS) approximation. This information can further be used for lane marking 
detection—which was detailed in our previous work [33]. In this paper, the results of the lane 
model and lane marking are essential for vehicle detection. A detailed explanation follows in 
Section 3.  
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3. Vehicle Detection and Surroundings Monitoring 

3.1 Algorithms for Front and Rear Collision Warning 

In this section, the vehicle detection algorithm is presented. The goal of front vehicle detection 

is to enable drivers to utilize the vision-based object detection algorithm to detect the front 

vehicle and its relative position. Lane information is utilized in the vehicle detection process. 

Candidate vehicles are sought in the host lane. The vehicle detection procedure is activated 

after lane detection. There are two major detection modes: Single Mode and Continuous Mode. 

In the vehicle detection mode, the settings for the different modes are different. The vehicle 

detection process flow is demonstrated in Fig. 4. 
 

 

Fig. 4. The vehicle detection process flow 

A. ROI Setting Algorithms 

1) ROI Setting in Single Mode 

In Single Mode, there is no previous vehicle information for reference. To achieve better 

system performance, ROI Setting in the vehicle detection algorithm is bounded by lane 

detection. After lane detection, the host lane region is identified, as depicted in Fig. 5-(a). In 

this region, three searching lines are assumed for vehicle detection, as shown in Fig. 5-(b), 

where B1 = (A1 + A2) / 2,  C1 = (A1 + B1 ) / 2 and C2 = (B1 + A2 ) / 2. 

  
(a) (b) 

Fig. 5. (a) The lane detection result (b) The lines searching for vehicles 

2) ROI Setting in Continuous Mode 

In this mode, previous vehicle information is obtained, as shown in Fig. 6-(a). If the frame rate 
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is sufficiently high, the vehicle position in the image only varies a tiny distance. Therefore, the 

position of the vehicle in the current frame can be predicted from the previous frame. The 

search region is arranged as shown in Fig. 6-(b). 

 

  
(a) (b) 

Fig. 6. (a) The detected vehicle (b) The search region in Continuous Mode 

B. Gray-Level Classification 

The features of a vehicle in different weather are distinct. Therefore, it is necessary to obtain a 

threshold value automatically in order to achieve all-weather detection. The most important 

feature in the vehicle detection process is the gray-level value. From observation, it can be 

seen that the road surface occupies the most area in the image. Hence, the threshold value can 

be set automatically by classifying the gray-level of the road surface. According to the lane 

detection result, the search region is arranged near to the lane markings in Fig. 7-(a). The 

gray-level distribution of the yellow region is illustrated in Fig. 7-(b). Thus, the threshold 

value for the vehicle detection process is set automatically. 

 

 

 

(a) (b) 

Fig. 7. (a) The region of classification (b) The gray-level value distribution 

C. Major Feature Extraction 

The shadow of the vehicle is considered the most important feature in sunny and cloudy 

conditions. A vehicle with a relatively long shadow is shown in Fig. 8-(a). The Sobel 

horizontal edge detection result is illustrated in Fig. 8-(b). 

  
(a) (b) 

Fig. 8. (a) The source image (b) The Sobel horizontal edge detection result 
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From observation it can be seen that the area underneath the vehicle is darker than the shadow 

of the vehicle. The threshold value of this area is obtained by projecting the gray-level value to 

the v-axis, as in Fig. 9-(a), by 

1 1

1 1

( , , ) ( ( , ), , ( , ))
m m

n i i n

i i

V V B u v B u v
= =

= ∑ ∑K K                                                       (17) 

where B(um, vn) and (V1,…,Vn) are the binary values and the projection vectors, respectively. 

The projection result is shown in Fig. 9-(b). The maximum element of V is given by 

max
max{ |1 }

i
V V i n= ≤ ≤ . One-fourth of Vmax is chosen as the threshold value Bth. The blue 

region is re-projected so that the projection vector Vi > Bth is set to 255 and the others are 0. 

The positions of the vectors at projection value 255 are recorded. If the length of the 

continuous recorded projection vectors is large enough to be considered a vehicle, the bottom 

row of the continuous projection vectors is identified as the bottom of the vehicle. The position 

of the vehicle is obtained as shown in Fig. 9-(c). The lower red line is the original detection 

results using the Sobel edges, while the yellow line is the fixed result of vehicle detection. 

 

 
 

(a) (b) (c) 

Fig. 9. (a) The binary map (b) The projection result (c) The detection result 

D. Vertical Edge Pair Detection 

Vertical edge pair is also an important feature in the vehicle detection process. A truck, a sedan, 

a dark-colored car, and a light-colored car all have a pair of vertical edges. This procedure is 

applied for most weather conditions. After Major Feature Extraction, the location of the 

vehicle can be detected. The ROI of a pair of vertical edges detection is picked from the 

bottom of the vehicle as shown in Fig. 10-(a), and the vertical edges within ROI are projected 

onto the u axis by 

1 1

1 1

( , , ) ( ( , ), , ( , ))
n n

m i m i

i i

U U V u v V u v
= =

= ∑ ∑K K                                                       (18) 

where V(um, vn) and (U1,…,Um) are the binary vertical values and the projection vectors, 

respectively. An histogram of the Sobel vertical edge is depicted in Fig. 10-(b). The maximum 

element of U is
max

max{ |1 }
i

U U i m= ≤ ≤ . Half of Umax is chosen as the threshold value to 

indicate the major vertical edge. In Fig. 10-(c), the edge histogram in the candidate block gives 

two peaks, which indicate the vehicle side boundaries. 
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Fig. 10. Vertical edge pair detection 

E. Time and Spatial Constraint 

If the vehicle is detected in Single Mode, the position of the vehicle is stored. As the 

movement of a vehicle in a short period of time is very small, the variation of the vehicle 

position in the image is negligible. Otherwise, the object is considered to be noise. 

3.2 Algorithms for Blind Spot Collision Warning 

To avoid possible collisions within blind spot areas, blind spot collision warning was 

developed to overcome this safety driving drawback. Just like the detection process for the 

front and rear, the lane information is used to provide bounds for the detection area and the 

relationship between the image coordinate and the world coordinate is used to obtain the 

estimated distance. However, there are still some different conditions between them. One is 

the pan angle of the camera, and the other is the situation of the closing vehicle. The pan 

angle β exists due to the camera setting for blind spot detection. The view image is different 

from the one in the front and at the rear, and the formulas also have a little difference, as 

explained in Section 2. When the vehicle in the side lane is about to overtake the host vehicle, 

the shape in the image is incomplete. In this situation, the vehicle is defined as a closing 

vehicle. Therefore, the detection flow is designed to detect the near lane marking first, and 

then estimate the farther lane to get a bounded detection area, as shown in Fig. 11. Next, the 

existence of the closing vehicle is checked. Finally, the approaching vehicle has to be assessed 

in order to enable the driver to know the corresponding distance. 
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Fig. 11. The near lane marking and the far lane marking 

A. Detection of Closing Vehicle in the Neighboring Lane  

When there is a closing vehicle in the neighboring lane, a large gray area with intensity 

different from that of the road will appear. Therefore, an RH area is arranged, as in Fig. 12, to 

estimate the gray intensity histogram of the road surface. In order to avoid being influenced by 

the white lane marking, we set RH_Width > RH_Height. The gray intensity histogram is 

shown in Fig. 13. The largest value for the gray intensity is denoted IRHmax and the region R ∈	

[IRHmax - 30,	 IRHmax + 30] is assigned as the gray intensity region of the road surface. The gray 

intensity of the pixels, I(u, v), in LV1 and LV2 will be checked against R and the ratio, ρ = P/N, 

is obtained, where P indicates the number of the pixels and I(u, v) ∉	 R and N signify the total 
pixels in LV1 and LV2, respectively. When ρLV1 > 0.8 or ρLV2 > 0.8; it signifies that there is a 

closing vehicle in the neighboring lane. 

 

Fig. 12. The region checked in order to detect a vehicle in the neighboring lane 

 

Fig. 13. The gray intensity histogram of the RH area 
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B. Far Lane Marking Detection and Approaching Vehicle Detection and 
Distance Estimation 

If there is no closing vehicle in the neighboring lane, then the far lane marking detection starts. 

The ROI of the far lane marking is set up by the detected near lane marking, as illustrated in 

Fig. 14. In Section 2, the near lane marking straight line was described as v = a0 + a1u. From 

(13), the lane width in world space, W, can be mapped on to the image plane as u. 

Consequently, the ROI of the far lane marking can be set up as in Fig. 14. The straight line v  = 

a2 + a3u of the predicted ROI can be obtained by estimating the horizontal distance from the 

near lane marking to the far lane marking in the image. 

 

Fig. 14. Adaptive ROI of the far lane marking 

In Fig. 15, the vanishing point A is at the intersection of the two lane markings. Three 

virtual lines in the neighboring lane can be determined. M1, M2, and M3 are the midpoints 

of BC , 1BM , and 2BM , respectively. If some horizontal edge pixels are detected on the three 

virtual lines, the density of the horizontal edge pixels in DhBox (Fig. 16) is estimated. 
 

 

Fig. 15. The virtual lines in the neighboring lane 

 

Fig. 16. The region of horizontal edge pixels checked 
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H_width is the width of the lane and H_height is three pixels high if the density of the 

horizontal edge pixels in DhBox is sufficiently large. In Fig. 17, V_width is the width of the 

lane width and V_height is half of V_width. If the density of the vertical edge pixels in DvBox 

is sufficiently large, it implies that there exists an approaching vehicle in the neighboring lane. 

Consequently, the candidate area is processed with major feature extraction, vertical edge pair 

detection, and time and spatial constraint to get more detailed information on the vehicle. 
 

 

Fig. 17. The region of vertical edges checked 

After the position of the vehicle has been ascertained, the estimated distance between the 

host vehicle and the vehicle approaching from the side lane is calculated. The real distance D 

from the detected vehicle to the host vehicle, shown in Fig. 18, is estimated using the Cosine 

rule, where Dcv is the distance between the detected vehicle and the camera, and d indicates the 

distance from the side mirror to the back side of the vehicle. The information is used to trigger 

an alarm that alerts the driver when the distance is too close. 
 

 

Fig. 18. Distance from the detected vehicle to our system 

3.3 Warning Strategy and Surroundings Monitoring 

To provide the vehicle surrounding monitoring function, our system has to collect information 

that includes the lateral offset and the estimated distance of the front, rear, and blind spots from 

the detection results. After the system receives the detection results, the following warning 

criteria are used to decide on the proper warning messages to use. 

/

1

2
front rear speedD D<                                                       (19) 

10blindspotD <                                                       (20) 

The alarm for the front and rear collision is decided by (19), where Dfront/rear is the estimated 

distance to the vehicles in the front or rear, and Dspeed is the distance corresponding to the 

current speed of the host vehicle. For example, if the speed is 90 km/hr, Dspeed is set as 90 m. 

This rule implies that if Dfront/rear is less than one-half of Dspeed the system will raise the alarm to 

warn the driver. If the host vehicle is not changing lanes, the approaching vehicles in the blind 
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spots are no immediate threat. Therefore, to prevent a possible collision when the driver 

changes lanes without noticing the approaching vehicles in the blind spots, the warning rule 

for blind spots is decided by (20), where Dblindspot is the estimated distance to the vehicles in the 

blind spots and the threshold is set to 10 m. Fig. 19 gives the flowchart for the warning 

strategy. 
 

/front rearD
blindspotD

/

1
?

2
front rear speedD D< 10?

blindspot
D <

  
 

Fig. 19. The flowchart for the warning strategy 

4. Implementation Results 

This section describes the implementation details and the experimental results obtained. All 

functionalities were successfully implemented and installed in an experimental car. Four 

cameras were installed: one at the front windshield, another at the back windshield, and one on 

each of the side mirrors, as shown in Fig. 20. The system prototype was implemented on a TI 

DM642 platform that had a 600 MHz DSP processor. Images were captured from the cameras 

and inputted to the DSP to be processed for various purposes. The processing performance for 

an image size of 352 × 240 (CIF) achieved 30 frames per second (FPS). The experimental 

results of each function are described below. 
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(a) Front (b) Rear (c) Left (d) Right 

Fig. 20. Cameras in the car 

The algorithms for vehicle detection on actual roads under various lighting and weather 

conditions were verified. The detection results for lane markings and vehicles in front and to 

the rear are shown in Fig. 21. Fig. 21(a)-(c) show the various forms of interference that were 

on the road surface, such as texts, on-bridge joint, and shadow under the bridge. The system 

overcame the interferences and detected vehicles correctly. At night, the interference not only 

included the text on the road, but also the headlights of other vehicles. The detection results are 

shown in Fig. 21(d)-(f). As shown in Fig. 21-(g) and 21-(h), it was raining heavily during the 

day on Highway No. 1 in Taiwan. Our system successfully overcame the interference caused 

by the wipers, drops of water on the windshield, and light reflected off the road surface. In 

addition, it also operated properly on curved roads. Because the lane markings are modeled 

using parabolic polynomial functions, the detected lines can fit real curvatures properly, as 

illustrated in Fig. 21-(i).  
 

   
(a) Texts on the road (b) On-bridge joint influence (c) Shadow under the bridge 

   
(d) Night condition (e) Other vehicle headlights (f) Texts on the road at night 

   
(g) Rainy day condition with 

wiper interference 

(h) Drops of water on the 

windshield 

(i) Curved road 

Fig. 21. Detection results in front and at the rear under various conditions  
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(a) Texts on the road (b) Shadow of trees (c) Zebra crossing on road 

   
(d) Tailed shadow (e) Headlights reflected on a 

rainy day 

(f) Rainy day with drops of 

water 

Fig. 22. Detection results in the blind spots under various conditions  

Fig. 22 demonstrates the detection results in the blind spots under various lighting and 

weather conditions. Fig. 22(a)-(d) show the various forms of interference on the road surface, 

such as texts, the shadow of trees, zebra crossing, and tailed shadow of closing vehicles. On a 

rainy day, the headlights reflecting off the road surface and drops of water are major forms of 

interference, as illustrated in Fig. 22-(e) and 22-(f). However, the vehicle detection algorithms 

successfully gave the desired outcomes at 30 FPS. 

To evaluate the accuracy of the estimated distances, traffic cones were placed away from 

the vehicle as a reference to measure real distances. The measured distances in the front/rear 

and blind spot ranged from 20 to 60 m and from 5 to 20 m, respectively. The experimental 

results of real and estimated distances with average error, standard deviation, and maximum 

error for each distance are summarized in Table 1 and Table 2. Furthermore, to evaluate the 

vehicle detection ability, we conducted experiments covering a variety of lighting and weather 

conditions (day, night, and rainy), and selected Highway No. 1 in Taiwan as the test scene. On 

average, the correctness ratio for vehicle detection was more than 93%. Table 3 shows the 

detection ratio for the front, rear, and blind spots under the different conditions. Detection ratio 

is defined as true positive / (true positive + false negative), where true positive means the 

number of frames for which the lane markings or vehicles are correctly detected, and false 

negative represents the number of frames for which lane markings or vehicles exist but are not 

detected. Both detection ratios of lane markings and vehicles were above 90%. The percentage 

of lane marking detection was even higher at 99%. On the other hand, the average detection 

ratio in the blind spot was approximately 95%. 

Table 1. Distance estimation in front and at the rear 

Real Distance 

(m) 

Estimated Distance 

(m) 

Average Error 

(%) 

Standard Deviation 

(m) 

Maximum Error 

(m) 

20 20.45 2.25 0.077 0.53 

30 30.97 3.23 0.173 1.16 

40 41.85 4.63 0.308 2.18 

50 52.74 5.48 0.481 3.23 

60 64.05 6.75 0.692 4.81 
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Table 2. Distance estimation in the blind spots 

Real Distance (m) Estimated Distance (m) Average Error (%) Standard Deviation Maximum Error 

5 5.16 3.2 0.005 0.17 

10 10.21 2.1 0.019 0.23 

15 15.37 2.47 0.044 0.42 

20 20.53 2.65 0.078 0.62 

Table 3. Detection ratio in front, at the rear and in blind spots under the different conditions. 

 Front and Rear Blind Spot 

Weather 
False Negative / True 

Positive 

Detection 

Ratio 

False Negative / True 

Positive 

Detection 

Ratio 

Daytime 31/1018 97.04% 38/2500 98.48% 

Rain 85/1038 92.43% 126/2000 93.7% 

Nighttime 59/1024 94.55% 123/2500 95.08% 

Total 175/3080 94.62% 287/7000 95.90% 

 

The performance of vehicle detection in front and at the rear, and in the blind spots is 

compared with other approaches in Table 4 and Table 5, respectively. The test scenario in the 

comparison was Highway No. 1, in Taiwan, and a driver driving for 30 min in the daytime. For 

vehicle detection in front and at the rear, Kim et al. [24] also used lane information to assist the 

vehicle detection process, while Sun et al. [21] used the effective features of the vehicle. The 

results show that vehicle detection ability is enhanced by adding lane information. However, 

without the assistance of the camera model, both works cannot provide distance information to 

drivers. Similarly, the performance of our proposed system in the blind spot was compared 

with the vertical-edge based method [28], and the region-based method [34], respectively. The 

results show that our proposed system not only provides better performance, but also can offer 

distance information to the driver. In consequence, the experimental results above reveal that 

our proposed approach works well for vehicle detection in front, at the rear, and in the blind 

spots. 

Table 4. Comparisons of vehicle detection in front and at the rear. 

Scenario Test period Proposed Kim et al. [24] Sun et al. [21] 

Highway in the daytime 30 min 97.04% 96.12% 94.47% 

Table 5. Comparisons of vehicle detection in the blind spots. 

Scenario Test period Proposed Lin et al. [28] Cayir et al. [34] 

Highway in the daytime 30 min 98.48% 81.94% 82.35% 

5. Conclusion 

This research proposed a vision-based collision warning system that detects and monitors 

surrounding vehicles in order to keep drivers aware as to the status of their surroundings. 

Vehicle detection is designed not only for the front and rear, but also for the blind spots. The 

distances to the surrounding vehicles are all estimated to determine the possibility for 

collisions. The system notifies drivers if they are too close to other vehicles, and reduces the 

danger caused by the blind spots when they are changing lanes. Our algorithm uses camera and 

lane models to derive the distances from the image coordinates to the world coordinates. Using 
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different parameters, i.e., pan angles, the formula can be used for the front, rear, and side views. 

This significantly reduces system complexity by reusing the same basic part in the algorithm 

for different purposes. The developed functions were fully implemented on an embedded 

platform and tested in a real environment. The performance of our vehicle detection system 

was tested under various conditions on different road types. It was successfully verified over 

hundreds of kilometers on Highway No.1 and Expressway No. 68 in Taiwan. This confirms 

that our algorithm is robust in varied environments. In the future, the addition of driving status 

recorders and remote surveillance of the driver are interesting extensions for driving safety. 
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