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Natural convection in a three dimensional tapered chimney is investigated numerically. In order to investi-
gate the natural convection under a high temperature difference situation, Boussinesq assumption is not
adopted instead of consideration of the compressibility of fluid. Methods of Roe scheme, preconditioning
and dual time stepping are used to solve governing equations for a low speed compressible flow. Coordinates
transformation of algebraic grid generation and non-reflecting boundary condition are used to facilitate com-
putation processes. The results reveal that in the expanding duct local Nusselt numbers distributed around
the corner region are larger than those distributed around the central region. An available correlation equa-
tion is proposed and is well consistent with the numerical results.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

It is well-known, a structure of chimney is indispensably used in
high temperature systems of combustion, pollution control, ventila-
tion, etc. That the importance of practical application of the chimney
is indisputable is the main reason for the study of heat transfer mech-
anisms of the chimney still receiving lots of attentions.

Basically, the chimney is composed of three main parts of a large
pedestal, a convergent duct and a small extending duct. However,
the geometries of the three parts are different that causes the descrip-
tion of computational domain to be complicated and increases the
burden of computational processes. Besides, both effects of accelera-
tion of flow and increment of drag resistance caused by the continu-
ous decrement of cross section area in the convergent duct on
thermal and flow mechanisms simultaneously appear that leads the
analyses of thermal and flow mechanisms in the three dimensional
chimney to be complex. Lots of papers [1–5] had already adopted a
two dimensional modes to investigate the subject of thermal and
flow mechanisms in the convergent duct and obtained available re-
sults. Regretfully, the effect of neighboring convergent walls on the
thermal and flow mechanisms has difficulty to be taken into consid-
eration in the two dimensional model. A previous study [16] had
studies forced convection in a three dimensional tapered chimney
and revealed the unique characteristic of the effect of neighboring
convergent walls on the thermal and flowmechanism in the chimney.
al Engineering, National Chiao
0, Taiwan, ROC. Tel.: +886 3

rights reserved.
However, the characteristic is hardly investigated in the situation of
natural convection in the three dimensional tapered chimney.

The aim of the study investigates thermal and flow phenomena of
natural convection in a three dimensional tapered chimney numeri-
cally. For simulating a high temperature situation more realistically,
Boussinesq assumption is no longer used and the compressibility of
fluid is considered instead. Methods of Roe scheme [17], precondition-
ing [18], and dual time stepping [19] are adopted for solving compress-
ible flow problems. Also in order to execute coordinate transformation
and economize computational time, methods of algebraic grid genera-
tion [20] and non-reflecting boundary conditions [21] are used together.
The results reveal that in addition to the increment of average Nusselt
number accompanying with the decrement of cross section area due
to the shape of tapered duct, the local Nusselt number in the corner re-
gion of extending duct is abruptly increased. The later phenomenon is
much different from that indicated in the forced convection situation
[16].

2. Physical model

A three dimensional tapered chimney regarded as a physical
model is shown in Fig. 1. Lengths of the pedestal, tapered duct and
extending duct are l1, l2and l3, respectively. Widths of the pedestal
and extending duct are d1andd2, respectively. The tapered angle is ϕ
and the cross section of the chimney is square. The gravity g is down-
ward, and the temperature and pressure of surroundings are 298 K
and 101,300 Pa, respectively. The temperature of heat surfaces is
constant and equal to Th. The boundary condition at the inlet and outlet
of chimney is non-reflecting for saving the usage of computational
grids. From a point view of application, two different tapered angles of
π
6 and

π
4 are selected.
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T1:1 Nomenclature

T1:2 d1 width of pedestal (m)

T1:3 d2 width of extending duct(m)

T1:4 e internal energy (J/kg)
T1:5 g acceleration of gravity (m/s2)
T1:6 k thermal conductivity (W/mK)
T1:7 l1 length of pedestal (m)
T1:8 l2 length of tapered duct (m)
T1:9 l3 length of extending duct (m)
T1:10 NuX local Nusselt number defined in Eq. (9)
T1:11 NuY loca Nusselt number defined in Eq. (1)
T1:12 NuA area average Nusselt number defined in Eq. (10)
T1:13 P pressure
T1:14 Pr Prandtl number
T1:15 Q mass flow (kg/s) defined in Eq. (11)
T1:16 R gas constant (J/kg/K)
T1:17 Ra Raleigh number defined in Eq. (8)
T1:18 t time (s)
T1:19 T temperature (K)
T1:20 T0 temperature of surroundings (K)
T1:21 Th temperature of heat surface (K)
T1:22 u, v, w velocities in x, y and z directions (m/s)
T1:23 x, y, z Cartesian coordinates (m)
T1:24 X, Y, Z dimensionless Cartesian coordinates
T1:25

T1:26 Greek symbols
T1:27 γ specific heat ratio
T1:28 ϕ tapered angle of chimney
T1:29 ξ, η, ζ curvilinear coordinates
T1:30 μ viscosity (N ⋅s/m2)
T1:31 μ0 Surrounding viscosity (N ⋅s/m2)
T1:32 ρ density (kg/m3)
T1:33 ρ0 surrounding density (kg/m3)
T1:34 τ dimensionless time (τ= tα/d12)
T1:35

a) 
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Fig. 1. Physical model.

510 W.-S. Fu et al. / International Communications in Heat and Mass Transfer 39 (2012) 509–513
For facilitating the analysis, the following assumptions are made:

1. The work fluid is ideal gas and follows the equation of state of ideal
gas.

2. The magnitudes of gradients of density and pressure on the whole
surfaces in the normal direction are zero.

The governing equations are derived as follows.

∂U
∂t þ ∂F1

∂x þ ∂F2
∂y þ ∂F3

∂z ¼ S ð1Þ

The quantities included in U and Fi are separately shown in the
following equations.

U ¼

ρ
ρu
ρv
ρw
ρe

0
BBBB@

1
CCCCA ð2Þ

and

Fi ¼

ρui
ρuiu1 þ Pδi1−μAi1
ρuiu2 þ Pδi2−μAi2
ρuiu3 þ Pδi3−μAi3

ρeþ Pð Þui−μAijuj−k
∂T
∂xi

0
BBBBBB@

1
CCCCCCA
∀i ¼ 1 xð Þ;2 yð Þ;3 zð Þ; ð3Þ
where u1=u, u2=v, u3=w and Aij ¼ ∂uj

∂xi
þ ∂uj

∂xi
, the ideal gas equation

is written by

P ¼ ρRT ð4Þ

The Sutherland's law is adopted to evaluate the viscosity and the
thermal conductivity.

μ Tð Þ ¼ μ0
T
T0

� �2
3 T0 þ 110
T þ 110

ð5Þ

k Tð Þ ¼ μ Tð ÞγR
γ−1ð ÞPr

where ρ0=1.1842kg/m3, g=9.81m/s2, μ0=1.85×10−5N ⋅s/m2, T0=
298K, γ=1.4, R=287J/kg/K and Pr=0.72.

and

S ¼

0
− ρ−ρ0ð Þg
0
0
− ρ−ρ0ð Þgu1

2
66664

3
77775 ð6Þ

where g=9.81m/s2.
To simplify the analysis, the following dimensionless variables are

made.

X ¼ x
d1

;Y ¼ y
d1

; Z ¼ z
d1

; ð7Þ



Fig. 3. Comparison of local Nusselt numbers on the centerline of duct heat surface.
(Ra=2.61×106).
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τ ¼ tα
d1

2

l1 ¼ l3 ¼ d1; d2 ¼ 3
4
d1

The variable compressibility and viscosity of the working fluid are
considered, and the definition of the Rayleigh number is expressed as
follows.

Ra ¼ Pr⋅Gr¼ ð0:72Þ⋅ gβ0 Th−T0ð Þρ0
2d1

3

μ0
2 ð8Þ

3. Numerical method

The numerical method adopted in this work is mainly modified
from that used in the previous study [16] except the factor of gravity
regarded as a source term in the governing equation mentioned
above. Similar derivations and computation processes are indicated
in [16].

4. Results and Discussion

In order to increase the computational efficiency, in Fig. 2 the
physical domain is transformed into the computational domain of
rectangular shape by way of the method of algebraic grid generation
[20].

In Fig. 3, comparison of local Nusselt numbers obtained by different
grid distributions on the centerline of duct heat surface is indicated, and
the grid distribution of 50×50×120is selected. The definition of local
Nusselt number NuX distributed in the x direction is expressed as
follows.

NuX ¼ d1
k0 Th−T0ð Þ k Tð Þ ∂T∂n

� �
ð9Þ

Shown in Fig. 4, the variations of average Nusselt numbers of the
whole heat surface and mass flow rate at the inlet with time are indi-
cated. The definition of average Nusselt number of the whole heat
surface NuA and mass flow rate Q at the inlet is expressed as follows.

NuY ¼ d1
k0 Th−T0ð Þ k Tð Þ ∂T∂n

� �
ð10Þ

NuA ¼ 1
A
∫Lx

∫Ly
Nuydydx ð11Þ
physical domain computational domain

z

y x η ξ

ζ

Fig. 2. Diagram of the coordinates transformation.
Q ¼ ρud21 ð12Þ

At the initial stage, the fluids in the duct are discharged to the out-
side of duct from both inlet and exit, because the heat wall causes
decrement of the densities of fluids and increment of volume of fluids
in the duct. Afterward, the buoyancy force is induced by the small
densities of fluids, then part of fluids are sucked from the outside
and flow into the duct via the inlet (AB), and part of fluids via the out-
let (GH) are discharged to the outside. Besides, the cross section area
of inlet and outlet are different that causes the phenomena men-
tioned above to happen several times repeatedly. Finally, the variable
phenomena become a steady situation, and the variations of average
Nusselt number and mass flow rate trend to a constant.

In Fig. 5, the distributions of velocity u on the cross sections of AB,
CD, EF and GH are indicated, respectively. The darker the color is, the
lower the velocity u displays. At the inlet AB, fluids are sucked from
the outside that causes velocities of fluids in the central region are
faster than those near the wall region dragged by the wall. At the
cross section of CD, since the effect of buoyancy force on the velocity
of fluid begins to appear, the velocities of fluids in the region between
the central and near wall regions are faster than those in the two
neighboring regions. At the cross section of EF , the cross section
area is contracted to the minimum area that naturally causes the ve-
locities of fluids at this location to be accelerated. The smaller cross
τ
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Fig. 4. Variations of average Nusselt numbers of the whole heat surface and mass flow
rate with time. (Ra=2.61×106,ϕ ¼ π

6).
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Fig. 5. Distributions of velocity u on AB, CD, EF and GH cross sections.( Ra=6.04×104, ϕ ¼ π
6 ).
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section area leads the corner region to be more easily affected by the
heat walls. As a result the velocities of fluids in the corner region are
slightly faster than those in the other regions. At the outlet of GH , the
fluids have high velocities apparently to gather in the region close to
the corner because of the buoyancy effect that causes the thickness of
velocity boundary layer in the corner region to be thinner than that in
the other regions. This phenomenon is advantageous to the heat
transfer mechanism.

Fig. 6 indicates distributions of local Nusselt numbers NuY's on the
AB, CD, EF and GH lines, respectively.

Generally, local Nusselt numbers distributed on the inlet AB line
have the larger magnitude relative to those on the other location.
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Fig. 6. Distributions of local Nusselt number on the AB , CD , EF and GH lines.
(Ra=6.04×104,ϕ ¼ π

6).
Meanwhile the influence of buoyancy is not apparent yet, in the cor-
ner region the drag resistance caused by neighboring walls is larger
than that in the central region. Then the local Nusselt number NuY be-
comes small in the corner region. The location of CD is in the down-
stream of the AB, local Nusselt numbers distributed on the CD are
naturally smaller than those on the lineAB. Since the line EF is located
at the end of tapered duct, the cross section area on the line EF is con-
tracted and the flow velocity is accelerated at this location. This phe-
nomenon causes local Nusselt numbers distributed on this location to
be enhanced relatively to those distributed on the line CD. At the out-
let GH , the cross section area is constant in the extending duct and
local Nusselt numbers distributed in the central region are decreased
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Fig. 7. Distributions of local Nusselt number on the AB , CD , EF and GH lines.
(Ra=2.61×106,ϕ ¼ π

6).
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Fig. 8. Comparison of the area average Nusselt numbers with a correlation equation for
ϕ ¼ π

6 andϕ ¼ π
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and smaller than those distributed on the line EF . However, close to
the corner region the influence of the increment of the buoyancy
force induced by the neighboring heat walls is more effective than
that of the increment of drag resistance induced by the neighboring
heat walls. As a result, local Nusselt numbers close to the corner re-
gion are larger than those of the central region. This phenomenon is
much different from that shown in the previous study [16].

In Fig. 7, Rayleigh number increases to2.61×106. Basically, those
phenomena of distributions of local Nusselt numbers are similar to
those indicated in Fig. 6. The whole magnitudes shown in this figure
are larger than those shown in Fig. 6.

Fig. 8 indicates comparisons of area average Nusselt numbers
with a correlation equation. The correlation equation is expressed
as follows.

NuA ¼ m Ra cosϕð Þn ð13Þ

where m=2.495 and n=0.235 for 6.04×104≤Ra≤2.61×106 and
π
6≤ϕ≤ π

4 .
The maximum deviation of both results is not larger than 7%.

5. Conclusions

An investigation of compressible natural convection in a three
dimensional tapered chimney is performed numerically. The conclusions
are drawn as follows.

1. In the extending duct, local Nusselt numbers in the corner region
are larger than those in the central region. This is a characteristic
of the natural convection that is rather different from that of the
forced convection.

2. Both results obtained by numerical computation and correlation
equation have good agreements.
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