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We present an approach for computing the real parts of the nonleptonic B → D P and B → D P
(P = K ,π ) decay amplitudes by using lattice QCD methods. While it remains very challenging to calculate
the imaginary parts of these matrix elements on the lattice, we stress that their real parts play a
significant role in extracting the angle γ in the b–d unitarity triangle of the CKM matrix. The real
part on its own gives a lower bound to the absolute magnitude of the amplitude which is in itself
an important constraint for determining γ . Also the relevant phase can be obtained by using B decays
in conjunction with relevant charm decay data. Direct four-point function calculations on the lattice,
while computationally demanding, do yield the real part as that is not impeded by the Maiani–Testa
theorem. As an approximation, we argue that the chiral expansion of these decays is valid in a framework
similar to that of hard-pion chiral perturbation theory. In addition to constructing the leading-order
operators, we also discuss the features of the next-to-leading order chiral expansion. These include the
contributions from the resonance states, as well as the generic forms of the chiral logarithms.

© 2012 Elsevier B.V. All rights reserved.
1. Motivation and introduction

The B+ → D0 P+ , B+ → D0 P+ decay processes (with P =
K ,π ) are of significant phenomenological importance. These de-
cays can be used for a direct, data-driven, extraction of the CP-odd
phase γ of the b–d unitarity triangle in the CKM matrix. In prin-
ciple, given sufficient number of B mesons they can provide a
determination of γ from experiment to an unprecedented accuracy
of ≈ 0.1% [1]. In comparison, the projected accuracy of the angle β

is at best ≈ 0.5%, and for α it is likely limited to a few percent [2].
Using only the charged B meson decays to achieve a precise deter-
mination of γ is highly valued, since the underlying decay modes
are dominated by tree-level weak-interaction processes.

These direct methods for deducing γ from charged B meson
decays involve interference between D0 and D0 decays to common
final states,1 for example

B− → D0 P− → f P− and B− → D0 P− → f P−, (1)
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1 Note that this involves D0–D0 mixing and in the Standard Model, CP violation
from this source is assumed to be very small; this is assumed in all γ analyses so
far [1].
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where f = K Sπ
0, K +K −, K −π+, K −ρ+, K ∗−π+ , etc. [3–7]. In par-

ticular, when the final state f is such that decays from D0 are
Cabibbo allowed, but those from D0 are doubly-Cabibbo sup-
pressed, e.g. K +π− , then in the overall charged B decays, there
is a tendency for the interference to be maximal, giving rise to
the possibility of large O(1) CP-asymmetries [5]. This is important
as larger asymmetries tend to require fewer B mesons for deduc-
ing γ .

Since the time these methods were proposed, it has always
been recognised and emphasised that studies of charm decays
can be very helpful for extracting γ [5,6,8,9]; in particular, pre-
cise knowledge of the branching ratio of the relevant charm decay
modes and the strong phase(s) can significantly facilitate the deter-
mination of γ . Specific methods [10] have been proposed for stud-
ies at charm facilities for this purpose and great deal of experimen-
tal activity has taken place and progress is being made [11–15].

The methods proposed in Refs. [5,6] allow the extraction of γ ,
as well as the relevant strong phase difference in B− → D0 P− and
B− → D0 P− amplitudes. In these methods, the branching ratio,

Br
[

B− → D0 P−]
, (2)

is an essential input. This branching ratio (for P = K or π ) has
been experimentally measured with good precision. Due to techni-
cal reasons, Br[B− → D0 P−] is not accessible to experiment [5];
for this reason in the method of [5,6] this branching ratio, ex-
pressed as the ratio,

http://dx.doi.org/10.1016/j.physletb.2012.02.059
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:caubin@fordham.edu
mailto:dlin@mail.nctu.edu.tw
mailto:soni@quark.phy.bnl.gov
http://dx.doi.org/10.1016/j.physletb.2012.02.059


C. Aubin et al. / Physics Letters B 710 (2012) 164–170 165
rBP = Br[B− → D0 P−]
Br[B− → D0 P−] , (3)

is treated as an unknown that can be solved for along with γ .
However, determination of this ratio in addition to γ , places ad-
ditional demands on the number of B mesons that are needed.
For this reason, despite the large statistics of the two B-factories
[∼ O(109) B meson samples], γ is presently determined to
only ∼ O(25%). This should be compared with about 3% for β ,
and about 5% for α. To further improve the accuracy on γ , inputs
from lattice QCD (LQCD) on the ratio in Eq. (3) would be very use-
ful. In other words if the lattice could provide an accurate value of
this ratio, a fewer number of B meson samples will be needed to
achieve a given accuracy on γ .

For the purpose of a lattice study, we define a “reduced” ratio
which is independent of the CKM matrix elements,

rred
BP ≡ rBP

V combo
CKM

= rBP
|V ∗

cb V uq|2
|V ∗

ub V cq|2 , (4)

where q = s,d depending on whether P = K or π . Needless to
say, the study of hadronic weak decays on the lattice continues
to represent an outstanding challenge. Exploratory studies [16–18]
initiated in the 80’s did not have much success, because of the
Maiani–Testa no-go theorem (MTNGT) [19]. This theorem states
that Euclidean four-point correlators (three sources for external
hadrons plus one weak-operator insertion point) always result in
the average of in- and out-states, leading to the impossibility of ex-
tracting information about the strong phases. That is, one can only
compute the real parts of nonleptonic decay amplitudes from such
correlators in a finite volume.2 For the calculation of K → ππ on
the lattice, one can evade the MTNGT using the Lellouch–Lüscher
(LL) method [21], and the RBC–UKQCD collaboration is making
considerable progress [22,23] in this avenue.

On the other hand, the lattice computation of these B → D P
decay amplitudes remains challenging, both because the calcula-
tion of the lattice four-point function is computationally demand-
ing to evaluate and because the LL method is only applicable to
processes involving elastic final-state scatterings. With the advent
of new powerful computers such as the BG/Q, the former difficulty
may be overcome in the near future, especially since lattice results
for the real part of these amplitudes could provide valuable in-
formation on the ratio, Eq. (4), and thereby help in the extraction
of γ when combined with experimental measurements. For now,
we will investigate the use of some approximation methods for
tackling these amplitudes.3

Let us recapitulate that for a determination of the ratio, Eq. (4),
what one needs is the absolute value of the amplitudes for the
B → D0 P and B → D0 P modes, and not just the real part of the
amplitudes that is accessible on the lattice. So what we envision
is that the phase of these amplitudes will also be accessible by
combining information from the method of [5,6] with the phase
of the relevant charm modes coming from charm studies as briefly
alluded to above.

While the strong phase is vital to determining γ , the real part
of the amplitude is still useful in and of itself. This is obtained from
direct computation on the lattice from four-point function studies
or via approximation methods, directly yielding a lower bound on
the absolute value of the amplitude, which would be a valuable

2 The D–P spectrum in finite volume is rendered discrete, enabling the extraction
of the energy of the excited state which corresponds to the physical state [20].

3 It is useful to note that lattice calculation of these B → D(D)P amplitudes in-
volve no mixing with lower dimensional operators, “eye-graphs” or disconnected
diagrams and to that extent are simpler than K → 2π amplitudes in the �I = 1/2
channel.
constraint on γ extraction. Comparing with the progress on K →
2π decays [22,23], it is reasonable to foresee a lattice calculation
which may reach a precision on the real part of this amplitude
on the order of 15–20% within the next five years. With the input
of such lattice computations, and the progress in the analysis of
the CLEO data for the charm decays [14], one can envisage the
extraction of γ with error around 10%.

Regarding the approximation methods for lattice studies, we
first examine the possibility of chiral expansion of the real parts
of B− → D0 P− and B− → D0 P− amplitudes, in the frame-
work of heavy-meson chiral perturbation theory (HMχPT) which
merges heavy-quark effective theory and chiral perturbation theory
(χPT) [24–29]. The presence of the b and c quarks, both heavier
than ΛQCD, allows for systematic expansion in terms of ΛQCD/mb,c
(mb,c is the b, c quark mass). This expansion has already been
used both in lattice determinations to leptonic and semileptonic
decays, as well as in the continuum. Combined with the chiral ex-
pansion, it leads to a powerful tool for extrapolating lattice data
to the physical pion mass. This extrapolation will still be an es-
sential step in lattice calculations in the foreseeable future, since
most lattice simulations are not yet performed at the physical pion
mass.

To begin, we examine the validity of HMχPT for the processes
we are interested in. In the limit where both the b and c quarks
are treated as static, resulting in a soft final-state Goldstone bo-
son, this approach is valid. However, this limit is far from the
physical regime, and such an extrapolation would introduce signif-
icant systematic errors. Therefore, the straightforward applicability
of χPT is questionable (i.e. it would be a poor approximation with
rather large errors). On the other hand, if we perform simula-
tions near the physical kinematic point of the decays of interest
[B → D K (π)], the emerging D meson and the Goldstone boson
are hard, with p ∼ 2 GeV.4

The appearance of hard external momenta does not, as one
may initially assume, lead to a breakdown in the chiral expansion.
It was recently shown that treating the s-quark as heavy and using
SU(2) χPT works quite well for chiral extrapolations [30,31]. This
method can be generalised to processes in which external pions
have hard momenta, and applications have appeared in analysing
K
3 decays [32], K → 2π [33], as well as extensions to semilep-
tonic B decays [34]. A central concern in all of these applications is
how well χPT works in the presence of hard momenta. In partic-
ular, there is evidence that the hard pion does not spoil the chiral
logarithms, at least to next-to-leading order (NLO) [35].5

Applying this to processes involving D mesons is straightfor-
ward, and a key result is that the hard momenta of the external
mesons (both the D and the pion) will be absorbed into a redefi-
nition of the low-energy constants (LEC’s), and thus all remaining
quantities will be soft. Thus we can still treat the D meson using
the nonrelativistic approach of HMχPT, so that corrections arising
in the D sector will arise at O(ΛQCD/MD), as usual.

To investigate the relevant B decay processes, we are inter-
ested in the following current–current, �b = 1, operators (α, β are
colour indices)

Q b→c,i
1 = (

qi
αγ μ(1 − γ5)bα

)(
cβγμ(1 − γ5)uβ

)
, (5)

Q b→c,i
2 = (

qi
αγ μ(1 − γ5)bβ

)(
cβγμ(1 − γ5)uα

)
, (6)

4 Note that this implies large discretisation errors of the form (ap)n , with n > 0,
and as such it would require either very fine lattices or a choice of action which
would largely suppress these errors.

5 As noted in Ref. [33], hard-pion χPT may not be applicable to the extraction of
the imaginary parts of the K → ππ amplitudes. We will comment on this issue for
nonleptonic B decays in Section 5.



166 C. Aubin et al. / Physics Letters B 710 (2012) 164–170
Q b→c,i
1 = (

qi
αγ μ(1 − γ5)bα

)(
uβγμ(1 − γ5)cβ

)
, (7)

Q b→c,i
2 = (

qi
αγ μ(1 − γ5)bβ

)(
uβγμ(1 − γ5)cα

)
. (8)

For the decay channels B− → D0 K − or B− → D0 K − , we will
set qi = s and for B− → D0π− or B− → D0π− we have qi = d.
The corresponding effective Hamiltonian for these decays is

Heff = G F√
2

∑
j=1,2

∑
i=d,s

[
V ∗

cb V uqi C j(μ)Q b→c,i
j

+ V ∗
ub V cqi C j(μ)Q b→c,i

j + h.c.
]
. (9)

We will focus on the nonleptonic decays which have the un-
derlying processes b → cud, b → cus, b → ucd, and b → ucs.
The first two will be mapped onto different operators in the chi-
ral theory than the final two, because they belong to different
irreducible representations under the chiral transformation. Fur-
thermore, a chiral field which creates a heavy–light meson with
a c quark is not a field which destroys a heavy–light meson with a
c anti-quark. We will discuss the details of these operators in the
chiral effective theory in Section 3.

The outline for this Letter is as follows. First, in Section 2 we
present an introduction to HMχPT for B, D and B, D mesons.
In Section 3, we construct the χPT operators for the quark-level
operators in Eqs. (5)–(8). We then treat the leading-order calcula-
tion of B → D P and B → D P and relate them to the unphysical
B → D and B → D processes. In Section 4, we discuss the tree-
level resonance (initially either a B∗ or D∗) contributions to the
nonleptonic B decays in the framework of HMχPT. Finally we
sketch the steps required for a full one-loop calculation in Sec-
tion 5 and conclude in Section 6.

2. Heavy-meson chiral perturbation theory

The strong-interaction chiral Lagrangian for the Goldstone
bosons is (the η′ is already integrated out) [36,37]

LG = f 2

8
Tr

(
∂μΣ∂μΣ†) + 1

4
μ f 2Tr

(
MΣ +MΣ†), (10)

where μ is a low-energy constant (LEC) related to the chiral con-
densate, M is the light-quark mass matrix,

M = diag(mu,md,ms), (11)

Σ = exp(2iΦ/ f ) is the nonlinear Goldstone particle field, with Φ

being the matrix containing the standard Goldstone fields, and we
use a normalisation for f such that fπ ≈ 130.7 MeV. Under an
SU(3)L ⊗ SU(3)R chiral rotation, Σ transforms as

Σ −→ LΣ R†, where L ∈ SU(3)L and R ∈ SU(3)R. (12)

To account for the light-quark dynamics in heavy–light mesons,
one can combine the formulations for heavy-quark effective theory
(HQET) and χPT into HMχPT [24–29]. There is a U (2m) spin-flavor
symmetry on the heavy-quark side for m heavy quarks, and the
standard (broken) SU(3)L ⊗ SU(3)R chiral symmetry for the light
quarks.

We will sketch the relevant details for constructing HMχPT, us-
ing the notation of Ref. [38]. First, we have the field which destroys
(creates) a heavy–light meson

H (Q )
v,a =

(
1 + /v

2

)(
γ μV∗(Q )

μ,a − γ5P(Q )
a

)
,

H (Q )
v,a ≡ γ 0 H (Q )†

a γ 0 = (
γ μV∗(Q )†

μ,a + γ5P(Q )†
a

)(1 + /v
)

, (13)

2

where a is the light-quark flavor index, Q is the heavy-quark in-
dex, and v is the four-velocity of the heavy–light meson. We use P
for the heavy–light pseudoscalar field and V∗ for the heavy–light
vector field. For the heavy–light fields with heavy anti-quarks,
we have [39]

H (Q )
v,a = (

γ μV∗(Q )
μ,a − γ5P(Q )

a
)(1 − /v

2

)
,

H (Q )
v,a ≡ γ 0 H (Q )†

a γ 0 =
(

1 − /v

2

)(
γ μV∗(Q )†

μ,a + γ5P(Q )†
a

)
. (14)

It is convenient when dealing with both charm and bottom quarks
and anti-quarks to combine them into multiplets which transform
under the U (4) spin/flavor symmetry,

H Q ,v,a =
(

H (b)
v,a

H (c)
v,a

)
, H Q ,v,a =

(
H (b)

v,a

H (c)
v,a

)
. (15)

Suppressing the light flavour and velocity indices, under the
heavy-quark spin/flavour transformation S ∈ U (4), and the un-
broken light-flavour transformation U(x), the above fields trans-
form as

H Q (x) → S H Q (x)U†(x), H Q (x) →U(x)H Q (x)S†,

H Q (x) →U(x)H Q (x)S†, H Q (x) → S H Q (x)U†(x), (16)

where U(x) is a function of L, R and Φ(x).
The Goldstone bosons couple to the heavy–light mesons in

HMχPT via the nonlinear realisation

σ = √
Σ = eiΦ/ f , (17)

which transforms as

σ(x) → Lσ(x)U†(x) = U(x)σ (x)R†,

σ †(x) → Rσ †(x)U†(x) = U(x)σ †(x)L†. (18)

Due to the properties of the heavy–light meson fields in Eq. (16),
it is convenient to define objects involving the σ field that trans-
form only with U and U

†. The two possibilities with a single
derivative are

Vμ = i

2

[
σ †∂μσ + σ∂μσ †], (19)

Aμ = i

2

[
σ †∂μσ − σ∂μσ †]. (20)

The Lorentz vector Vμ can be combined with the derivative to
form a covariant derivative acting on the heavy–light field or its
conjugate:

H Q ,v,b
←−
Dba

μ ≡ ∂μH Q ,v,a + iH Q ,v,bV
ba
μ ,

−→
Dab

μ H Q ,v,b ≡ ∂μH Q ,v,a − iVab
μ H Q ,v,b, (21)

with implicit sums over repeated indices, and similarly for the
H Q ,a fields. The covariant derivatives and Aμ transform under the
unbroken light-flavour symmetry as

H
←−
Dμ → (H

←−
Dμ)U†,

−→
DμH →U(

−→
DμH), (22)

Aμ →UAμU
†, (23)

where we have dropped all the indices for simplicity.
The leading-order chiral Lagrangian is given by LLO = LG +

LHL,1, where

LHL,1 = −i Tr(H H v · ←−
D) + gπ Tr

(
H Hγ μγ5Aμ

)
. (24)
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Fig. 1. Tree-level diagrams contributing to (a) B → D and (b) B → D P at lowest order, with no insertions of the strong Lagrangian. The box is the weak operator, the solid
line is a heavy–light pseudoscalar (either B or D), and the dashed line is the light meson P .
Tr means the complete trace over light-quark flavor indices, heavy-
quark flavor indices, and, where relevant, Dirac indices. Since H
and H always appear together in the Lagrangian, we treat H H as a
matrix in light-quark flavor space: (H H)ab ≡ Ha Hb . The axial cou-
pling gπ in the above Lagrangian determines the B∗–B–Goldstone
and D∗–D–Goldstone interaction strength. Its value, gπ ≈ 0.45, has
recently been computed using unquenched lattice QCD [40–42].

At the next-to-leading order (NLO), the Lagrangian contains a
number of additional terms [38,43,44]. Among these terms, only
one of them,

λ2 Tr

(
1

MP
Hσμν Hσμν

)
, (25)

is relevant to this Letter (λ2 is a LEC). This operator breaks the
heavy-quark spin symmetry and results in the B∗–B and D∗–D
mass splittings. Notice that MP is taken to be the corresponding
B and D meson masses in this work, and we do not include other
effects related to the breaking of heavy-quark flavour symmetry.

3. The chiral expansion for B → D K (π) amplitudes

The difficulty in the use of χPT in computations for B → D P
decay amplitudes originates in the large momenta carried by the
final state hadrons. In general, the chiral expansion is known to
be applicable only to processes involving momenta well below the
chiral symmetry breaking scale. On the other hand, it has been es-
tablished recently that χPT can be valid for amplitudes containing
hard final state particles [32–34,45]. One important point in such
procedures is that the LEC’s are no longer universal quantities for
a fixed number of sea quarks. Rather, they depend on the hard
momentum scale which results from either the kinematics or the
mass of the external particles.

This procedure of separating the hard scales in a process is
described in detail in the references given above. The key point
in this separation lies with the derivative couplings that give rise
to momentum dependence in χPT calculations. When these mo-
menta are external and hard, they can be absorbed into the LEC’s
of the theory. We will discuss this procedure explicitly with an ex-
ample diagram for the process B → D P in Section 5.

First we discuss the construction of the χPT weak operators
corresponding to those in Eqs. (5)–(8). Omitting the colour indices
which do not play a role in χPT, these operators can be written as

Q b→c,i = (
qi

LΓ1b
)
(cΓ2uL),

Q b→c,i = (
qi

LΓ 1b
)
(uLΓ 2c), (26)

where qi = d or s, and

qL =
(

1 − γ5

2

)
q,

Γ1 = Γ2 = Γ 1 = Γ 2 = γμ(1 − γ5). (27)

Under the SU(3)L ⊗SU(3)R chiral symmetry group, Q b→c,i is in the
(8L,1R) representation, while Q b→c,i is in the (6̄L,1R) representa-
tion. To bosonise these operators, we promote Γ1,2 and Γ 1,2 to be
spurion fields which transform as
Γ1 → LΓ1 S†, Γ2 → SΓ2L†,

Γ̄1 → LΓ 1 S†, Γ̄2 → LΓ 2 S†, (28)

under the heavy-quark spin/flavour and chiral rotations. This ren-
ders the operators in Eq. (26) invariant with respect to such trans-
formations. We then find the bosonisation results in the leading-
order (LO) operators

Oχ,i =
∑

x

{
α1,x TrD

[(
σ1k H (c)

v ′,k
)
Γ2Ξ

′
xΞxΓ1

(
H (b)

v,l σ
†
li

)]

+ α2,x TrD
[(

σ1k H (c)
v ′,k

)
Γ2Ξ

′
x

]
TrD

[
ΞxΓ1

(
H (b)

v,l σ
†
li

)]}
, (29)

for Q b→c,i , and

Oχ,i =
∑

x

{
α1,x TrD

[
Ξ ′

xΓ2
(

H(c)
v ′,kσ

†
k1

)
ΞxΓ1

(
H (b)

v,l σ
†
li

)]

+ α2,x TrD
[
Ξ ′

xΓ2
(

H(c)
v ′,kσ

†
k1

)]
TrD

[
ΞxΓ1

(
H (b)

v,l σ
†
li

)]}
, (30)

for Q b→c,i , where TrD means the trace in Dirac space, and the
summation over repeated indices are assumed. The symbols Ξ ′

x
and Ξx are all possible pairs of Dirac structures allowed by sym-
metries [46],

{
Ξ ′

x,Ξx
} = {{1,1},{γν,γ μ

}
,
{
/v ′, /v

}
,
{
/v ′,1

}
, {1, /v},{

σμν,σμν
}
, {γ5, γ5},

{
γμγ5, γ

μγ5
}
,
{
/v ′γ5, /vγ5

}
,{

/v ′γ5, γ5
}
, {γ5, /vγ5}

}
. (31)

In particular, the positions of these Dirac structures in HMχPT
weak operators are constrained by heavy-quark spin/flavour sym-
metry. They have to be inserted to account for light-quark and
gluon dynamics.

Performing the Dirac traces in Eqs. (29) and (30), we obtain

Oχ,i = [
β1 + (β1 + β2)

(
v ′ · v

)][(
σ1kP(c)†

k

)(
P(b)

l σ
†
li

)]
+ [

(β1 − β2)v ′μ − β1 vμ
][(

σ1kP(c)†
k

)(
V∗(b)

μ,l σ
†
li

)]
+ [

β1 v ′μ − (β1 + β2)vμ
][(

σ1kV∗(c)†
μ,k

)(
P(b)

l σ
†
li

)]
− 4

[
(β1 − β2) + β1

(
v ′ · v

)][(
σ1kV∗(c)†

μ,k

)(
V∗(b)μ

l σ
†
li

)]
,

Oχ,i = [
β1 + β2

(
v ′ · v

)][(
P(c̄)†

k σ
†
k1

)(
P(b)

l σ
†
li

)]
− [

β2 v ′μ − (β1 + β5)vμ − β3
(

v ′ · v
)

vμ
]

× [(
P(c̄)†

k σ
†
k1

)(
V∗(b)

μ,l σ
†
li

)]
+ [

β1 v ′μ − β2 vμ
][(

V∗(c̄)†
μ,k σ

†
k1

)(
P(b)

l σ
†
li

)]
+ [

4β2 − β3 − 2(β1 + β4 + β5)
(

v ′ · v
)]

× [(
V∗(c̄)†

μ,k σ
†
k1

)(
V∗(b)μ

l σ
†
li

)]
, (32)

where βi is a linear combination of α1,x and α2,x while β i is a
linear combination of α1,x and α2,x . At the lowest order in the
chiral expansion, only the first terms in the above operators con-
tribute to B → D P and B → D P processes. It is straightforward to
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Fig. 2. Tree-level correlators contributing to B → D P . The box is the weak operator, with (a) being the direct B → D P term and (b) being the term with an intermediate
resonance (here a D∗).
demonstrate that if we evaluate the diagrams in Fig. 1 at leading
order,

〈
D0 K −∣∣Oχ,s

∣∣B−〉 = 〈
D0π−∣∣Oχ,d

∣∣B−〉 = i

f

〈
D−∣∣Oχ,s

∣∣B−〉
,

〈
D0 K −∣∣Oχ,s

∣∣B−〉 = 〈
D0π−∣∣Oχ,d

∣∣B−〉 = i

f

〈
D−∣∣Oχ,s

∣∣B−〉
. (33)

From Eq. (32), it is clear that beyond the LO, the chiral expan-
sion may become very different for B− → D0 P− and B− → D0 P−
amplitudes. In the next two sections, we will discuss the generic
features of these amplitudes at the NLO and leave the details to a
future publication.

4. Resonance contributions

In this section we discuss one generic feature of B → D P
correlators and amplitudes, namely, the resonance contribution.6

This is partly incorporated in HMχPT via the inclusion of the
vector heavy–light mesons. Fig. 2(b) shows a typical diagram in
which a resonance (D∗ in this case) appears in the B → D P cor-
relators. One can also include heavier resonances in the effective
theory [47], but it is beyond the scope of this Letter. Here we will
address the issue regarding the contribution from the resonance in
the time-momentum representation of correlators. To avoid com-
plications arising from the formulation of HQET and HMχPT in
Euclidean space [48], we work in Minkowski space with the com-
ment that we also carried out a similar calculations by modelling
the heavy–light mesons as relativistic particles in Euclidean space
and obtained the same conclusions presented in this section.

We first set up the calculation for the LO correlator in Fig. 2(a).
To mimic the setting for most lattice calculations, we integrate
over the spatial volume for the positions of external B , D and
pion (kaon) sources/sinks, i.e., we perform a Fourier transform for
the spatial directions for each of the external points. On the other
hand, we fix the location of the weak operator (the square in the
diagram) to be at the origin. To be consistent with the notation in
Section 3, we denote the velocity of B and B∗ by v and that of D
and D∗ by v ′ . For simplicity, the velocity v is chosen to be

v = (1, �0), (34)

and the time-ordering is implemented as

tB < 0 < tD � tP , (35)

where tB,D,P is the temporal locations of the B, D, P mesons, re-
spectively. Using the Feynman rules derived from the HMχPT La-
grangian and the weak operators in Eqs. (24) and (32), the result
for the contribution from this diagram in the correlator is

CLO = gBDP

f

(
1

2
θ(−tB)

)(
1

2v ′
0
θ(tD)e−iδDtD

)(
e−iωP tP

2ωP

)

= gBDP

f

(
1

2

)(
e−iδDtD

2v ′
0

)(
e−iωP tP

2ωP

)
, (36)

6 The conclusion presented in this section is also valid for B → D P decays.
Fig. 3. A contribution to the process D P → D P involving a single resonance.

where

δD = �v ′ · �pD and ωP =
√

M2
P + �p2

P , (37)

with �pD and �p P denoting the spatial momenta of the D and the
Goldstone boson. The coupling gBDP is one of the linear combina-
tions of the LEC’s βi in Eq. (32).

Next, we discuss the correlator depicted in Fig. 2(b). This di-
agram is calculated by integrating over the entire space–time for
the location of the strong vertex (denoted by the circle). It leads to
the result

Cres = gB D∗(igπ )

f

(
1

2
θ(−tB)

)(
1

2v ′
0
θ(tD)e−iδDtD

)(
e−iωP tP

2ωP

)

×
[

ei(ωP +δD−�D P )tD − 1

2iv ′
0(ωP + δD − �D P )

]

= gB D∗ gπ

f

(
1

2

)(
e−iδDtD

2v ′
0

)(
e−iωP tP

2ωP

)

×
[

ei(ωP +δD−�D P )tD − 1

2v ′
0(ωP + δD − �D P )

]
, (38)

where

�D P = �v ′ · (�pD + �pπ ) + �D

v ′
0

, (39)

with �D denoting the D∗–D mass splitting resulting from the
heavy-quark spin symmetry breaking term in Eq. (25). When the
final-state momenta are tuned such that

ωP + δD = �D P , (40)

the resonance is on-shell and the correlator contains a linear term
in tD ,

Cres|ωP +δD=�D P

= gB D∗ gπ

f

(
1

2

)(
e−iδD tD

2v ′
0

)(
e−iωP tP

2ωP

)(
itD

2v ′
0

)
, (41)

which is an energy shift of the final state. When one takes the
ratio of the B → D P correlator and the square root of the D P →
D P correlator, the tD dependence arising from the square brackets
in Eq. (38) (hence this linear term in tD ), is exactly cancelled by
the contribution from the diagram in Fig. 3.7 The coupling gπ is

7 This cancellation may not occur in partially-quenched QCD due to the loss of
unitarity [49–51].
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defined in Eq. (24), and gB D∗ is a linear combination of the LEC’s βi
in Eq. (32). Notice that gB D∗ is different from gBDP and thus the
resonance contribution results in general in an additional unknown
parameter for B → D P amplitude at the tree level.

5. Beyond tree level

The use of tree-level χPT is certainly limiting. While many sys-
tematic errors should cancel when looking at the ratio of B → D P
to B → D P , going to higher order both in the chiral and heavy-
quark expansions is essential. Using the symmetry relations result-
ing from Eq. (32), we could attempt an NLO calculation to make
similar relationships at higher order, which is possible in the case
of K → 2π , as in, for example, Refs. [52–54].

In order to treat these processes in the physical regime, we
use the methods of Refs. [32–34]: hard-pion χPT (HPχPT). As dis-
cussed earlier, this formalism uses the fact that one or more of the
momenta in the final state very well may be hard, and at the phys-
ical point for B → D P , this is true. For this section we will focus
on P = π .

In order to apply HPχPT to both B → Dπ and B → Dπ , there
are quite a few one-loop diagrams that we must evaluate. The re-
sult of a complete calculation (i.e., the sum of all one-loop dia-
grams) is expected to take the following generic form [working
with the SU(2) chiral theory for now]

M = Mtree
[

1 + a
m2

π

16π2 f 2
ln

(
m2

π

Λ2

)
+ Lm2

π

]
, (42)

where M is one of the particular amplitudes from Section 3, and
Mtree its tree-level value. a is a coefficient that depends on the
particular kinematics chosen for the diagram, and L is a linear
combination of low-energy constants as well as terms arising from
higher-order chiral-level weak operators.8 These would be deter-
mined from evaluating the full one-loop corrections to these am-
plitudes. We stress that a and L above will depend on all the hard
quantities, specifically the mass of the external D meson and the
momenta of both the external D meson and pion. This dependence
is not known analytically, and it makes the LEC’s non-universal
when varying the hard momenta. However, at any fixed kinemat-
ics, the values of the LEC’s are still fixed.9 Additionally, we note
that since all the hard scales are absorbed into the LEC’s, we ex-
pect similar convergence as that of ordinary χPT. Corrections to
the heavy-quark expansion will be more significant coming from
the D meson, and thus both a and L will have O(1/MD) correc-
tions.

In order to understand the specific details, we work through
an example diagram, shown in Fig. 4. To evaluate this diagram,
we envision a lattice simulation where momentum will be con-
served at the strong vertex, but need not be at the weak vertex.
Thus, we define the momentum entering the weak vertex as pwk,
the momentum flowing through the pion line is 
 (the integration
variable), and the external D meson has velocity v ′ and residual
momentum k, so that this diagram has the form,

8 Repeating the spurion analysis of Section 2 would show in principle roughly
3–4 times as many LEC’s arising at NLO relative to LO, but only certain combinations
arise in calculations, e.g., Eq. (42), and as such there will effectively only be a small
number of LEC’s.

9 In practical lattice calculations, one would have to vary the pion mass, and ex-
trapolate to the physical point. In this procedure, it is inevitable to change the
momenta, and therefore the values of the LEC’s. Fortunately, since the hard mo-
menta are all much larger than the typical pion masses in present and future lattice
simulations, changes in the latter will result in very small variations of the former.
Fig. 4. One of the many one-loop diagrams that contribute to B → Dπ , specifically
one which shows the essential features that arise in HPχPT.

〈
D0π−∣∣Oχ,d

∣∣B−〉
Fig. 4

= 〈D0π−|Oχ,d|B−〉tree

8 f 2

∫
dd


(2π)d

× i


2 − m2
π + iε

iv ′ · (
 − pπ )

v ′ · (
 − k − pπ ) − � + iε

≡ 〈D0π−|Oχ,d|B−〉tree

8
I, (43)

where the coefficient arises from the weak vertex, and the momen-
tum injected into the weak vertex, pwk, is related to those carried
by the external B , D and pion,

pπ + pD = pB + pwk. (44)

� = MD − MB is the D–B meson mass splitting (which is of order
1/mc − 1/mb) and kB is the residual momentum of the B meson.

This integral can be evaluated simply to obtain

I = 1

16π2 f 2

[
v ′ · k + �

v ′ · (k + pπ ) + � + iε

× I2
(
mπ , v ′ · (k + pπ ) + � + iε

) − m2
π ln

(
m2

π

Λ2

)]
, (45)

with

I2(m, δ) = −2δ2 ln

(
m2

Λ2

)
− 4δ2 F (m/δ) + 2δ2, (46)

F (x) =
{√

1 − x2 tanh−1
√

1 − x2, 0 � x � 1,

−√
x2 − 1 tan−1

√
x2 − 1, x � 1.

(47)

We can examine this case in the limit where v ′ ·k � mπ , which
is the hard-pion limit. In this limit we find

I2
(
mπ , v ′ · (k + pπ ) + �

) ≈ −m2
π ln

(
m2

π

Λ2

)
, (48)

so that the full integral contributing to this diagram becomes ei-
ther

I(pπ ≈ 0) → −2
m2

π

16π2 f 2
ln

(
m2

π

Λ2

)
, (49)

if we insert momentum into the weak vertex such that pπ ≈ 0, or

I(pπ ≈ k) → −3

2

m2
π

16π2 f 2
ln

(
m2

π

Λ2

)
, (50)

if we choose pwk such that pπ ≈ k. These would give rise to dif-
ferent values of the coefficient a in Eq. (42). This can thus be
extended to all of the diagrams that would contribute to one-
loop order, and for each chosen set of kinematics, we would be
able to find different expressions for a in Eq. (42), and in general,
the LEC L in that equation would have an unknown dependence
on the kinematics. However, the pion mass dependence is well de-
termined.

We close this section by noting that HPχPT is not applicable
for extracting the strong phases of B decays via the computation
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of the one-loop diagram in Fig. 4. The imaginary part in this di-
agram is proportional to

√[v ′ · (pπ + k)]2 − m2
π , therefore grows

with the increasing momenta carried by the final-state mesons,
leading to the failure of the chiral expansion when pD and pπ are
large. This can be understood by noting that the imaginary part
arises from the contribution in which both mesons in the loop are
on-shell, and therefore cannot be soft.

6. Summary and outlook

In this Letter, we proposed a strategy for calculating B → D P
and B → D P (P is a Goldstone boson) decay amplitudes via lat-
tice calculations. Indeed the real part is accessible directly via
four-point function calculations on the lattice as it does not suffer
from the Maiani–Testa No-Go Theorem, though it is computation-
ally demanding. As an approximation, one can invoke the chiral
expansion, specifically taking into account the large momenta of
the final state mesons. We argue that this hard-pion chiral ex-
pansion is valid for these decays, for similar reasons to those in
semileptonic B decays and in K → ππ amplitudes. In general,
this hard-pion chiral expansion results in momentum dependence
of low-energy constants and the coefficients of the chiral loga-
rithms. From our investigation of the structure of a typical one-
loop diagram (Fig. 4), it is shown explicitly how this occurs for the
B → D P amplitudes.

We constructed the leading-order operators, relevant to these
decays, in the chiral effective theory. We studied the tree-level
resonance contributions in the framework of HMχPT, and showed
that these contributions are accompanied by combinations of the
LEC’s which are different from that for the corresponding leading-
order B → D P and B → D P amplitudes. As such, incorporating
resonances in the study of the lattice correlators allows us to ex-
tract some of the LEC’s that are not accessible by applying χPT
naively.

To complete this initial approach, the complete one-loop con-
tributions must be calculated [55]. One can combine these χPT re-
sults with lattice simulations to compute the real parts of B → D P
and B → D P decay amplitudes. Although the lattice calculation
for the imaginary parts of these matrix elements is challenging,
their real parts can already provide important information for an
accurate determination of the angle γ in the b–d unitarity triangle
in the CKM matrix. The real part gives a lower bound to the ab-
solute value of the amplitude, which would be very useful in the
phenomenology of γ -extraction, and by combining this with the
information on strong phases from B and D decays, the absolute
magnitude of the amplitude can also be deduced.

Finally, let us note that, in the long run, as the lattice pro-
gram succeeds in evaluating rred

BP and with experimental studies
using larger data samples, experiment will be able to pin down rBP

with increasing precision. We envision that a combination of these
efforts could lead to an improvement in determinations of γ to
about 10% in 3–5 years. In the longer term, with the use of even
more powerful computers and with data from Super-LHCb and
Super-B factories, the error could be reduced to a few percent.
These improved determinations should allow a useful constraint
on V combo

CKM [Eq. (4)] and consequently on V ub since all the other
factors therein are already known quite well. Given the serious
difficulties [56] in a precise determination of V ub through the con-
ventional semileptonic methods, having an independent constraint
via purely hadronic decays: B → D(D)P may also prove useful.
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