Behav Res (2012) 44:546-557
DOI 10.3758/513428-011-0169-6

On the reliability, consistency, and method-specificity based

on the CT-C(M-1) model

Cherng G. Ding - Ten-Der Jane

Published online: 16 November 2011
© Psychonomic Society, Inc. 2011

Abstract In the present study, we discuss reliability,
consistency, and method specificity based on the CT-C
(M—1) model, which provides clear definitions of trait and
method factors and can facilitate parameter estimation.
Properties of the reliability coefficient, the consistency
coefficient, and the method-specificity coefficient of the
summated score for a trait factor are addressed. The
consistency coefficient and the method-specificity coefficient
are both functions of the number of items, the average item
consistency, and the average item method specificity. The
usefulness of the findings is demonstrated in an alternative
approach proposed for scale reduction. The approach, taking
into account both traits and methods, helps identify the items
leading to the maximum of convergent validity or method
effects. The approach, illustrated with a simulated data set, is
recommended for scale development based on multitrait—
multimethod designs.

Keywords Confirmatory factor analysis (CFA) -
Consistency coefficient - CT-C(M—1) model -
Method-specificity coefficient - Multitrait-multimethod
(MTMM) - Reliability coefficient - Scale reduction

Multitrait-multimethod (MTMM) analysis, proposed by
Campbell and Fiske (1959), has become an essential
strategy for examining the construct validity of psychological
measures (Eid & Diener, 2006). In MTMM designs, each of
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several traits (constructs) is measured by each of several
methods. For example, in Mount’s (1984) study, the traits of
administrative ability, ability to give feedback to subordi-
nates, and consideration when dealing with others were
measured by using the three methods: self-rating, supervisor
rating, and subordinate rating. Convergent validity is
supported when different methods yield consistent results
in measuring the same trait. Discriminant validity is
supported when the traits can be well distinguished from
each other.

Confirmatory factor analysis (CFA) is the analytical
approach that is most consistent with Campbell and
Fiske’s (1959) original formulation of the MTMM matrix
(e.g., Lance, Noble, & Scullen, 2002; Schmitt & Stults,
1986; Widaman, 1985). The effects of all traits and all
methods are examined simultaneously in MTMM-CFA
models. Therefore, convergent and discriminant validities
are assessed in the presence of method effects. Controlling
for method effects can reduce potential bias in parameter
estimates. Widaman proposed hierarchically nested CFA
models for MTMM data to facilitate examining trait and
method effects. Although trait effects reflect how well a
measure can represent its underlying trait, method effects
reflect how much it is affected by the measurement
method. The amount of method effects differs greatly
across disciplines (Cote & Buckley, 1987; Malhotra, Kim,
& Patil, 2006; Mishra, 2000).

A well-known MTMM-CFA model is the correlated
trait-correlated method (CT-CM) model, in which all traits
to be studied are regarded as trait factors and all methods
that are applied are regarded as method factors. The trait
factors can covary among themselves, and the method
factors can covary among themselves as well. However,
trait and method factors are assumed to be uncorrelated. In
addition, it is assumed that method factors do not interact
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with trait factors. Although the CT-CM model is faithful to
Campbell and Fiske’s (1959) original theoretical formula-
tion of the MTMM matrix, this model suffers from two
disadvantages. First, estimation problems often occur,
especially when method factors are correlated (e.g., Kenny
& Kashy, 1992; Marsh, 1989; Marsh & Grayson, 1995),
although using larger MTMM matrices (i.e., more traits and
methods) together with larger samples may yield admissible
solutions (Conway, Lievens, Scullen, & Lance, 2004;
Marsh & Bailey, 1991). Second, neither the trait factors
nor the method factors are clearly defined, making their
interpretation difficult (Eid, Lischetzke, Nussbeck, &
Trierweiler, 2003; Pohl, Steyer, & Kraus, 2008). To
improve the model, Eid (2000) and Eid et al. (2003)
recommended the CT-C(M—1) model. It is named CT-C
(M—1) because the number of method factors is one less
than the number of methods used. At first, one method,
called the standard (or reference) method, has to be
chosen as the comparison standard. Then, for each
trait, the true score of an item measured by the
standard method is taken as a predictor. The method
variable for an item measured by a nonstandard method
is the residual resulting from the regression of the item
true score on the predictor. It is assumed that the
method variables associated with the same nonstandard
method are homogeneous, having a common method
factor. The common method factor thus captures
reliable residual effects that are specific to the items
measured by that nonstandard method and are not
shared with the items measured by the standard
method. Three important consequences follow. The
first one is the absence of the method factor for the
standard method, and therefore the trait is confounded
with the standard method. The second one is the
uncorrelatedness of trait and method factors, allowing
the estimation of variance components due to trait,
method, and error effects for the items measured by
nonstandard methods. The third one is that the method
factors can be correlated. This correlation is a partial
correlation. The CT-C(M—1) model avoids the estima-
tion problems inherent in the CT-CM model. However,
the parameter estimates depend on the standard method
chosen. The meaning of the trait factor varies with
different standard methods. The choice of the standard
method should be guided by the research question and
substantive theory (Geiser, Eid, & Nussbeck, 2008).
Decomposition of the reliability coefficient into the
consistency coefficient and the method-specificity coeffi-
cient based on MTMM models can be seen in the literature
(e.g., Deinzer et al., 1995; Eid, 2000; Eid et al., 2003;
Schmitt & Steyer, 1993). When trait factors, method
factors, and errors are uncorrelated, the variance of an item

can be decomposed into trait variance, method variance,
and error variance. The reliability coefficient of the item is
that part of the item variance explained by the trait and
method factors. It is the part of variance that is not due to
measurement error. The consistency coefficient represents
the proportion of the item variance due to the trait factor.
The method-specificity coefficient represents the proportion
of the item variance due to the measurement method. The
reliability coefficient is the sum of the consistency
coefficient and the method-specificity coefficient. The
consistency coefficient is a quantitative indicator of
convergent validity (Eid 2000; Eid et al., 2003). Deinzer
et al. (1995) mentioned that, the consistency coefficient
rather than the reliability coefficient should be used for
examining trait effects.

It is usually of interest in behavior studies to assess
reliability of the sum of items in a scale. Analyses of
reliability, consistency, and method specificity for the
sum of items across different methods based on an
MTMM design become more complex. As can be seen
later, the reliability of the summated score for a trait
factor is a joint function of the average item reliability
and scale length (the number of items used to measure
the trait factor), regardless of whether there exist
method factors in the model. However, the consistency
coefficient and the method-specificity coefficient—the
two components of the reliability coefficient—of the
summated score possess somewhat different properties,
which are important when assessing the quality of a
scale under MTMM designs. Relevant discussions seem
not addressed in the literature. The purpose of the present
study was to fill this gap. The findings will be useful for
behavior researchers conducting MTMM studies.

Reliability as a function of the number of items

In classical test theory (CTT), x; =¢t; +¢j, i=1, ..., 1;
j=1, ..., J;, where x; denotes the observed score on the
Jjth item for the ith trait factor, #; is its true score, ¢;; is the
corresponding error, / is the number of trait factors in the
model, and J; is the number of items for measuring the ith
trait factor. For congeneric items, true scores on different
items for a trait factor are linearly related. Centered by its
mean /i, item x;; can be formulated by CFA as (McDonald,
1999, p. 78)

xi,-—,ul-j :lF[/Fi‘F@y'; = 1, ceny 1,]2 1, ceny Jl', (1)

where F; denotes the latent factor for trait i, and A, is the
trait loading of x;; on F. A, is the covariance of x;; and Fj.
It is assumed that of,c; = 0 and o, = 0(i £i" orj#j").
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For identification reasons, we usually set 0'125 =1 or

J;

Ar, = 1. The reliability of the summated score X; = ) x;
j=1

for trait F;, denoted by relr, and defined as relr, = o7, /0%,

Ji Ji
where 7; =) t; = > A;F;, is then given by (Lord &
: ~

J=1 J
Novick, 1968, Chap. 9)

(£+)
= }”Fif

relr, is the proportion of the variance of )X; explained by F,
and can be reexpressed as

JiOF,
ol — — 0 3)
1+ (Jl - I)HFi
_ S —
where 9}7,. = _—2‘_, lF,» = ZAF[./J,', O'g = ZO'E/J,,
(lpi) +02, j=1 ! B

and 0 < 6F, < 1. The reliability of the individual item x;
for trait F; is 6y, = A7, /(Af, +02,),j =1, ... , J;, which is
the proportion of its variance explained by F;. Rather than

the average variance extracted, given by E / (E +O'_gi>

J— Ji —
(where A7 =27 /J;) (Fornell & Larcker, 1981), 8, is
j=1

defined as the average item reliability for F; (McDonald,
1999, p. 125), and is actually the reliability adjusted for
scale length. relr. is a joint function of 6 and J;
(McDonald, 1999, p. 124). For a fixed value of EF,-’ relr,
increases as a function of J;. The properties are similar in
that coefficient alpha is a joint function of the average
interrelatedness among items and the number of items (e.g.,
Cortina, 1993). An estimate of the item reliability e-w
resulting from CFA, can serve as an index for assessing the
internal quality of item j for trait i. A trait is “abstract” if it is
reflected in a series of mental or physical activities
(Bergkvist & Rossiter, 2007, p. 183). Scales for less abstract
traits are usually composed of fewer items, with higher item
reliabilities. On the other hand, for more abstract traits, more
items with lower item reliabilities are needed. Although both
can achieve a required level of reliability (e.g., .7), the former
has fewer items but a greater 6 than the latter. When @ is
small, more items are needed to reach a desired reliability.
Adding an item with lower item reliability will reduce 8, but
may increase rel. Dropping an item with lower item
reliability will increase 6, but may decrease rel.

@ Springer

Reliability, consistency, and method-specificity based
on the CT-C(M—1) model

For MTMM data, items are affected not only by their
underlying trait factors but also the measurement methods.
Let x; denote the observed score of the jth item for trait F;
with method M. The CFA model in Eq. 1 can be extended
to formulate a CT-CM or a CT-C(M—1) model, in which
every trait is measured using every method with either a
single item or multiple items. In the CT-CM model, every
item loads on a trait factor and on a method factor. In the CT-
C(M—1) model, however, all items belonging to the standard
method load exclusively on a trait factor. There is no method
factor for these items (Eid et al., 2003; Geiser et al., 2008). If
the first method (k = 1) is chosen as the standard method, the
basic equations of the CT-C(M—1) model are as follows:

Xt =ty + 0 = My + Ar, Fion + 6
(for the standard method (k = 1)),
Xije = Lk + Sk = My + Ary Fi1 + Ay My + Sk
i=1, o L, =1, o Jak=2,...K,

(4)

where t;; denotes the true score of x;; 1 denotes the mean
of x;3; F; | denotes the ith trait factor measured by the first
method, chosen as the standard method; M, (k > 1) denotes
the kth method factor; AFy, denotes the trait loading of x; on
Fi 15 Amy, denotes the method loading of x;; on M; (k > 1);
;% denotes the corresponding error; and J; denotes the
number of items for measuring F; ; with M. There are
different ways (e.g., by fixing the variances of F; | and M to
1 [Geiser et al., 2008] or by fixing one loading per factor to 1
[and freely estimating the factor variances] [Eid et al., 2003])
to identify the model. In the present study, the factor
variances are fixed to 1 because loadings represent trait and
method effects to be assessed, and one would not want to
give fixed values for them. It is assumed that
E(Fi_l) = E(Mk) = 0, Gpl._lgﬁk = 0, Gngu.k = 0, and
Osys.y = 0 (i # i orj#j ork #k'). In addition, traits
and methods do not interact. Trait factors are allowed to
covary, and method factors are allowed to covary as well.
Without loss of generality, a CT-C(M—1) model with the first
method as the standard method for an MTMM design with
three traits (F,, F3, F4) and three methods is illustrated in
Fig. 1. x511, X212, and x, 5 are the items for measuring trait F,
by using methods 1, 2, and 3, respectively. x311, X321, X312,
X320, X332, X313, and x3,3 are the items for measuring trait F;
by using the first method for the first two items, the second
method for the middle three items, and the third method for
the last two items. x411, X412, X413, and x4»3 are the items for
measuring trait /4 by using the first method for the first item,
the second method for the second item, and the third method
for the last two items. M, is missing in the figure because it
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Fig. 1 The CT-C(M—1) model
with the first method as the
standard method for an MTMM
design with three traits and three
methods. F; 1 (i=2,3,4)

denotes the ith trait factor spe-
cific to the standard method
(the first method). M, (k= 2, 3)
denotes the kth method factor.
There is no method factor for
items X211, X311, X321, and X411, 7
measured by the first method

is used as the standard method. F,, F3, and F are therefore
the trait factors measured by the standard method (the first
method). In the CT-C(M—1) model, the three trait factors are
better denoted by F |, F3 |, and F4 ;| to make clear that they
are specific to the first method.

Because the trait is confounded with the standard method,
the corresponding items reflect both the trait and the standard
method factors, and the trait and method effects are
inseparable. Therefore, the consistency coefficient and the
method-specificity coefficient cannot be obtained for the
items belonging to the standard method. It follows that, when
assessing consistency and method specificity for aggregated
items, the items measured by the standard method need to be
excluded. Under the assumptions for the CT-C(M—1) model
given in Eq. 4, the population reliability coefficient,

consistency coefficient, and method-specificity coefficient
K Ji

of the summated score ) > x; with respect to F; ,—
k=2j=1

denoted respectively by Relr, ,, COr,_,, and MSf, ,—are

given by (see the Appendix for derivations)

g,
RelE. s T T = (5)
T L+ (=16
Jir,
COfp, , = = 6
Fiy 1+(Ji_1)61-‘,, ()

-~ ! \
\/1M312 \lezz \le

.//1 x

and
Jiw
FYA L R E— (7)
T+ (=10
K %
where J; = ZJik; 9F,- = OF_, + WFila OF,_, =
k=2 -
(}_“Fi I)Z 73 — Tr,, T — -
(IFi_l )2+TF1_1 “’_425,-’ Ve (ZFi_l )2+TF,'_1 +°—_(25;, i 1;2
- 2 _ _ _ K Ji
(Widage) "+ 2 (Widnay) Weodagy )Pasrs,s Ar, = 20 2.

kk! k=2j=1
# J J

_ ik i
lﬂﬂ( /‘]U /IM"/‘ = j; /IM'J* /Jik’ Gtzsl = kz::lj; O%!/k/ Ly

and wy :J,k/J,(k > 1) E;’_l
the average item reliability 0. It is a reliability index
excluding the effects of scale length. COp, indicates that
part of the variance of the summated score (sum of the
items measured with nonstandard methods) that is due to
interindividual differences on F; ;. MSr,_, on the other
hand, represents that part of the variance that is due to
method-specific differences (not shared with the standard
method). Relp, , = COf,_, + MSF, ,. A large COpr, , indi-
cates high convergent validity. A large MSy,  reflects
high method effects and low convergent validity. Since
Eq. 5 is the same as Eq. 3, the relevant properties
discussed in the previous section for relr, apply for
Relp,_l.

is an extended version of
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o, , and ¥, both independent of scale length, can be
regarded as the average item consistency and the average
item method-specificity, respectively. If Ar, > Ay, then
the jth item for F; ; is affected more by the underlying trait
factor than by the kth (nonstandard) method. If
Or, , > Vg, ,, then the items used are affected more, on
average, by the trait factor than by the nonstandard
methods. In contrast, if lM!,-k > ﬂ,pyk, then the influence of
kth method on the item is greater than the influence of its
underlying trait. ¥ > @r,_, indicates that the average
method effect is greater.

By Eq. 6, CO is no longer a fixed function of @ and the
number of items J. Since 0 <o <1 and 0 <y <1 — o,
CO is bounded below by @ when ¥ =1— o, and is
bounded above by Jo/(1 4+ (J — 1)@) (< 1) when ¥ =0,
denoted respectively by CO, and CO;. When o < .5, if
o>y, then COy <CO<COy, where COy =
Jo/(1+2(J — 1)), occurring at ¥ = @, otherwise
CO; < CO < COy, as marked in Fig. 2 for @ = .3 and
J = 3. For any fixed value of J, CO;, COy, and CO,, are
all increasing functions of @. They are pictorially
presented for J = 3 through 8 in Fig. 2, using a solid line,
solid curves, and dashed curves for CO;, COy; and COyy,
respectively. Given a value of @, COy is an increasing
functions of J, and, if @ < .5, CO,, is also an increasing
function of J. Given values of @ and J, the less influence
the methods exert, the closer CO is to COy. If o <y, @
cannot exceed .5, and CO < COy, < .5, regardless of the
value of J. Under this case, using more items while
keeping the same level of @ cannot reach any level of CO
greater than .5. Given a fixed level of CO, the number of
items used could be reduced by increasing @ and further

*— =30,

0.9 CO, a —=— J_4(co,)
08 F ; A J=5(C0,)

—%— J=6(CO,)
07}
—*— J=7(C0,)
0.6 1 : —=— J=8(CO,)
co, o
€O 05| @+y =l
- - J=3(C0,)
04|

03

02 F [

0.1 [

I I I I I I I
00 01 02 03 04 05 06 07 08 09 10
2]

Fig. 2 CO (the consistency coefficient) as a function of ¥ for a given
value of J and a given value of @. COp=m, COy =
Jo/(14+2(J — Do), COy =Jo/(1 + (J — 1))

@ Springer

by decreasing . CO may be increased by eliminating the
items with smaller trait loadings and larger method
loadings, and/or by adding those with larger trait loadings
and smaller method loadings.

By Eq. 7, MS possesses similar properties. MS is
bounded below by MS; =% when w=1—-7, and is
bounded above by MSy =Jy /(1 + (J — 1)y) (< 1) when
®=0. When v < .5, if ¥ > @, then MSy; < MS < MSy,
where MSy, =Jy/(1 4+ 2(J — 1)¥), occurring at @ = V¥,
otherwise, MS; < MS < MS),. For any fixed value of J,
MS;, MSy, and MS),, are all increasing functions of y.
They are similarly pictorially presented for J = 3 through
8 in Fig. 3. As shown in Fig. 3, given a value of ¥, MSy
and MS,, are also increasing functions of J. Moreover,
the less influence of the trait factor, the closer MS is to
MSy. However, MS cannot reach any level greater than .5
if ¥ < o, regardless of the number of items used. Given a
fixed level of MS, the number of items used could be
reduced by increasing ¥ and further by decreasing @. The
items with smaller method loadings and larger trait
loadings could be considered to be eliminated to increase
MS.

High convergent validity is not always the goal of
research. Beyond the traditional search for maximum
convergent validity, a thorough analysis of method
influence might tell a different interesting story. Hence,
a multimethod study should always have two facets: the
examination of convergent validity and the analysis of
method-specific influences (Eid & Diener, 2006, p. 5).
When many items are selected for a trait to attain a
required level of reliability, desirable convergent validity
or the method effects may not be achieved with the same

— J=3ws,)

09 - MS), a = 4 us,)
08 - . A J=5MSy)

—— J=6(M5,)
07}
—— g7 ws,)
0.6 5 —— =8 (MS,)
s, o
MS 05 | o+y=l

- - J=3(MS,)
04t

03

ceoxees J =6 (MS,)
02t [
e J=T (MS,,)

0.1 e J=8(MS,,)

Y A S S
0.0 01 02 03 04 05 06 07 08 09 10

Fig. 3 MS (the method-specificity coefficient) as a function of @ for a
given value of J and a given value of y. MS, =vw, MSy =
Jy/(1+2(J = 1)y), MSy =Jy/(1 + (J — 1))
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items. Further item selection is needed. As mentioned in
Eid et al. (2003, p. 47), in personnel selection, for
example, items with a low degree of method specificity
and a high degree of consistency are desirable when
different raters rate applicants for a position. In marital
therapy, on the other hand, those items with high method
specificity and low consistency are of interest if the two
different raters are spouses rating each other. In this
context, psychologists might be particularly interested in
the divergent views of the spouses.

Empirically, since Rel (the sample Rel) = co
(the sample CO) + MS (the sample MS), large values of
Rel may result from small values of cO (reflecting poor
convergent quality) but large values of MS, or from large
values of CO but small values of MS (reflecting weak
method influence). Acceptable reliability does not neces-
sarily imply acceptable convergent validity or method
effects. Therefore, item selection in order to improve
convergent validity (or method influence) should be
based on CO (or MS) rather than on Rel. Although CO
can still be heightened to a required level for small @ (the
sample o), it works only when > ﬁ (the sample w). A
required level of co may not be achieved if the items
used are those with ﬁ > o. Therefore, item selection
based on CO should satisfy the requirement that > ﬁ
When selecting items measured by nonstandard methods,
we need those with larger ZF]. (the sample Af,) and smaller

ZM/. (the sample Aj,) to help achieve the goal of
acceptable consistency coefficient, since their inclusion
can lead to a higher @ and a lower ﬁ Similarly, item
selection based on MS should satisfy the requirement that
@ > . Eliminating an item with small ;{,\F} and large ;l\M/
may increase C 6, and eliminating an item with small /AlM/.
and large ij may increase MS, but the elimination may
not increase Rel.

An alternative approach for scale reduction

If the number of items for a trait under MTMM designs
is large, item elimination would be needed to achieve
parsimony. One important reason to use short scales is
the reduction of being fatigued or bored resulting from
answering a lengthy set of items (Lindell & Whitney,
2001; Schmitt & Stults, 1985). The properties of the
consistency coefficient and the method-specificity coeffi-
cient discussed in the previous section can help assess the
quality of scale items. An alternative approach for scale

reduction based on CO (or MS) and the properties
discovered is proposed. Since the summated score does
not include the items measured by the standard method,
only those measured by nonstandard methods are considered
to be eliminated.

If the goal is to enhance convergent validity, we
eliminate, one at a time during the process of scale

reduction, the item so that the increment of CcO (denoted
by ACa) after item elimination is maximized. We stop the

process when the maximum ACO becomes negative. In
other words, no further elimination is allowed if conver-
gent validity becomes worse. If the goal is to strengthen
method influence, we sequentially eliminate the item for

which the increment of MS (denoted by AM§) is
maximized. We stop the elimination when the maximum

AMS becomes negative. The specific step-by-step proce-
dure under the purpose of maximizing convergent validity
is given as follows:

Step 0. Compute the C O for the initial items measured
by nonstandard methods.
Step 1. Find the item whose elimination yields the

maximum CO from those left in the scale. If there is
only one item associated with a nonstandard method,
that item is excluded from those considered to be

eliminated. Update the CO and compute ACO =

new CO — old CO.

Step 2. If AC 0 > 0, then eliminate the item from the
scale and then go to Step 1; otherwise, stop by
returning the items left as the final choices, with
the consistency coefficient of the most recently

updated C 0.

The procedure under the purpose of maximizing method
effects is similar and need not be repeated. The final
reduced scale consists of the items measured by the
standard method and those determined according to the
procedure given above.

It is required that no nonstandard method be neglected
for measuring the items in the reduced scale. Item
elimination is not allowed for any trait-method unit with
only one item. The trait (method) loadings of the items in

the reduced scale need to be significant and @ needs to be

greater (less) than ﬁ when the purpose is to maximize
convergent validity (method influence). Moreover, discrimi-
nant validity must be maintained for the reduced scale
achieving the maximum of convergent validity or method
effects. If any of the previously mentioned requirements is not
met for the reduced scale, scale reduction fails. The proposed
approach, also applicable for subscales developed for sub-
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constructs, is recommended for scale development based on
MTMM designs.

Ilustration

To illustrate the approach, we use a data set generated from
the model depicted in Fig. 1, in which the first method was
chosen as the standard method. x31; and x3,; are measured by
the standard method and will not be eliminated. x3;5, X320,
X332, X313, and X33 are the items measured by nonstandard
methods for F5, which are to be further selected. The model
parameters for data generation are given in Table 1 (in
standard score form for ease of manipulation). They are
determined based on Conway et al. (2004). The procedure
given in Fan, Felsovalyi, Sivo, and Keenan (2002, Sections
4.3 and 7.2) is followed to generate a sample (N = 300) of
normally distributed items, with which further item selection
among X312, X322, X332, X313, and x3,3 by using the proposed
approach is demonstrated. The sample correlation matrix of
the items is given in Table 2.

The parameter estimates (obtained by using SAS PROC
CALIS [SAS Institute Inc., 2010]) during the scale reduction
process based on the CT-C(M—1) model with M, as the
standard method under the purpose of maximizing conver-
gent validity or method influence are summarized in Table 3.

At each step, 5& . ﬁﬂ - '/I\'F3 ., Relp, ,, and C@F3 . (or
M SF3 ) are reported for the items retained in the scale, and

2 Fy; and 1M3 . are given for the item removed. It appears that
model fit is adequate during the scale reduction process and

Table 1 Population parameters of the CT-C(M—1) model in Fig. 1
(for data generation)

Trait Item Ar, Avy  Or, Vi, COp, MSr, Rel,
Fo o x .80 .688  .169 741 182 923
X212 75 .60
X213 .60 .30
Fsp x .80 183 281 320 492 812

X321 .70

X312 .50 .60
X3 .50 .50
X33 .20 .55
X313 .60 .40
X33 20 .80

F471 X411 .70 567 131 708 .164 872
X412 .65 40

X413 .80 .30
X423 75 .50

= .50(i # 1)), pagyar, = -50

PF,_F,

@ Springer

parameter estimates are close to the corresponding popula-
tion values, justifying our computational rEsults.

In the first part (when maximizing COFp, ) of Table 3,
o, (= .172) < yp, (= .278) at Step 0 for the five initial
items, failing to meet the requirement and implying that
Can_l < C@FB_, M < .5. It appears that some item may
need to be removed. The item with the maximum increment
of c@Fz_l after its elimination is X353 (C5F3_1 increases
from .307 to .352 with AC5F3_1 = .045). Therefore, x333
was first eliminated. However, @, , (= .213) is still less
than an_l (= .259) after excluding x33. Next, since x313 is
the only item measured by M3 among the rest of the four
items, it was compulsorily included. x33,, with the largest
ACOp, (= .088) among the rest of the three items, was
subsequently removed. %pu (= .303), after excluding x33
and x33,, becomes greater than in_l (= .229), indicating an
improvement of the average item quality. The requirement
of %FM > iﬁ_l when maximizing convergent validity has
also been met. Since the elimination of any item left would
worsen convergent validity, the process stopped with the

final retained items of x315, x37,, and x3;3, measured by

nonstandard methods. C@F_U improves from .307 to .44.
Although Relr, | decreases from .804 down to .773, it
should not receive concern since the purpose is to
maximize convergent validity. At each step, estimates of
the trait and method loadings are all highly significant (p <
.01). Moreover, trait correlations show little change and all
remain significantly less than 1 (p values associated with
the chi-square difference tests < .001), implying that
discriminant validity has been maintained while improving
convergent validity by removing some “poor” items based
on the consistency coefficient.

In the second part (when maximizing M§F3_1) of
Table 3, the final items selected according to a similar
procedure include x31,, X330, and x3»3. X313 and x3,, were
sequentially removed on the basis of the criterion of

achieving the largest AM§F3_1. For the five initial items,
although .,/F (= 278) > @p,_, (= .172); hence, MSr, , >

MSF3 M 1//F3 , is far less than .5, reflecting a need to
make improvements. x3;3 was first eliminated because its

elimination can lead to the maximum increase of MSF, |

(AM§F3_1 =.052). The new ﬁFS_I(: 331) becomes

greater and the difference between t/ngz_l and $F3_l
(= .14) after elimination becomes bigger. The next one
to be eliminated is selected from the rest of the four except
X323 because x3,3 is the only item associated with M5. x35,
was removed because its elimination results in the
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Table 2 Correlation matrix of the items resulting from a data set (V = 300) generated from the CT-C(M-1) model in Fig. 1 with parameters shown

in Table 1
X211 X212 X213 X311 X321 X312 X322 X332 X313 X323 X411 X412 X413 X423
X211 1.000
X212 .629 1.000
X213 529 .568 1.000
X311 297 314 262 1.000
X321 265 237 171 .610 1.000
X312 172 481 260 447 362 1.000
X320 .195 470 230 472 .398 542 1.000
X332 .072 361 121 141 .149 481 322 1.000
X313 185 .300 331 495 410 408 367 230 1.000
X323 .050 252 .320 196 .077 291 221 219 419 1.000
X411 239 233 179 .269 212 175 284 .093 134 .055 1.000
X412 252 468 268 288 243 494 .400 314 206 204 423 1.000
X413 276 .342 .306 .350 291 285 305 128 276 286 510 .561 1.000
X423 262 428 357 314 263 .361 .340 .194 438 .504 435 .582 .681 1.000
M —-.098 —-.031 —-.109 -074 —.004 .014 .001 .034 —.045 —-.081 .037 .017 —-.010 -.014
SD 960 968 1.015 1.090 1.080 1.017 999 1.016 988 .966 .963 991 .948 .940

maximum AMS, (= .06). ﬁF}_l (= .405) becomes much
greater than 5&_1 (=.093) after removing x3;3 and x32,.

No further reduction was allowed. MS, , improves from
497 to .609 whereas Relp, , is decreasing. Again, at each
step, trait loadings and method loadings are all signif-
icant, and trait correlations show little change and are
all significantly less than 1 (p values < .001). Method
effects have been enhanced by item elimination while
maintaining discriminant validity.

The items x3;; and x3,; measured by the standard
method are included in the final reduced scale, regardless
of the purpose of maximizing convergent validity or
method influence. However, the selection of the items
measured by the nonstandard methods depends on the
research purpose. If the purpose is to maximize convergent
validity, then x31,, X325, X313 are the choices; if the purpose
is to maximize method influence, then x3;,, X335, X303 are
the choices. It appears that the items selected under
different purposes are somewhat different.

Table 3 Parameter estimates during the process of scale reduction for 5 under the purpose of maximizing convergent validity or maximizing
method effects based on the CT-C(M—1) model with the first method as the standard method

Step Item Removed Items Retained ﬂA«FW ZAJM 5F3_1 ﬁ];‘}_l Relp, , C5F3_| (M§F3_1) f&_, Pr, Fy PR Fi, PR F.
Maximizing Convergent Validity

0 X312, X322, X3325 X313, X323 172 278 804 307 238 448" 4607 5047
1 x303 X312, X322, X332, X313 de4™ 778" 213 259 782 352 232 446" 46377 496
2 x; X312, X320, X313 165" 5757 303 229 773 440 210 446" 4607 497
Maximizing Method Effects

0 X312, X320, X332, X313, X323 172 278 804  (497) 238 448" 460 504"
1 X33 X312, X322, X332, X323 55377 4607 140 331 781 (.549) 279 4527 465™TH 5037
2 Xzm X312, X332, X323 54677 4127 093 405 748 (.609) 340 444" 468" 510

Only the items measured by M, and M3 (the nonstandard methods) are considered to be eliminated. /A'me and /A’LMM are the estimates associated
with the item removed at each step. The model fit was adequate during the process (p values associated with the chi-square tests were all

greater than .5)
** p < .01 *¥** p <.001

# significantly less than 1
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Discussion and conclusion

The interpretative and estimation problems that the CT-CM
model suffers from can be overcome by the CT-C(M—1)
model. Under the CT-C(M — 1) model, it has been shown
that the reliability coefficient, the consistency coefficient,
and the method-specificity coefficient of the sum of the
items measured with nonstandard methods for a trait
factor are all functions of the average consistency
coefficient (@), the average method-specificity coefficient
(¥), and scale length. It is noteworthy that using many
items for abstract trait factors may heighten convergent

validity to a required level only when @ > ﬁ, but cannot

when @ < ﬁ In addition, given a fixed level of conver-
gent validity, the number of items used can be reduced by
increasing @ and further by decreasing w. A general
strategy is to eliminate the items with smaller trait
loadings and larger method loadings, or equivalently, to
take those with larger trait loadings and smaller method
loadings. If the goal is to enhance method effects, then the
items with larger method loadings and smaller trait
loadings should be retained.

The same principles that we have shown to find
properties for CO and MS based on the CT-C(M—1) model
could also be applied to the CT-CM model.

An alternative approach to reduce scale length for
MTMM data based on the CT-C(M—1) model under the
goal of enhancing convergent validity or method influence
has been proposed. Traditional approaches for scale
reduction without taking into account method factors are
inappropriate for MTMM data. The items eliminated during
the reduction process based on commonly used criteria in
practice such as “the lowest item-total correlation” and “the
largest increment of coefficient alpha” could be quite
different from those determined on the basis of the criterion

of the largest non-negative increment of co (or M§)
proposed in this study.

If the consistency coefficient resulting from the final
reduced scale is still not large enough, then the criterion
of convergent validity might be released to make a
compromise. If this is not possible, then it becomes
necessary to return to the initial stage of scale
development and reconduct item generation and item
analysis. A poor item for a trait factor should be
replaced by another one that can reflect the same facet

of the trait domain and that can lead to a higher Ar and

a lower )A»M. In the meantime, the maintenance of
discriminant validity is required. Researchers should make
efforts to modify existing items and/or substitute new
items to achieve acceptable convergent validity, discrim-
inant validity, and parsimony. The suggestions regarding
the method-specificity coefficient are similar. Once the

@ Springer

final scale obtained is satisfactory, it needs to be further
validated by using another independent sample, as usually
seen in the literature.

Note that the items retained in the final reduced
scale may depend on the standard method chosen in
the CT-C(M—1) model, and the items measured by the
standard method cannot be assessed because the trait
factor is confounded with the standard method. It is
therefore important that the choice of the standard
method and the items measured by that method should
be justified on the basis of theoretical considerations or
consensus in the field. Following the recommendation
given by Eid et al. (2003) that a “gold standard method”
be chosen, we suggest that “reference items” (usually key
items for the trait factor) be measured by that “gold
standard method” and that other potential items be
measured by nonstandard methods since item elimination
is conducted only for those measured by nonstandard
methods.

The multiple-item CT-C(M—1) model, in which there
are multiple items for each trait-method unit, has been
given to address the problem of trait-specific method
effects (Eid et al., 2003). Analyses of CO, MS, and Rel
discussed in the present study can be extended for the
multiple-item CT-C(M—1) model. Statistical inference for
reliability-related parameters in the model, particularly for
CO and MS, needs to be further studied. In addition, how
the effectiveness of the proposed approach for scale
reduction is influenced by sample size is an interesting
task for future research.
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Appendix
Derivations of Egs. 5, 6, and 7

By choosing the first method (k = 1) as the standard method

for the CT-C(M—1) model, the variance of the summated
K Ji

score > > x; under the assumptions for Eq. 4 and by
k=2j=1

fixing 62 and o2, to 1 for identification reasons is given by
Fi_ My



Behav Res (2012) 44:546-557

555

AF,

) (g

kAK'

K
y‘kF”) + Var (ZZ
>
i2 /Ttp 1 + Z /’]-M,( + Z zk/lM,k

K Ji
A ,,kMk> + Var <226yk>

(30 (30 )

x J’k/ﬂ’Mz/: )pMkM + JO'5

K Ji

Prsan + Z Z Oy

KA

K JR—
= Ji2 (IFi_l )2 + Ji2 Z (WkZMik)z + Ji2 Z (WkIMzk ) (Wk'IMM )pMkM,(; + ']ia(zﬁi
k=2

KAk

=2 (A, ) + TPk, +Ji0},

K Ji
= > > Ar,/Ji (the mean trait
f=2j=1

where J; = ZJ,k, AF.,
k=2
loading), A, = i/lM,»,-k /J# (the mean method loading
J=1

K

— 2 — —
for My), TFi_l = Z (Wk/lM,k> + Z (WklM,-k)(Wk’/lM,y)
=2 o
P, 05 = E Eoék/J,, and wy = Jy/J; (k> 1). wy

=lj=
represents the welght for the kth method based on the number

K —
of items associated with that method, (wk/h,[ik)2 is the sum
k=2
of squares of Ay, weighted by wy and Y (widy,)
KA
(Wi Amty, )Pagr, s the sum of products of the weighted

le, the weighted /le,,

follows that the population reliability coefficient Relr, | of
K Ji
> quk with respect to F;_; is given by

and their method correlations. It

k=2 j=
K Ji
Var Z Z Lijk
k=2j=1
Rel[:"71 — T
ik
Var <Z Zx,-jk)
k=2j=1

PG, ) + 2Tk
() + Y5, +Jio}
Ji [()“Fi_l) + TF:’_]:|

- 2 - 2 5
(Jl - 1) |:(;LFi_1) + TF:'_I} + |:(le_1) + YF:-] + O-§J:|
Ik,
1+ (Ji— )6,

AF +Tr .
(#-l_ Moreover, the consistency

—
where 6.
Fi_ (AF‘ 1) +Yr, +o§i

coefficient COF , and the method-specificity coefficient

MSp, | of Z nyk with respect to F;_| are given by

k=2j=
Jik.
Var E Z/’LF,,A il
k=2 j=1
COF, 1= r
ik
Var Z le/k
k=2j=
— Jiz (Z’R,l)
J? (IF_])Z + Yk, + Jl-o%f
= Ji(zFi_l)z
= - - _ . .
@1 [(/lm) - TF,,.] - [(/IF_,) +Tr ggi]
_ den,
1+(J-—1)0’|’
and
Var Z ZAM,,M/[k
k=2j=1
MSy, , =
IA
Var E > Xy
k=2j=1
— JizTFu
R+ Tr, 9,
= JiTF,_l
TR S T e
__ ¥R,
1+ (=16,
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- 2
_ Ar _ Tr,
where @p, | = %‘1)7 and ¥ = +—‘T
- (1F,-71) +Tr,_ +op, ! (ZFU) +Tr,_, +oj,
. B i) T _
Op_, = Or_, +Vr,_. OF_ and YF_ indicate, respectively,

the average proportion of variance due to F;_; and the
average proportion of variance due to nonstandard
methods. For the special case in which only one

. - \2
nonstandard method is used, we have Y, = (Au,)",

(ZF,.J )2 _, and — (ZMQ )2

D = L S I GRS LA 7 L=

i

wFi,l =

Denoting the sample COr, _,, @F,_,, and ¥, | by COy, ,,
%F,._l, and ﬁFi_v we have, by following Eq. 6, CaFl._, =

—~ 2
Jior, | — (lFi_l )

~ —~ 5 EF,-_] - = 2 _ — > V_IF,»_I =
1+(Ji-1) (WF,_I tVr ) (lFU ) +TF, +;'\§l.

,’I?F ~ K = 2
/_\2—':1_, where TFi_l = Z (Wkl}\/[/k) + Z
(Mﬁ'_l) +TF,'_1 +/O?§,- k=2 kK

= = = K Ji =
(WklM"k) (Wk/le’>pMkM/ s AR = > Zﬂ’Fry‘k/Jf’ AMy =
k k=2j=1
Jik K = K Jik )
> Ay /s Ji = Y Ji, and 05 = > Zogw/,],». In addi-
j=1 k=2 k=2j=1
. ~ Jio, = Jio,
tion, COp_, v = —2%k— COp 3y = —2%1— and
1+~ )ar, | 1420/~ @, |

C@FM’L = 55.71. Similarly, by following Eq. 7, we have

SV,
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14(-1) (5 V|
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). Moreover, MSr v =

JiV, S SV, N T
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