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Abstract In the present study, we discuss reliability,
consistency, and method specificity based on the CT-C
(M−1) model, which provides clear definitions of trait and
method factors and can facilitate parameter estimation.
Properties of the reliability coefficient, the consistency
coefficient, and the method-specificity coefficient of the
summated score for a trait factor are addressed. The
consistency coefficient and the method-specificity coefficient
are both functions of the number of items, the average item
consistency, and the average item method specificity. The
usefulness of the findings is demonstrated in an alternative
approach proposed for scale reduction. The approach, taking
into account both traits and methods, helps identify the items
leading to the maximum of convergent validity or method
effects. The approach, illustrated with a simulated data set, is
recommended for scale development based on multitrait–
multimethod designs.
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Multitrait-multimethod (MTMM) analysis, proposed by
Campbell and Fiske (1959), has become an essential
strategy for examining the construct validity of psychological
measures (Eid & Diener, 2006). In MTMM designs, each of

several traits (constructs) is measured by each of several
methods. For example, in Mount’s (1984) study, the traits of
administrative ability, ability to give feedback to subordi-
nates, and consideration when dealing with others were
measured by using the three methods: self-rating, supervisor
rating, and subordinate rating. Convergent validity is
supported when different methods yield consistent results
in measuring the same trait. Discriminant validity is
supported when the traits can be well distinguished from
each other.

Confirmatory factor analysis (CFA) is the analytical
approach that is most consistent with Campbell and
Fiske’s (1959) original formulation of the MTMM matrix
(e.g., Lance, Noble, & Scullen, 2002; Schmitt & Stults,
1986; Widaman, 1985). The effects of all traits and all
methods are examined simultaneously in MTMM–CFA
models. Therefore, convergent and discriminant validities
are assessed in the presence of method effects. Controlling
for method effects can reduce potential bias in parameter
estimates. Widaman proposed hierarchically nested CFA
models for MTMM data to facilitate examining trait and
method effects. Although trait effects reflect how well a
measure can represent its underlying trait, method effects
reflect how much it is affected by the measurement
method. The amount of method effects differs greatly
across disciplines (Cote & Buckley, 1987; Malhotra, Kim,
& Patil, 2006; Mishra, 2000).

A well-known MTMM–CFA model is the correlated
trait-correlated method (CT–CM) model, in which all traits
to be studied are regarded as trait factors and all methods
that are applied are regarded as method factors. The trait
factors can covary among themselves, and the method
factors can covary among themselves as well. However,
trait and method factors are assumed to be uncorrelated. In
addition, it is assumed that method factors do not interact
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with trait factors. Although the CT–CM model is faithful to
Campbell and Fiske’s (1959) original theoretical formula-
tion of the MTMM matrix, this model suffers from two
disadvantages. First, estimation problems often occur,
especially when method factors are correlated (e.g., Kenny
& Kashy, 1992; Marsh, 1989; Marsh & Grayson, 1995),
although using larger MTMM matrices (i.e., more traits and
methods) together with larger samples may yield admissible
solutions (Conway, Lievens, Scullen, & Lance, 2004;
Marsh & Bailey, 1991). Second, neither the trait factors
nor the method factors are clearly defined, making their
interpretation difficult (Eid, Lischetzke, Nussbeck, &
Trierweiler, 2003; Pohl, Steyer, & Kraus, 2008). To
improve the model, Eid (2000) and Eid et al. (2003)
recommended the CT-C(M−1) model. It is named CT-C
(M−1) because the number of method factors is one less
than the number of methods used. At first, one method,
called the standard (or reference) method, has to be
chosen as the comparison standard. Then, for each
trait, the true score of an item measured by the
standard method is taken as a predictor. The method
variable for an item measured by a nonstandard method
is the residual resulting from the regression of the item
true score on the predictor. It is assumed that the
method variables associated with the same nonstandard
method are homogeneous, having a common method
factor. The common method factor thus captures
reliable residual effects that are specific to the items
measured by that nonstandard method and are not
shared with the items measured by the standard
method. Three important consequences follow. The
first one is the absence of the method factor for the
standard method, and therefore the trait is confounded
with the standard method. The second one is the
uncorrelatedness of trait and method factors, allowing
the estimation of variance components due to trait,
method, and error effects for the items measured by
nonstandard methods. The third one is that the method
factors can be correlated. This correlation is a partial
correlation. The CT-C(M−1) model avoids the estima-
tion problems inherent in the CT–CM model. However,
the parameter estimates depend on the standard method
chosen. The meaning of the trait factor varies with
different standard methods. The choice of the standard
method should be guided by the research question and
substantive theory (Geiser, Eid, & Nussbeck, 2008).

Decomposition of the reliability coefficient into the
consistency coefficient and the method-specificity coeffi-
cient based on MTMM models can be seen in the literature
(e.g., Deinzer et al., 1995; Eid, 2000; Eid et al., 2003;
Schmitt & Steyer, 1993). When trait factors, method
factors, and errors are uncorrelated, the variance of an item

can be decomposed into trait variance, method variance,
and error variance. The reliability coefficient of the item is
that part of the item variance explained by the trait and
method factors. It is the part of variance that is not due to
measurement error. The consistency coefficient represents
the proportion of the item variance due to the trait factor.
The method-specificity coefficient represents the proportion
of the item variance due to the measurement method. The
reliability coefficient is the sum of the consistency
coefficient and the method-specificity coefficient. The
consistency coefficient is a quantitative indicator of
convergent validity (Eid 2000; Eid et al., 2003). Deinzer
et al. (1995) mentioned that, the consistency coefficient
rather than the reliability coefficient should be used for
examining trait effects.

It is usually of interest in behavior studies to assess
reliability of the sum of items in a scale. Analyses of
reliability, consistency, and method specificity for the
sum of items across different methods based on an
MTMM design become more complex. As can be seen
later, the reliability of the summated score for a trait
factor is a joint function of the average item reliability
and scale length (the number of items used to measure
the trait factor), regardless of whether there exist
method factors in the model. However, the consistency
coefficient and the method-specificity coefficient—the
two components of the reliability coefficient—of the
summated score possess somewhat different properties,
which are important when assessing the quality of a
scale under MTMM designs. Relevant discussions seem
not addressed in the literature. The purpose of the present
study was to fill this gap. The findings will be useful for
behavior researchers conducting MTMM studies.

Reliability as a function of the number of items

In classical test theory (CTT), xij ¼ tij þ "ij; i ¼ 1; :::; I ;
j ¼ 1; :::; Ji, where xij denotes the observed score on the
jth item for the ith trait factor, tij is its true score, εij is the
corresponding error, I is the number of trait factors in the
model, and Ji is the number of items for measuring the ith
trait factor. For congeneric items, true scores on different
items for a trait factor are linearly related. Centered by its
mean μij, item xij can be formulated by CFA as (McDonald,
1999, p. 78)

xij � mij ¼ lFijFi þ "ij; i ¼ 1; :::; I ; j ¼ 1; :::; Ji; ð1Þ

where Fi denotes the latent factor for trait i, and lFij is the

trait loading of xij on Fi. lFij is the covariance of xij and Fi.

It is assumed that sFi"ij ¼ 0 and s"ij"i ¶j ¶ ¼ 0ði 6¼ i 0 or j 6¼ j 0Þ.
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For identification reasons, we usually set s2
Fi
¼ 1 or

lFi1 ¼ 1. The reliability of the summated score Xi ¼
PJi
j¼1

xij

for trait Fi, denoted by relFi and defined as relFi ¼ s2
Ti
=s2

Xi
,

where Ti ¼
PJi
j¼1

tij ¼
PJi
j¼1

lijFi, is then given by (Lord &

Novick, 1968, Chap. 9)

relFi ¼

PJi
j¼1

lFij

 !2

PJi
j¼1

lFij

 !2

þPJi
j¼1

s2
"ij

: ð2Þ

relFi is the proportion of the variance of Xi explained by Fi,
and can be reexpressed as

relFi ¼
JiqFi

1þ ðJi � 1ÞqFi

; ð3Þ

where qFi ¼
lFið Þ2

lFið Þ2þs2
"i

, lFi ¼
PJi
j¼1

lFij=Ji, s2
"i
¼PJi

j¼1
s2
"ij
=Ji,

and 0 � qFi � 1. The reliability of the individual item xij
for trait Fi is qxij ¼ l2Fij

=ðl2Fij
þ s2

"ij
Þ, j = 1, … , Ji, which is

the proportion of its variance explained by Fi. Rather than

the average variance extracted, given by l2Fi
= l2Fi

þ s2
"i

� �

(where l2Fi
¼PJi

j¼1
l2Fij

=Ji) (Fornell & Larcker, 1981), qFi is

defined as the average item reliability for Fi (McDonald,
1999, p. 125), and is actually the reliability adjusted for

scale length. relFi is a joint function of qFi and Ji
(McDonald, 1999, p. 124). For a fixed value of qFi , relFi

increases as a function of Ji. The properties are similar in
that coefficient alpha is a joint function of the average
interrelatedness among items and the number of items (e.g.,
Cortina, 1993). An estimate of the item reliability qxij,
resulting from CFA, can serve as an index for assessing the
internal quality of item j for trait i. A trait is “abstract” if it is
reflected in a series of mental or physical activities
(Bergkvist & Rossiter, 2007, p. 183). Scales for less abstract
traits are usually composed of fewer items, with higher item
reliabilities. On the other hand, for more abstract traits, more
items with lower item reliabilities are needed. Although both
can achieve a required level of reliability (e.g., .7), the former

has fewer items but a greater q than the latter. When q is
small, more items are needed to reach a desired reliability.

Adding an item with lower item reliability will reduce q, but
may increase rel. Dropping an item with lower item

reliability will increase q, but may decrease rel.

Reliability, consistency, and method-specificity based
on the CT-C(M−1) model

For MTMM data, items are affected not only by their
underlying trait factors but also the measurement methods.
Let xijk denote the observed score of the jth item for trait Fi
with method Mk. The CFA model in Eq. 1 can be extended
to formulate a CT–CM or a CT-C(M−1) model, in which
every trait is measured using every method with either a
single item or multiple items. In the CT–CM model, every
item loads on a trait factor and on a method factor. In the CT-
C(M−1) model, however, all items belonging to the standard
method load exclusively on a trait factor. There is no method
factor for these items (Eid et al., 2003; Geiser et al., 2008). If
the first method (k = 1) is chosen as the standard method, the
basic equations of the CT-C(M−1) model are as follows:

xij1 ¼ tij1 þ dij1 ¼ mij1 þ lFij1Fi 1 þ dij1
ðfor the standard method ðk ¼ 1ÞÞ;

xijk ¼ tijk þ dijk ¼ mijk þ lFijk Fi 1 þ lMijkMk þ dijk ;

i ¼ 1; :::; I ; j ¼ 1; :::; Jik ; k ¼ 2; . . .K;

ð4Þ

where tijk denotes the true score of xijk; μijk denotes the mean
of xijk; Fi_1 denotes the ith trait factor measured by the first
method, chosen as the standard method; Mk (k > 1) denotes
the kth method factor; lFijk denotes the trait loading of xijk on

Fi_1; lMijk denotes the method loading of xijk on Mk (k > 1);

δijk denotes the corresponding error; and Jik denotes the
number of items for measuring Fi_1 with Mk. There are
different ways (e.g., by fixing the variances of Fi_1 and Mk to
1 [Geiser et al., 2008] or by fixing one loading per factor to 1
[and freely estimating the factor variances] [Eid et al., 2003])
to identify the model. In the present study, the factor
variances are fixed to 1 because loadings represent trait and
method effects to be assessed, and one would not want to
give fixed values for them. It is assumed that
EðFi 1Þ ¼ EðMkÞ ¼ 0, sFi 1dijk ¼ 0, sMkdijk ¼ 0, a n d

sdijkdi 0 j 0k 0 ¼ 0 ði 6¼ i0 or j 6¼ j0 or k 6¼ k 0Þ. In addition, traits

and methods do not interact. Trait factors are allowed to
covary, and method factors are allowed to covary as well.
Without loss of generality, a CT-C(M−1) model with the first
method as the standard method for an MTMM design with
three traits (F2, F3, F4) and three methods is illustrated in
Fig. 1. x211, x212, and x213 are the items for measuring trait F2

by using methods 1, 2, and 3, respectively. x311, x321, x312,
x322, x332, x313, and x323 are the items for measuring trait F3

by using the first method for the first two items, the second
method for the middle three items, and the third method for
the last two items. x411, x412, x413, and x423 are the items for
measuring trait F4 by using the first method for the first item,
the second method for the second item, and the third method
for the last two items. M1 is missing in the figure because it
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is used as the standard method. F2, F3, and F4 are therefore
the trait factors measured by the standard method (the first
method). In the CT-C(M−1) model, the three trait factors are
better denoted by F2_1, F3_1, and F4_1 to make clear that they
are specific to the first method.

Because the trait is confounded with the standard method,
the corresponding items reflect both the trait and the standard
method factors, and the trait and method effects are
inseparable. Therefore, the consistency coefficient and the
method-specificity coefficient cannot be obtained for the
items belonging to the standard method. It follows that, when
assessing consistency and method specificity for aggregated
items, the items measured by the standard method need to be
excluded. Under the assumptions for the CT-C(M−1) model
given in Eq. 4, the population reliability coefficient,
consistency coefficient, and method-specificity coefficient

of the summated score
PK
k¼2

PJik
j¼1

xijk with respect to Fi_1—

denoted respectively by RelFi 1, COFi 1 , and MSFi 1—are
given by (see the Appendix for derivations)

RelFi 1 ¼
Jiq

»
Fi 1

1þ ðJi � 1Þq»
Fi 1

; ð5Þ

COFi 1 ¼
JiwFi 1

1þ ðJi � 1Þq»
Fi 1

; ð6Þ

and

MSFi 1 ¼
JiyFi 1

1þ ðJi � 1Þq»
Fi 1

; ð7Þ

w h e r e Ji ¼ PK
k¼2

Jik , q»
Fi

¼ wFi 1 þ yFi 1
, wFi 1 ¼

lFi 1ð Þ2
lFi 1ð Þ2þΥFi 1þs2

di

, yFi 1
¼ ΥFi 1

lFi 1ð Þ2þΥFi 1þs2
di

, ΥFi 1 ¼
PK
k¼2

wklMik

� �2þ P
k 6¼k 0

wklMik

� �
wk 0lMik0
� �

rMkMk0
, lFi 1 ¼

PK
k¼2

PJik
j¼1

lFijk=Ji, lMik ¼
PJik
j¼1

lMijk=Jik , s2
di
¼ PK

k¼1

PJik
j¼1

s2
dijk=Ji,

and wk ¼ Jik=Jiðk > 1Þ. q»
Fi 1

is an extended version of

the average item reliability qFi. It is a reliability index
excluding the effects of scale length. COFi 1 indicates that
part of the variance of the summated score (sum of the
items measured with nonstandard methods) that is due to
interindividual differences on Fi_1. MSFi 1 , on the other
hand, represents that part of the variance that is due to
method-specific differences (not shared with the standard
method). RelFi 1 ¼ COFi 1 þMSFi 1 . A large COFi 1 indi-
cates high convergent validity. A large MSFi 1 reflects
high method effects and low convergent validity. Since
Eq. 5 is the same as Eq. 3, the relevant properties
discussed in the previous section for relFi apply for
RelFi 1 .

Fig. 1 The CT-C(M−1) model
with the first method as the
standard method for an MTMM
design with three traits and three
methods. Fi_1 (i = 2, 3, 4)
denotes the ith trait factor spe-
cific to the standard method
(the first method). Mk (k = 2, 3)
denotes the kth method factor.
There is no method factor for
items x211, x311, x321, and x411,
measured by the first method
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wFi 1 and yFi 1
, both independent of scale length, can be

regarded as the average item consistency and the average
item method-specificity, respectively. If lFijk > lMijk , then

the jth item for Fi_1 is affected more by the underlying trait
factor than by the kth (nonstandard) method. If
wFi 1 > yFi 1

, then the items used are affected more, on
average, by the trait factor than by the nonstandard
methods. In contrast, if lMijk > lFijk , then the influence of

kth method on the item is greater than the influence of its
underlying trait. yFi 1

> wFi 1 indicates that the average
method effect is greater.

By Eq. 6, CO is no longer a fixed function of w and the
number of items J. Since 0 � w � 1 and 0 � y � 1� w,
CO is bounded below by w when y ¼ 1� w, and is
bounded above by Jw=ð1þ ðJ � 1ÞwÞ ð� 1Þ when y ¼ 0,
denoted respectively by COL and COU. When w � :5, if
w � y , t h e n COM � CO � COU , w h e r e COM ¼
Jw=ð1þ 2ðJ � 1ÞwÞ, occurring at y ¼ w; otherwise
COL � CO < COM , as marked in Fig. 2 for w ¼ :3 and
J = 3. For any fixed value of J, COL, COU, and COM are
all increasing functions of w. They are pictorially
presented for J = 3 through 8 in Fig. 2, using a solid line,
solid curves, and dashed curves for COL, COU and COM,
respectively. Given a value of w, COU is an increasing
functions of J, and, if w < :5, COM is also an increasing
function of J. Given values of w and J, the less influence
the methods exert, the closer CO is to COU. If w � y, w
cannot exceed .5, and CO � COM < :5, regardless of the
value of J. Under this case, using more items while
keeping the same level of w cannot reach any level of CO
greater than .5. Given a fixed level of CO, the number of
items used could be reduced by increasing w and further

by decreasing y. CO may be increased by eliminating the
items with smaller trait loadings and larger method
loadings, and/or by adding those with larger trait loadings
and smaller method loadings.

By Eq. 7, MS possesses similar properties. MS is

bounded below by MSL ¼ y when w ¼ 1� y, and is
bounded above by MSU ¼ Jy=ð1þ ðJ � 1ÞyÞ ð� 1Þ when
w ¼ 0. When y � :5, if y � w, then MSM � MS � MSU ,
where MSM ¼ Jy=ð1þ 2ðJ � 1ÞyÞ, occurring at w ¼ y;
otherwise, MSL � MS < MSM . For any fixed value of J,
MSL, MSU, and MSM are all increasing functions of y.
They are similarly pictorially presented for J = 3 through
8 in Fig. 3. As shown in Fig. 3, given a value of y , MSU
and MSM are also increasing functions of J. Moreover,
the less influence of the trait factor, the closer MS is to
MSU. However, MS cannot reach any level greater than .5
if y � w, regardless of the number of items used. Given a
fixed level of MS, the number of items used could be
reduced by increasing y and further by decreasing w. The
items with smaller method loadings and larger trait
loadings could be considered to be eliminated to increase
MS.

High convergent validity is not always the goal of
research. Beyond the traditional search for maximum
convergent validity, a thorough analysis of method
influence might tell a different interesting story. Hence,
a multimethod study should always have two facets: the
examination of convergent validity and the analysis of
method-specific influences (Eid & Diener, 2006, p. 5).
When many items are selected for a trait to attain a
required level of reliability, desirable convergent validity
or the method effects may not be achieved with the same

Fig. 3 MS (the method-specificity coefficient) as a function of w for a
given value of J and a given value of y. MSL ¼ y, MSM ¼
Jy=ð1þ 2ðJ � 1ÞyÞ, MSU ¼ Jy=ð1þ ðJ � 1ÞyÞ

Fig. 2 CO (the consistency coefficient) as a function of y for a given
value of J and a given value of w. COL ¼ w, COM ¼
Jw=ð1þ 2ðJ � 1ÞwÞ, COU ¼ Jw=ð1þ ðJ � 1ÞwÞ
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items. Further item selection is needed. As mentioned in
Eid et al. (2003, p. 47), in personnel selection, for
example, items with a low degree of method specificity
and a high degree of consistency are desirable when
different raters rate applicants for a position. In marital
therapy, on the other hand, those items with high method
specificity and low consistency are of interest if the two
different raters are spouses rating each other. In this
context, psychologists might be particularly interested in
the divergent views of the spouses.

Em p i r i c a l l y , s i n c e Rbel the sample Relð Þ ¼ CbO
the sample COð Þ þMbS the sample MSð Þ, large values of

Rbel may result from small values of CbO (reflecting poor

convergent quality) but large values of MbS, or from large

values of CbO but small values of MbS (reflecting weak
method influence). Acceptable reliability does not neces-
sarily imply acceptable convergent validity or method
effects. Therefore, item selection in order to improve
convergent validity (or method influence) should be

based on CbO ðor MbSÞ rather than on Rbel. Although CbO
can still be heightened to a required level for small bw (the

sample w), it works only when bw > by (the sample y). A

required level of CbO may not be achieved if the items

used are those with by � bw. Therefore, item selection

based on CbO should satisfy the requirement that bw > by.
When selecting items measured by nonstandard methods,

we need those with larger blFj (the sample lFj ) and smaller
blMj (the sample lMj ) to help achieve the goal of

acceptable consistency coefficient, since their inclusion

can lead to a higher bw and a lower by. Similarly, item

selection based on MbS should satisfy the requirement thatby > bw. Eliminating an item with small blFj and large blMj

may increase CbO, and eliminating an item with small blMj

and large blFj may increase MbS, but the elimination may

not increase Rbel.

An alternative approach for scale reduction

If the number of items for a trait under MTMM designs
is large, item elimination would be needed to achieve
parsimony. One important reason to use short scales is
the reduction of being fatigued or bored resulting from
answering a lengthy set of items (Lindell & Whitney,
2001; Schmitt & Stults, 1985). The properties of the
consistency coefficient and the method-specificity coeffi-
cient discussed in the previous section can help assess the
quality of scale items. An alternative approach for scale

reduction based on CbO ðor MbSÞ and the properties
discovered is proposed. Since the summated score does
not include the items measured by the standard method,
only those measured by nonstandard methods are considered
to be eliminated.

If the goal is to enhance convergent validity, we
eliminate, one at a time during the process of scale

reduction, the item so that the increment of CbO (denoted

by ΔCbO) after item elimination is maximized. We stop the

process when the maximum ΔCbO becomes negative. In
other words, no further elimination is allowed if conver-
gent validity becomes worse. If the goal is to strengthen
method influence, we sequentially eliminate the item for

which the increment of MbS (denoted by ΔMbS) is
maximized. We stop the elimination when the maximum

ΔMbS becomes negative. The specific step-by-step proce-
dure under the purpose of maximizing convergent validity
is given as follows:

Step 0. Compute the CbO for the initial items measured
by nonstandard methods.
Step 1. Find the item whose elimination yields the

maximum CbO from those left in the scale. If there is
only one item associated with a nonstandard method,
that item is excluded from those considered to be

eliminated. Update the CbO and compute ΔCbO ¼
new CbO� old CbO.
Step 2. If ΔCbO � 0, then eliminate the item from the
scale and then go to Step 1; otherwise, stop by
returning the items left as the final choices, with
the consistency coefficient of the most recently

updated CbO.
The procedure under the purpose of maximizing method

effects is similar and need not be repeated. The final
reduced scale consists of the items measured by the
standard method and those determined according to the
procedure given above.

It is required that no nonstandard method be neglected
for measuring the items in the reduced scale. Item
elimination is not allowed for any trait-method unit with
only one item. The trait (method) loadings of the items in

the reduced scale need to be significant and bw needs to be

greater (less) than by when the purpose is to maximize
convergent validity (method influence). Moreover, discrimi-
nant validity must be maintained for the reduced scale
achieving the maximum of convergent validity or method
effects. If any of the previously mentioned requirements is not
met for the reduced scale, scale reduction fails. The proposed
approach, also applicable for subscales developed for sub-
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constructs, is recommended for scale development based on
MTMM designs.

Illustration

To illustrate the approach, we use a data set generated from
the model depicted in Fig. 1, in which the first method was
chosen as the standard method. x311 and x321 are measured by
the standard method and will not be eliminated. x312, x322,
x332, x313, and x323 are the items measured by nonstandard
methods for F3, which are to be further selected. The model
parameters for data generation are given in Table 1 (in
standard score form for ease of manipulation). They are
determined based on Conway et al. (2004). The procedure
given in Fan, Felsovalyi, Sivo, and Keenan (2002, Sections
4.3 and 7.2) is followed to generate a sample (N = 300) of
normally distributed items, with which further item selection
among x312, x322, x332, x313, and x323 by using the proposed
approach is demonstrated. The sample correlation matrix of
the items is given in Table 2.

The parameter estimates (obtained by using SAS PROC
CALIS [SAS Institute Inc., 2010]) during the scale reduction
process based on the CT-C(M−1) model with M1 as the
standard method under the purpose of maximizing conver-
gent validity or method influence are summarized in Table 3.

At each step, bwF3 1 , byF3 1
, bΥF3 1 , RbelF3 1 , and CbOF3 1 (or

MbSF3 1 ) are reported for the items retained in the scale, andblF3jk and blM3jk are given for the item removed. It appears that

model fit is adequate during the scale reduction process and

parameter estimates are close to the corresponding popula-
tion values, justifying our computational results.

In the first part (when maximizing CbOF3 1 ) of Table 3,bwF3 1 ¼ :172ð Þ < byF3 1
¼ :278ð Þ at Step 0 for the five initial

items, failing to meet the requirement and implying that

CbOF3 1 < CbOF3 1;M < :5. It appears that some item may
need to be removed. The item with the maximum increment

of CbOF3 1 after its elimination is x323 (CbOF3 1 increases

from .307 to .352 with ΔCbOF3 1 ¼ :045). Therefore, x323
was first eliminated. However, bwF3 1 ¼ :213ð Þ is still less

than byF3 1
¼ :259ð Þ after excluding x323. Next, since x313 is

the only item measured by M3 among the rest of the four
items, it was compulsorily included. x332, with the largest

ΔCbOF3 1ð¼ :088Þ among the rest of the three items, was

subsequently removed. bwF3 1 ¼ :303ð Þ, after excluding x323
and x332, becomes greater than byF3 1

¼ :229ð Þ, indicating an

improvement of the average item quality. The requirement

of bwF3 1 > byF3 1
when maximizing convergent validity has

also been met. Since the elimination of any item left would

worsen convergent validity, the process stopped with the

final retained items of x312, x322, and x313, measured by

nonstandard methods. CbOF3 1 improves from .307 to .44.
Although RbelF3 1 decreases from .804 down to .773, it
should not receive concern since the purpose is to
maximize convergent validity. At each step, estimates of
the trait and method loadings are all highly significant (p <
.01). Moreover, trait correlations show little change and all
remain significantly less than 1 (p values associated with
the chi-square difference tests < .001), implying that
discriminant validity has been maintained while improving
convergent validity by removing some “poor” items based
on the consistency coefficient.

In the second part (when maximizing MbSF3 1 ) of
Table 3, the final items selected according to a similar
procedure include x312, x332, and x323. x313 and x322 were
sequentially removed on the basis of the criterion of

achieving the largest ΔMbSF3 1 . For the five initial items,

although byF3 1
¼ :278ð Þ > bwF3 1 ¼ :172ð Þ; hence, MbSF3 1 >

MbSF3 1;M , byF3 1
is far less than .5, reflecting a need to

make improvements. x313 was first eliminated because its

elimination can lead to the maximum increase of MbSF3 1

ΔMbSF3 1 ¼ :052
� �

. The new byF3 1
¼ :331ð Þ becomes

greater and the difference between byF3 1
and bwF3 1

¼ :14ð Þ after elimination becomes bigger. The next one
to be eliminated is selected from the rest of the four except
x323 because x323 is the only item associated with M3. x322
was removed because its elimination results in the

Table 1 Population parameters of the CT-C(M−1) model in Fig. 1
(for data generation)

Trait Item lFijk lMijk wFi 1 yFi 1
COFi 1 MSFi 1 RelFi 1

F2_1 x211 .80 .688 .169 .741 .182 .923
x212 .75 .60

x213 .60 .30

F3_1 x311 .80 .183 .281 .320 .492 .812
x321 .70

x312 .50 .60

x322 .50 .50

x332 .20 .55

x313 .60 .40

x323 .20 .80

F4_1 x411 .70 .567 .131 .708 .164 .872
x412 .65 .40

x413 .80 .30

x423 .75 .50

rFi 1Fi0 1
¼ :50ði 6¼ i0Þ), rM2M3

¼ :50
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maximum ΔMbSF3 1 ¼ :06ð Þ. byF3 1
¼ :405ð Þ becomes much

greater than bwF3 1 ¼ :093ð Þ after removing x313 and x322.

No further reduction was allowed. MbSF3 1 improves from
.497 to .609 whereas RbelF3 1 is decreasing. Again, at each
step, trait loadings and method loadings are all signif-
icant, and trait correlations show little change and are
all significantly less than 1 (p values < .001). Method
effects have been enhanced by item elimination while
maintaining discriminant validity.

The items x311 and x321 measured by the standard
method are included in the final reduced scale, regardless
of the purpose of maximizing convergent validity or
method influence. However, the selection of the items
measured by the nonstandard methods depends on the
research purpose. If the purpose is to maximize convergent
validity, then x312, x322, x313 are the choices; if the purpose
is to maximize method influence, then x312, x332, x323 are
the choices. It appears that the items selected under
different purposes are somewhat different.

Table 2 Correlation matrix of the items resulting from a data set (N = 300) generated from the CT-C(M-1) model in Fig. 1 with parameters shown
in Table 1

x211 x212 x213 x311 x321 x312 x322 x332 x313 x323 x411 x412 x413 x423

x211 1.000

x212 .629 1.000

x213 .529 .568 1.000

x311 .297 .314 .262 1.000

x321 .265 .237 .171 .610 1.000

x312 .172 .481 .260 .447 .362 1.000

x322 .195 .470 .230 .472 .398 .542 1.000

x332 .072 .361 .121 .141 .149 .481 .322 1.000

x313 .185 .300 .331 .495 .410 .408 .367 .230 1.000

x323 .050 .252 .320 .196 .077 .291 .221 .219 .419 1.000

x411 .239 .233 .179 .269 .212 .175 .284 .093 .134 .055 1.000

x412 .252 .468 .268 .288 .243 .494 .400 .314 .206 .204 .423 1.000

x413 .276 .342 .306 .350 .291 .285 .305 .128 .276 .286 .510 .561 1.000

x423 .262 .428 .357 .314 .263 .361 .340 .194 .438 .504 .435 .582 .681 1.000

M –.098 –.031 –.109 –.074 –.004 .014 .001 .034 –.045 –.081 .037 .017 –.010 –.014

SD .960 .968 1.015 1.090 1.080 1.017 .999 1.016 .988 .966 .963 .991 .948 .940

Table 3 Parameter estimates during the process of scale reduction for F3 under the purpose of maximizing convergent validity or maximizing
method effects based on the CT-C(M−1) model with the first method as the standard method

Step Item Removed Items Retained blF3jk
blM3jk

bwF3 1
byF3 1

RbelF3 1 CbOF3 1ðMbSF3 1 Þ bΥF3 1
brF2 1F3 1

brF2 1F4 1
brF3 1F4 1

Maximizing Convergent Validity

0 x312, x322, x332, x313, x323 .172 .278 .804 .307 .238 .448***# .460***# .504***#

1 x323 x312, x322, x332, x313 .164** .778*** .213 .259 .782 .352 .232 .446***# .463***# .496***#

2 x332 x312, x322, x313 .165** .575*** .303 .229 .773 .440 .210 .446***# .460***# .497***#

Maximizing Method Effects

0 x312, x322, x332, x313, x323 .172 .278 .804 (.497) .238 .448***# .460***# .504***#

1 x313 x312, x322, x332, x323 .553*** .460*** .140 .331 .781 (.549) .279 .452***# .465***# .523***#

2 x322 x312, x332, x323 .546*** .412*** .093 .405 .748 (.609) .340 .444***# .468***# .510***#

Only the items measured by M2 and M3 (the nonstandard methods) are considered to be eliminated. blF3jk and blM3jk are the estimates associated
with the item removed at each step. The model fit was adequate during the process (p values associated with the chi-square tests were all
greater than .5)

** p < .01 *** p < .001
# significantly less than 1
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Discussion and conclusion

The interpretative and estimation problems that the CT–CM
model suffers from can be overcome by the CT-C(M−1)
model. Under the CT-C(M − 1) model, it has been shown
that the reliability coefficient, the consistency coefficient,
and the method-specificity coefficient of the sum of the
items measured with nonstandard methods for a trait
factor are all functions of the average consistency
coefficient ðwÞ, the average method-specificity coefficient
ðyÞ, and scale length. It is noteworthy that using many
items for abstract trait factors may heighten convergent

validity to a required level only when bw > by , but cannot
when bw � by. In addition, given a fixed level of conver-
gent validity, the number of items used can be reduced by
increasing w and further by decreasing y. A general
strategy is to eliminate the items with smaller trait
loadings and larger method loadings, or equivalently, to
take those with larger trait loadings and smaller method
loadings. If the goal is to enhance method effects, then the
items with larger method loadings and smaller trait
loadings should be retained.

The same principles that we have shown to find
properties for CO and MS based on the CT-C(M−1) model
could also be applied to the CT–CM model.

An alternative approach to reduce scale length for
MTMM data based on the CT-C(M−1) model under the
goal of enhancing convergent validity or method influence
has been proposed. Traditional approaches for scale
reduction without taking into account method factors are
inappropriate for MTMM data. The items eliminated during
the reduction process based on commonly used criteria in
practice such as “the lowest item-total correlation” and “the
largest increment of coefficient alpha” could be quite
different from those determined on the basis of the criterion

of the largest non-negative increment of CbO (or MbS)
proposed in this study.

If the consistency coefficient resulting from the final
reduced scale is still not large enough, then the criterion
of convergent validity might be released to make a
compromise. If this is not possible, then it becomes
necessary to return to the initial stage of scale
development and reconduct item generation and item
analysis. A poor item for a trait factor should be
replaced by another one that can reflect the same facet

of the trait domain and that can lead to a higher blF and

a lower blM. In the meantime, the maintenance of
discriminant validity is required. Researchers should make
efforts to modify existing items and/or substitute new
items to achieve acceptable convergent validity, discrim-
inant validity, and parsimony. The suggestions regarding
the method-specificity coefficient are similar. Once the

final scale obtained is satisfactory, it needs to be further
validated by using another independent sample, as usually
seen in the literature.

Note that the items retained in the final reduced
scale may depend on the standard method chosen in
the CT-C(M−1) model, and the items measured by the
standard method cannot be assessed because the trait
factor is confounded with the standard method. It is
therefore important that the choice of the standard
method and the items measured by that method should
be justified on the basis of theoretical considerations or
consensus in the field. Following the recommendation
given by Eid et al. (2003) that a “gold standard method”
be chosen, we suggest that “reference items” (usually key
items for the trait factor) be measured by that “gold
standard method” and that other potential items be
measured by nonstandard methods since item elimination
is conducted only for those measured by nonstandard
methods.

The multiple-item CT-C(M−1) model, in which there
are multiple items for each trait-method unit, has been
given to address the problem of trait-specific method
effects (Eid et al., 2003). Analyses of CO, MS, and Rel
discussed in the present study can be extended for the
multiple-item CT-C(M−1) model. Statistical inference for
reliability-related parameters in the model, particularly for
CO and MS, needs to be further studied. In addition, how
the effectiveness of the proposed approach for scale
reduction is influenced by sample size is an interesting
task for future research.
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Appendix

Derivations of Eqs. 5, 6, and 7

By choosing the first method (k = 1) as the standard method
for the CT-C(M−1) model, the variance of the summated

score
PK
k¼2

PJik
j¼1

xijk under the assumptions for Eq. 4 and by

fixing s2
Fi 1

and s2
Mk

to 1 for identification reasons is given by
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Var
XK
k¼2

XJik
j¼1

xijk

 !
¼ Var

XK
k¼2

XJik
j¼1

tijk

 !
þ Var

XK
k¼2

XJik
j¼1

dijk

 !

¼ Var
XK
k¼2

XJik
j¼1

lFijk Fi 1

 !
þ Var

XK
k¼2

XJik
j¼1

lMijkMk

 !
þ Var

XK
k¼2

XJik
j¼1

dijk

 !

¼
XK
k¼2

XJik
j¼1

lFijk

 !2

þ
XK
k¼2

XJik
j¼1

lMijk

 !2

þ
X
k 6¼k 0

XJik
j¼1

lMijk

 ! XJik0
j¼1

lMijk0

 !
r

MkMk0
þ
XK
k¼2

XJik
j¼1

s2
dijk

¼ J 2i lFi 1

� �2 þXK
k¼2

J 2ik lMik

� �2 þX
k 6¼k 0

JiklMik � Jik 0lMik0
� �

r
MkMk0

þ Jis2
di

¼ J 2i lFi 1

� �2 þ J 2i
XK
k¼2

wklMik

� �2 þ J 2i
X
k 6¼k 0

ðwklMik Þðwk 0lMik0 ÞrMkMk0
þ Jis2

di

¼ J 2i lFi 1

� �2 þ J 2i ΥFi 1 þ Jis2
di
;

where Ji ¼
PK
k¼2

Jik , lFi 1 ¼
PK
k¼2

PJik
j¼1

lFijk=Ji (the mean trait

loading), lMik ¼
PJik
j¼1

lMijk=Jik (the mean method loading

for Mk) , ΥFi 1 ¼
PK
k¼2

wklMik

� �2þ P
k 6¼k 0

wklMik

� �
wk 0lMik0
� �

rMkMk0 , s2
di
¼ PK

k¼1

PJik
j¼1

s2
dijk=Ji, and wk ¼ Jik=Ji ðk > 1Þ. wk

represents the weight for the kth method based on the number

of items associated with that method,
PK
k¼2

wklMik

� �2
is the sum

of squares of lMik weighted by wk, and
P
k 6¼k 0

wklMik

� �
wk 0lMik0
� �

rMkMk0 is the sum of products of the weighted

lMik , the weighted lMik0 , and their method correlations. It
follows that the population reliability coefficient RelFi 1 ofPK
k¼2

PJik
j¼1

xijk with respect to Fi 1 is given by

RelFi 1 ¼
Var

PK
k¼2

PJik
j¼1

tijk

 !

Var
PK
k¼2

PJik
j¼1

xijk

 !

¼ J 2i lFi 1

� �2 þ J 2i ΥFi 1

J 2i lFi 1

� �2 þ J 2i ΥFi 1 þ Jis2
di

¼
Ji lFi 1

� �2 þΥFi 1

h i

ðJi � 1Þ lFi 1

� �2 þΥFi 1

h i
þ lFi 1

� �2 þΥFi 1 þ s2
di

h i

¼ Jiq
»
Fi 1

1þ ðJi � 1Þq»
Fi 1

;

where q»
Fi 1

¼ lFi 1ð Þ2þΥFi 1

lFi 1ð Þ2þΥFi 1þs2
di

. Moreover, the consistency

coefficient COFi 1 and the method-specificity coefficient

MSFi 1 of
PK
k¼2

PJik
j¼1

xijk with respect to Fi 1 are given by

COFi 1 ¼
Var

PK
k¼2

PJik
j¼1

lFijk Fi 1

 !

Var
PK
k¼2

PJik
j¼1

xijk

 !

¼ J 2i lFi 1

� �2
J 2i lFi 1

� �2 þ J 2i ΥFi 1 þ Jis2
di

¼ Ji lFi 1

� �2
ðJi � 1Þ lFi 1

� �2 þΥFi 1

h i
þ lFi 1

� �2 þΥFi 1 þ s2
di

h i

¼ JiwFi 1

1þ ðJi � 1Þq»
Fi 1

;

and

MSFi 1 ¼
Var

PK
k¼2

PJik
j¼1

lMijkMk

 !

Var
PK
k¼2

PJik
j¼1

xijk

 !

¼ J 2i ΥFi 1

J 2i lFi 1

� �2 þ J 2i ΥFi 1 þ Jis2
di

¼ JiΥFi 1

ðJi � 1Þ lFi 1

� �2 þΥFi 1

h i
þ lFi 1

� �2 þΥFi 1 þ s2
di

h i

¼ JiyFi 1

1þ ðJi � 1Þq»
Fi 1

;
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where wFi 1 ¼
lFi 1ð Þ2

lFi 1ð Þ2þΥFi 1þs2
di

and yFi
¼ ΥFi 1

lFi 1ð Þ2þΥFi 1þs2
di

.

q»
Fi 1

¼ wFi 1 þ yFi 1 . wFi 1 and yFi 1 indicate, respectively,
the average proportion of variance due to Fi 1 and the
average proportion of variance due to nonstandard
methods. For the special case in which only one

nonstandard method is used, we have ΥFi 1 ¼ lMi2

� �2
,

wFi 1 ¼
lFi 1ð Þ2

lFi 1ð Þ2þ lMi2ð Þ2þs2
di

, and yFi 1
¼ lMi2ð Þ2

lFi 1ð Þ2þ lMi2ð Þ2þs2
di

.

Denoting the sample COFi 1 , wFi 1 , and yFi 1
by CbOFi 1,bwFi 1 , and byFi 1

, we have, by following Eq. 6, CbOFi 1 ¼

JibwFi 1

1þðJi�1Þ bwFi 1þbyFi 1

� �, bwFi 1 ¼
blFi 1

� �2

blFi 1

� �2

þbΥFi 1þbs2
di

, byFi 1
¼

bΥFi 1blFi 1

� �2

þbΥFi 1þbs2
di

, w h e r e bΥFi 1 ¼
PK
k¼2

wk
blMik

� �2
þ P

k 6¼k 0

wk
blMik

� �
wk 0blMik0

� �br
MkMk0

, blFi 1 ¼
PK
k¼2

PJik
j¼1

blFijk=Ji, blMik ¼

PJik
j¼1

blMijk=Jik , Ji ¼
PK
k¼2

Jik , and bs2
di
¼ PK

k¼2

PJik
j¼1
bs2
dijk
=Ji. In addi-

tion, CbOFi 1;U ¼ JibwFi 1

1þðJi�1ÞbwFi 1

, CbOFi 1;M ¼ JibwFi 1

1þ2ðJi�1ÞbwFi 1

, and

CbOFi 1;L ¼ bwFi 1 . Similarly, by following Eq. 7, we have

MbSFi 1 ¼
JibyFi 1

1þ Ji�1ð Þ bwFi 1þbyFi 1

� �. M o r e o v e r , MbSFi 1;U ¼

JibyFi 1

1þðJi�1ÞbyFi 1

, MbSFi 1;M ¼ JibyFi 1

1þ2ðJi�1ÞbyFi 1

, and MbSFi 1;L ¼ byFi 1
.
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