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ABSTRACT 
 Source optimization (SO) becomes increasingly important to resolution enhancement in sub-32 nm lithography 
nodes because the dense pattern configurations significantly limit the capability of mask correction. A key step in SO is 
the image formation by Abbe’s method, which is a linear operation of integrating all source points’ images incoherently 
to form aerial images. However, the aerial images are usually converted to resist images through the nonlinear sigmoid 
function. Such operation loses the merit of linearity in optimization and leads to slow convergence and time-consuming 
calculation. In this paper we propose a threshold-based linear resist model to replace the sigmoid model in SO. The 
effectiveness of our proposed model can be clearly seen from mathematical analysis. We also compare results based on 
linear and sigmoid models. Highly similar optimal sources are obtained, but the linear model has a significant advantage 
over the sigmoid in terms of convergence rate and simulation time. Furthermore, the process variations characterized by 
exposure-defocus (E-D) windows are still in similar trends for optimal sources based on two different resist models. 
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1. INTRODUCTION 
 In recent years source optimization (SO) [1-3] has attracted great interests among semiconductor foundries and 
equipment vendors because of its capability for further extending the life of 193 nm optical lithography. With the 
availability of free-form sources using diffractive optic elements (DOE), SO serves as a new option for achieving higher 
resolution without increasing the complexity of mask design. The proposal of source mask co-optimization (SMO) 
further permits the exploration of design spaces for both illuminations and masks [4-8]. However, SO mainly relies on 
the complexity of computational lithography algorithms to explore all possible illumination shapes. Hence the design of 
the numerical algorithms and physical models has a significant impact on the quality of developed patterns and the 
manufacturability of sources. 
 Among various factors, we have identified that both the cost function and the resist model have a significant impact 
on the convergence of gradient-based SO. Rigorously speaking, both factors are interrelated to each other and should be 
designed as a whole. The logarithmic sigmoid function [9-11] has been extensively used to approximate the resist effects 
in optical microlithography [12-14]. It has the advantage of being differentiable and its parameters are adjustable 
according to the sensitivity of photoresists. However, the conventional approach by a sigmoid transformation of the 
aerial image is a nonlinear operation but widely used for mask correction due to its contour aware property. The 
nonlinearity lengthens the computational time and increases the probability of local minimum traps as seen in mask 
optimization (MO). To circumvent such problems, Chan et al. have proposed a projection-based active set method to 
improve the convergence [13]. 
 In this paper, we take a different approach to improve the efficiency and robustness of SO. For Abbe’s formulation, 
image formation via source integration can be viewed as a linear system. If the associated objective functions have a 
quadratic form, the source optimization (SO) algorithm can be rather efficient and exhibits a global minimum. To reach 
a compromise between speed and image fidelity, the cost function of SO often involves a quadratic aerial-image 
objective function with specific weightings for contour pixels (or similar techniques) to account for the photoresist 
effect. The complexity therefore arises since the result is not exactly the same as the resist-image function in terms of 
side-lobe suppression. Moreover, tuning of the weighting coefficients is also not straightforward. Hence the applicability 
of such kinds of cost functions to SO and SMO is rather limited. Instead of using the conventional sigmoid function, our 
new linear resist model is designed to capture the threshold of images and monitor non-pattern regions for side-lobe 
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suppression. It can be shown that the associated objective functions are quadratic and guarantees the optimal source to be 
found by a conjugate gradient (CG) method within the number of iterations less than that of optimization parameters. 
 In Section 2, we will review the image formation in a partially coherent system and introduce the illumination cross 
coefficient (ICC) [15], which simplifies the forward imaging calculation and serves as a foundation for margin-based 
cost functions. Through local approximation of the nonlinear sigmoid function, we derive a linear resist model when the 
image intensity is near the resist threshold. We further analyze why the sigmoid in conjunction with CG may take longer 
iterations to converge. However, the problem no longer exists in our newly designed quadratic cost functions. The 
formulations are then applied for source optimization of a line array and a 15-bit SRAM in Section 3. We will 
demonstrate that our linear resist model in conjunction with CG is capable of achieving 100x speedup over the 
traditional approach, i.e. sigmoid-based steepest descent, without compromising image fidelity and process windows. 

2. METHODOLOGY 
2.1 Image formation 

 Lithography images, or so-called aerial images, can be simulated by Abbe’s method [16, 17] which integrates the 
images formed by all source points incoherently. 
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where (x, y) and (u, v) denote the spatial coordinates and spatial frequencies of a mask, respectively. J(u, v) is the 
strength of the point source located at (u, v) [17], H(u, v) is the optical system transfer function, and M(u, v) is the mask 
spectrum. 
 The optical system is band-limited [18], so the transfer function H(u,v) can be described by a low-pass filter 
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where NA/λ is the cut-off frequency of the optical system, NA is the numerical aperture which limits the largest oblique 
angle of rays forming the aerial image, and λ is the working wavelength. 
 In a partially coherent system, the finite source J(u,v) is limited by the coherent factor σ (0<σ ≤1) [17, 19]. 
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 The spectral integral in the bracket of Eq. (1) is the ICC [15] 
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Because ICC represents the image formed by a unit source with spatial frequencies (u,v), Eq. (1) can be interpreted as a 
linear superposition of images with coefficients J(u,v). 
 
 For computing pixelated images, Eq. (1) should be discretized as 
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The variables i, j, k, and l denote the indices of discretized x, y, u, and v. N and S are the total sample numbers in spatial 
and spectral domains, respectively. Likewise the ICC in Eq. (4) can be discretized as 
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To simplify the matrix computation, the 2-D discrete source can be converted to a 1-D vector and ICC can be expressed 
by a 2-D matrix. Consequently the output image is also a 1-D vector that can be converted to a 2-D distribution by 
rearranging the rank. Thus Eq. (5) can be represented as 
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  J, ICCI =  (7) 
where the sizes of I, J, and ICC are N2×1, S2×1, and N2×S2, respectively. Fig. 1 illustrates the aforementioned matrix 
operations. 
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Fig. 1. Illustration of the matrix operations in Eq. (7). ℜ denotes the matrix to vector conversion. ℜ-1 denotes the vector to matrix 

conversion. 
 
As a result, every row of the ICC matrix composes of one spatial image point by summing all row elements with the 
coefficients in J. To obtain the target image points, only the relative rows are required to be extracted from ICC for the 
computation. Thus ICC can be partitioned to several parts for different image configurations. For example, the images 
may be classified into the marginal and face parts. The former preserves the high spatial frequency fidelity and the latter 
controls the low spatial frequency response. Fig. 2 illustrates the operations of image formation of different parts. As an 
example, in Fig. 2(a) the inside marginal pixels are painted in light grey, outside marginal pixels in grey, and 
surrounding face pixels in black. The surrounding face pixels prevent the non-patterned images to be printed. In Fig. 
2(b), the combinations of rows extracted from ICC form the new sub-ICCs for different image configurations. The light 
grey, grey and black color bands denote the rows corresponding to the pixels in Fig. 2(a). Finally in Fig. 2(c), the matrix 
operations represent the image formation of the combined images. 
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Fig. 2. Partitioned ICC for different parts of image formation. (a) Example of a pixelated square contact mask. (b) Row extractions and sub-

ICC generation. (c) Matrix operations of various image formations by using sub-ICCs. 
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2.2 Resist models 

 To find the optimal source, the proper objective functions for quantifying the deviation between ideal designs and 
real simulations should first be defined. In general the final resist images are the uppermost concern. However, the resist 
images are usually simulated by the nonlinear sigmoid function [9-11], which destroys the benefit of linear operations in 
image formation. The sigmoid function has the following form 

  ,
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where a characterizes the sensitivity of the photoresist and controls the slopes of sidewall profiles. tr is the parameter of 
the constant threshold level. Here, the value is set and normalized to 0.5. Fig. 3 illustrates such resist model’s behavior 
which acts as a high pass filter. 
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Fig. 3. Sigmoid function in Eq. (8) with a = 90 and tr = 0.5. 

 

Eq. (8) can be expanded into Eq. (9) by a Taylor series when I is close to tr. Because such function has odd symmetry, 
even terms of Eq. (9) are eliminated.  
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where 
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Eq. (9) shows that T(I) can be approximated by a linear function when I is within tr±Δ1, where a2/12(tr±Δ1− tr)2 is equal 
to 0.15. Furthermore, T(I) is replaced by 0 and 1 when I < tr−Δ2 and I > tr+Δ2, where T(tr−Δ2) and (1-T(tr+Δ2)) are equal 
to 0.05. When T(I) is near 0 or 1, the derivatives approach 0, which means T(I) is near constant. Therefore, Eq. (8) can 
be approximated by the piecewise linear �(I) 
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where Δ1 = 0.0149 and Δ2 = 0.0327. Fig. 4 illustrates the line segments of Eq. (13). The constant equations in Eq. (13) 
correspond to stable regions which are linear. The linear equations adjacent to constant equations denote the active 
regions which are nonlinear. The transition region with quasi-linearity between two active regions is approximated by 
the third linear equation of Eq. (13). 
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A
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Transition region                           (Q
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Fig. 4. Resist models of Eq. (8) (Blue) and Eq. (13) (Red+O). 

 
2.3 Objective functions 

For any position, we define the cost of resist image as 
  ( ) .)()()( 2ITITIf tR −=  (14) 
where It is the target aerial image which can be elaborately designed according to the geometric shapes of patterns [20-
22]. So the overall cost using sigmoid model can be presented by following objective function 
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Similarily, Eq. (14) can be expanded by a Taylor series when I is close to tr. 
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where 
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Eq. (16) is not in a purely quadratic form because the coefficient of (I−tr)2 is a function of I and tr. However, if the 
relative locations on target are near the drawn edges where It is also close to tr, L’Hopital’s rule can be applied to 
simplify Eq. (16). 
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Therefore, when only marginal places are considered and image intensities in such places are close to tr, 
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The above equation has a quadratic form where the minimum is at I equals tr. Inspired by Eq. (16), (19), and (20), we 
devise a new objective function 
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where ζ1 denotes all contours along margins of drawn patterns. From another point of view, Eq. (21) only monitors the 
cost in drawn edges regardless of other places. Such formulation is similar to Sayegh’s idea [23], except our objective 
function is second order instead of arbitrary orders. In a sense, Eq. (21) is not sensitive to image slopes for matching the 
sigmoid characteristic in the transition region. Fig. 5 compares costs of two images with different slopes across drawn 
edges by evaluating the marginal intensity and the resist image, respectively. The differences in slopes do not contribute 
to the deviation in costs for both cases. Therefore, the blue and green image profiles have approximate costs no matter 
the sigmoid or the marginal cost is applied. 
 

SigmoidMarginal cost

 

 
Marginal intensity 1
Marginal intensity 2

 

 
Image profile 1
Image profile 2

 

 
Resist profile 1
Resist profile 2

ζ1 detections
  

Fig. 5. Cost inspections of images with various slopes using marginal costs and resist images. Black bold lines and cyan dashed lines show 
ideal target profiles and threshold level, respectively. 

 
 However, Eq. (21) only evaluates the deviation of edge images from the threshold by quasi-linear effect in transition 
region of sigmoid. To be close to the sigmoid resist model, images should be also monitored in non-pattern regions 
where the over-threshold images lead to extra costs, but under-threshold images have zero costs. Thus to suppress the 
image in non-pattern regions, the images of closed curves surrounding the drawn features should be incorporated into 
optimization. A large amount of non-pattern images leads to low yield due to undesired resist images, or so-called side-
lobes. Therefore, the objective function for side-lobe printing can be designed as 
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where ζ2 denotes the contours enclosing all drawn patterns with a distance. Such distance is half a pitch for periodic 
patterns and 0.61λ/NA for isolated and semi-isolated patterns. The half-pitch is associated with the minimum intensity of 
periodic patterns. 0.61λ/NA is associated with the first minimum of diffractive patterns for a circular aperture. δ is 
chosen to be as small as possible, but should remain positive. Fig. 6 illustrates the configurations of ζ1 and ζ2 for 
periodic, isolated and semi-isolated patterns. 
 

Drawn edges
ζ1
ζ2

(a) (b)
 

Fig. 6. ζ1 and ζ2 of (a) periodic patterns, and (b) isolated and semi-isolated patterns. 
 
 The sigmoid function acts as a high pass filter where the images will be converted to 0 or 1 beyond the transition 
region. Such conversion is highly nonlinear. Eq. (22) cannot simulate well, but has a similar trend that prefers to 
suppress side-lobe printing for minimizing F0. Fig. 7 shows the cost evaluations by employing non-pattern costs and 
resist images. While all images over the threshold are being developed, they induce costs to warn the appearance of side-
lobe printing. Conversely, all images under the threshold have nearly zero costs. Therefore, various solutions are allowed 
to have identical threshold contours, but with different image distributions beyond edges.  
 Comparing to the sigmoid, the non-pattern cost function shows differences no matter the intensities of both curves 
are over thresholds or not. Eq. (22) checks deviations from δ at the theoretical minimum in aerial image profiles. 
Therefore, costs vary with different image distributions which are highly sensitive to pattern configurations. This 
phenomenon causes slight differences in final optimal sources obtained from our approach and the sigmoid model, but it 
is still practical to use Eqs. (21) and (22) for simulating the resist image costs. However, Eq. (21) alone is not sufficient 
to reach an optimal sources as good as the sigmoid for dense patterns. 
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Fig. 7. Cost inspections of images outside drawn patterns with over- and under-threshold intensities by using non-pattern costs and resist 
images. For brevity, there are two ζ2 detection results in left sub-plot where one has under-threshold images and the other has over-
threshold images. Black bold lines and cyan dashed lines show ideal target profiles and threshold level, respectively. 
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 Finally, in terms of pixelated image calculations, Eq. (8) and (15) can be re-written as 
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where ||⋅|| is the operation of Euclidean norm. It is the numerical sampling matrix of It. 
 For the same reason, Eq. (21) can be re-written as 
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where ⋅ denotes pixel-wise multiplication. (⋅)-1 is the operator which replaces the vector elements by their own 
reciprocals. Both the sizes of ICCin and ICCout are N′×S2, which is the number of pixels on the margins of drawn 
patterns. din (dout) is an array which records the distances from inside (outside) marginal grid points to edges. The 
marginal images are obtained from weighted interpolations of inner and outer marginal grid images. Fig. 8 illustrates the 
above operation. 
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Fig. 8. Illustration of the marginal image calculation. The black solid lines sketch the inside and outside marginal pixel. The blue solid line 
shows the one of drawn pattern edges. The back circles painted by gray are grid point positions. The blue circles painted by light blue 
are sampled marginal images interpolated by using relative marginal images. )(I n
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 Therefore for on-grid patterns, din is equal to dout, Eq. (25) can be simplified as 
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Moreover, Eq. (22) can be re-written as 
  ,2

00 δ-J ICC=F  (27) 

where the size of ICC0 is N″×S2 and N″ denotes the number of chosen pixels surrounding the drawn patterns. In Eq. (27), 
the curves of ζ2 are discretely sampled by on-grid points. Such curves whose widths are one pixel are like the one 
composed of the black pixels in Fig. 2(a).  
 By defining objective functions on critical parts of the image and reformulating the sigmoid as a linear operation, 
the computational cost of SO is significantly reduced. 
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2.4 Optimization 

 In terms of matrix operation, Eqs. (26) and (27) can be rewritten as  
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where T denotes transpose operation, tr = tr×[1,…,1]T, and δ = δ×[1,…,1]T. The sizes of tr, and δ are N′×1, and N″×1, 
respectively. Thus the resist image cost by linear model is obtained by linearly superposing FM, and F0 with the 
coefficients c1, and c2 
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The value of c1/c2 can be decided by the reciprocal of average length ratio of ζ1 and ζ2. 
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where |ζ1|a and |ζ2|a denote the average length of ζ1 and ζ2, respectively. Consequently, the optimal source Ĵ can be 
defined as an argument for minimizing Eq. (30) 
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Moreover, Eq. (30) can be expanded to have a quadratic form  
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outinoutin +++= , (34) 

  ( ) δICCtrICCICCb T
02

T
1 2cc outin ++= , (35) 

  .T
2

T
1 δδtrtr ccc +=  (36) 

The sizes of Q, b and c are S2×S2, S2×1, and 1×1, respectively. Because the overall cost function is quadratic, the optimal 
source Ĵ is guaranteed to be found by conjugate-gradient (CG) method with no more than S2 iterations [24, 25]. The 
algorithm can be summarized by the pseudo-code in Table 1. 
 
 

Table 1. Pseudo-code of CG 

Algorithm 1. SO by CG  
Input: 
Load initial source J(0). Set k = 0. 
Calculation : 
1. g(0) = ∇JFL(J(0))†. If g(0) < ε ‡, stop; else, set d(0) =−g(0). 
2. αk = −( g(k)Td(k))/( d(k)TQd(k)). 
3. J(k+1) = J(k) + αkd(k). 
4. Set all negative entries of J(k+1) are equal to 0. 
5. g(k+1) = ∇JFL(J(k+1)). If ||g(k+1)|| < ε, stop; Set Ĵ = J(k+1). 
6. βk = ( g(k+1)TQd(k))/( d(k)TQd(k)). 
7. d(k+1) = −g(k+1) + βkd(k). Set k = k + 1; Go to step 2. 
Output : 
Export optimal source Ĵ. 
† g = 2(QJ − b). ∇J = [∂/∂J(1,1), ∂/∂J(2,1), …, ∂/∂J(S,S)]T. 
‡ ε is an extremely small value, but positive. 
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 Furthermore, to verify the effectiveness of our algorithm, the sigmoid-based SO results are also calculated. Likewise 
the optimal source by sigmoid model Ĵ′ can be defined as an argument for minimizing Eq. (24) and like Eq. (31) 
  }.{ˆ

RF.minargJ
J

=′  (37) 

However, Eq. (24) is not in a quadratic form and the algorithm presented in Table 1 is not applicable. Although several 
modified CG methods have been proposed to address non-quadratic problems [25], there are two drawbacks limiting the 
application of CG in high-order problems. First, the Step 2 in Table 1 that decides αk is a time-consuming one dimension 
optimization problem [25, 26]. Second, βk in Step 6 of Table 1 approximated by a quadratic function is not accurate 
enough to characterize the nonlinearity of the sigmoid model. That leads to extra iterations for converging. 
 Thus the steepest-descent (SD) algorithm [25] widely used in inverse mask optimization with sigmoid resist model 
[11, 21, 27, 28] is performed to compute Ĵ′. Table 2 summarizes the steps of the SD algorithm. 
 

Table 2. Pseudo-code of SD 

Algorithm 2. SO by SD  
Input : 
Load initial source J(0). Set k = 0. 
Calculation : 
1. g′(k) = ∇JFR(J(k))†. 
2. J(k+1) = J(k) + γ g′ (k).  
3. Set all negative entries of J(k+1) are equal to 0. 

If FR(J(k+1)) > FR(J(k)), γ = α′γℵ; Set J(k+1) = J(k). 
Elseif FR(J(k))−FR(J(k+1)) < ε ‡, stop; Set Ĵ′ = J(k+1). 

  Else set k = k + 1; Go to step 1. 
Output : 
Export optimal source Ĵ′. 
† g′ = -2aICCT[(T(It)-T(I))⋅(1-T(I))⋅T(I)]. ⋅ is the pixel-wise 
multiplication. ∇J = [∂/∂J(1,1), ∂/∂J(2,1), …, ∂/∂J(S,S)]T. 

ℵα′ < 1. γ = 5 and α′ = e-0.5 in our work.  
‡ ε is an extremely small value, but positive. 

 
 The computational complexities of SO by CG and SD incorporating linear and sigmoid models are 
O((S2×π/4)2×KCG) and O(N2×(S2×π/4)×KSD), respectively, where KCG and KSD are iteration numbers of CG and SD. 
Theoretically the speed t-1 is inverse proportional to the complexity which is proportional to elapsed time t of 
computation. Thus the speed ratio of CG comparing to SD is tSD/tCG which can be formulated as 
κ1×N2/(S2×π/4)×KSD/KCG. κ1 is a constant which depends on the programming efficiency of different algorithms. Usually 
N2/(S2×π/4) and KSD/KCG are both much larger than one, which implies CG being a more efficient approach. 
 Finally we define the functions DoPEJ and DoPEI to quantify the difference between sources and aerial images, 
respectively, where DoPE stands for the degree of pattern error. 
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By this way, the DoPEs are in the range of [0, 1]. 
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3. RESULTS AND DISCUSSION 
 The source and drawn mask templates are composed of 65×65 and 256×256 pixels with S and N equal to 65 and 
256, respectively. The pixel size is 9.93×9.93 nm2. a and δ are equal to 90 and 0, respectively. The illumination and 
projection system have working wavelength λ, numerical aperture NA, and coherent factor σ equal to 193 nm, 1.35, and 
0.9, respectively. In order to make a fair comparison, all images are normalized by integration of a full-open source with 
unit intensity and blank mask. All sources coordinates are normalized by σNA/λ. 
 First, we run simulations for line arrays with increasing densities using only Eq. (21) without Eq. (22). The CD of 
each line is equal to 69.50 nm. Fig. 9 lists the simulation results where optimal sources using two different resist image 
cost functions are quite similar for large pitches, but suffer from severe deviations for dense patterns. Because the 
simulations are in finite regions, the dense patterns are not really periodic. Thus the final optimal sources using both 
resist models are not like conventional horizontal dipole sources used for periodic line arrays. Fig. 10 illustrates the 
DoPEJ of the optimal sources in Figs. 9(a) – (j). The horizontal axis is reciprocal of pitch whose value is zero for the 
isolated pattern. As expected, the isolated and sparse configurations have smaller DoPEJ than that of dense 
configurations. Such results verify that using Eq. (21) alone is not sufficient to approximate the sigmoid function well 
for  dense patterns in SO.  
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Fig. 9. Line arrays and SO results for investigating the similarity of optimal sources using only the marginal image cost. 
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Fig. 10. DoPEJ of optimal sources calculated by different resist models in Figs. 9(a) – (j). 

 

 Consequently, we perform detailed analysis for more critical 1-D and 2-D patterns. Two demo mask configurations 
are poly line array and 15-bit SRAM as shown in Fig. 11, where the pixel size is 4.96×4.96 nm2. In the following 
simulations, c1/c2 ratios are set to be 3 for the two masks, respectively. The surrounding pixels for side-lobe checking 
are placed in the distance of half pitch from the center of every poly line and 0.61λ/NA from the edges of every SRAM’s 
square contact. 
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Fig. 11. (a) Poly line array and (b) Unit cell of 15-bit SRAM used for source optimization. 

 
 Fig. 12 illustrates the experimental results using the poly line array in Fig. 11(a). The optimal sources of both 
models are very close. Two energy concentrated arches horizontally locate at ±0.85σNA/λ along 0°−180° axis within 
±30° and 180°±30° in both optimal sources. Such optimal sources match the conventional off-axis illumination (OAI) 
source that is empirically designed for enhancing the resolution of periodical line array. In a sense, it shows our 
optimization algorithms match the real physics and practical applications. Similarly, Fig. 13 shows the experimental 
results using the 15-bit SRAM with the unit cell shown in Fig. 11(b). Both sources are quite similar and have several 
energy poles where energy is concentrated. Such poles are around the center and circumferences of source pupils. The 
energy concentration areas generate interfered spatial frequencies which match the spatial distribution of masks. The 
places besides energy concentration regions are background parts that have a few deviations between both optimal 
sources. Such parts provide near constant intensity distributions for basis that biases the vibrations interfered by high 
energy-density places of sources across the threshold tr. 
 As a result, our linear model can model the resist reactions well using Eq. (26) while the image intensity along 
drawn edges is near the threshold. The threshold-only awareness characteristic of Eq. (26) is sensitive to the average 
intensity of the two adjacent pixels in and out the drawn edges. Therefore, no matter how sharp the image slops are in 
drawn edges, the costs are the same when the drawn edge image intensities have no change. That is consistent with 
sigmoid model in which any image intensity of two adjacent pixels across tr will be converted to just 1 or 0. 
Nevertheless the images away from drawn edge locations have some deviations as using Eq. (27). Such results are 
predictable because Eq. (27) only forces the intensity of the surrounding rings to δ, that is not like sigmoid as a high pass 
filter. Moreover, Eq. (24) shows that the cost of any image intensity above (or below) tr is equal in one location, but Eq. 
(27) does not. Furthermore, every drawn pattern has only one side-lobe checking ring whose monitoring ranges are much 
smaller than the sigmoid model. 
 In terms of images, they also show similar threshold contours, where the magenta and green curves are associated 
with sigmoid and linear models, respectively. Moreover, the overall image qualities are excellent after SO although the 
patterns are still not on the target (black curves), but close. Such results relieve the load of MO and lead to simpler OPC 
masks. 
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Fig. 12. Optimal sources of the poly line array in Fig. 11(a). 
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Fig. 13. Optimal sources of the 15-SRAM in Fig. 11(b). 

 
 
 Finally we quantize the similarity of different optimal sources and their images by using Eqs. (38) and (39). The 
average edge placement errors (EPEs) and normalized image log slopes (NILSs) are also calculated according to cutline 
settings in Figs. 11(a) and (b). 
 In Table 3, the average EPEs of both mask structures using two different resist models are close and near the pixel 
size. Likewise average NILSs are also close. Moreover, DoPEJ of both masks are 8.86% and 2.88%, which implies the 
optimal sources using two resist models are highly similar. Although DoPEJs of both masks are more than 2%, DoPEIs 
are less than 0.39%. Such phenomenon indirectly verifies that aerial images are quite insensitive to large defects on 
sources [29, 30]. The above merit matches one of the characteristics of holograms that 3D images are reproduced well 
even some parts are damaged [31-33]. In fact the diffraction optical element (DOE), one of the techniques for generating 
the free form sources, is based on holography [34, 35]. 
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Table 3. Measurements of sources and aerial images. 

Measurement

Mask; Resist model

EPE
(nm)

NILS
(AU)

DoPEJ
(%)

DoPEI
(%)

Poly line array
Sigmoid 1.42 3.81

8.86 0.39
Linear 1.52 3.73

15-bit SRAM
Sigmoid 2.15 2.83

2.88 0.29
Linear 1.48 2.49

 
 
After verifying sources and images obtained from two resist models are the same, the next step is to check their impact 
on the speed of source optimization. Table 4 lists the relative analyses and measurements. 
 As a result, our linear resist model with CG takes much less iteration than the sigmoid model with SD. The 
complexity ratio is evaluated by N2/(S2×π/4)×KSD/KCG as mentioned in the previous section and N2/(S2×π/4) is 19.75 in 
our settings. The complexity ratios are up to hundreds. Therefore, the speeds are enhanced by two orders. Moreover, the 
complexity ratios and speedup ratios of both masks are in the relation of a constant κ1 whose values are both 0.62 for 
regular and brick contact arrays, respectively. Such consistent value of κ1 for both masks implies the parameters for 
estimating speeds from complexity formulas have been entirely taken into consideration.  
 

Table 4. Evaluation of computational complexity and speed enhancement. 

Measurement

Mask; Resist model

Iteration 
number (K)

Complexity Ratio
(19.75×KSig/KLin)

Speed up Ratio
(t-1)Lin/(t-1)Sig

κ1

Poly line array
Sigmoid 404

419.95 259.34 0.62
Linear 19

15-bit SRAM
Sigmoid 523

295.12 182.46 0.62
Linear 35

 
 
 Moreover, process variations of different optimal sources of each mask are also evaluated. Process variations are 
important to yields and expected to have close trends if similar sources are used. The exposure-defocus (E-D) process 
window (PW) is the main metric to characterize the process variations. Fig. 6 shows the average E-D PWs of both masks 
using sigmoid and our linear resist models. Due to the sub-wavelength CD and pitch, the effective E-D PWs are within 
Kirchhoff diffraction region [19] where the defocus is smaller than half wavelength. In Figs. 14(a) and (b) the average E-
D curves match very well, which strongly demonstrate the effectiveness of our linear resist model to approximate the 
sigmoid function. 
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Fig. 14. Average E-D PWs of (a) the poly line array and (b) the 15-bit SRAM. 
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 In Table 5 we list the representative measurements of E-D PWs in Fig. 14. The DoF and ΔDose are measured by 
finding the optimal ellipse that is tangent with the curves and having the maximum area. Thus the horizontal and vertical 
axes are DoF and ΔDose, respectively. Such measurements show that using the linear resist model leads to highly similar 
elliptical E-D PWs to those of the sigmoid model. Finally, small values (<10-2) of standard deviations of blue and red 
curves in Figs. 14 (a) and (b) quantitatively verify the similarity between process variation trends.  
 

Table 5. Measurements of E-D PWs. 

Measurement

Mask; Resist model

E-D PW (Ellipse) Standard deviation 
of E-D curvesDoF (nm) ΔDose (%)

Poly line array
Sigmoid 23.46 4.47

0.001
Linear 23.07 4.36

15-bit SRAM
Sigmoid 15.68 2.93

0.001
Linear 15.68 2.93

 
 

4. CONCLUSION 
 We propose the quadratic cost functions derived from our linear resist model and successfully demonstrate their 
effectiveness using two masks, including a 1-D poly line array and a 15-bit SRAM. Our resist image cost functions are 
capable of achieving similar optimal sources with the sigmoid model. Furthermore, our quadratic cost functions 
incorporating a conjugate gradient algorithm are much faster than the sigmoid cost function with a steepest descent 
algorithm. Such speed enhancement is well under expectation because the conjugate gradient algorithm inherently favors 
quadratic functions. 
 However, the cost function using sigmoid model is only close to a quadratic form at drawn edges, but not in non-
pattern regions. Therefore, the final optimal sources obtained from our approach slightly deviate from sigmoid results, 
but always within an acceptable tolerance. We also demonstrate that one cannot approximate the sigmoid model well 
without the non-pattern cost. Finally, the process variations characterized by E-D windows are also in similar trends for 
two different optimal sources. Such results strongly demonstrate that our approach is favorable to be integrated with SO 
for simulating resist images efficiently. 
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