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The spectral excess theorem asserts that the average excess is,
at most, the spectral excess in a regular graph, and equality
holds if and only if the graph is distance-regular. An example
demonstrates that this theorem cannot directly apply to nonregular
graphs. This paper defines average weighted excess and generalized
spectral excess as generalizations of average excess and spectral
excess, respectively, in nonregular graphs, and proves that for any
graph the average weighted excess is at most the generalized
spectral excess. Aside from distance-regular graphs, additional
graphs obtain the new equality. We show that a graph is distance-
regular if and only if the new equality holds and the diameter D
equals the spectral diameter d. For application, we demonstrate
that a graph with odd-girth 2d + 1 must be distance-regular,
generalizing a recent result of van Dam and Haemers.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, let G = (V G, EG) be a connected graph on n vertices, with diameter D ,
adjacency matrix A, and distance function ∂ . Assume that A has d + 1 distinct eigenvalues λ0 > λ1 >

· · · > λd with corresponding multiplicities m0 = 1, m1, . . . ,md . From the spectrum of G we then define
an inner product 〈 , 〉� on the vector space Rd[x] of real polynomials of degree at most d. It is well
known that Rd[x] has a unique orthogonal basis p0(x), p1(x), . . . , pd(x), satisfying deg pi(x) = i and
〈pi(x), pi(x)〉� = pi(λ0) for 0 � i � d. The number kd := |{(u, v) | u, v ∈ V G, ∂(u, v) = d}|/n is called
the average excess of G , and the number pd(λ0) is called the spectral excess of G . The spectral excess
theorem, proposed by Fiol and Garriga [9], states that

kd � pd(λ0) (1)
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if G is regular; and equality holds if and only if G is distance-regular. For short proofs, see [5,11].
Furthermore, see [4,3] for some generalizations.

Example 2.2 indicates that (1) cannot directly apply to nonregular graphs. In addition, (1) is trivial
if D < d, because kd = 0. Consequently, we provide a generalization of the spectral excess theorem
to make it applicable to nonregular graphs using a global approach. Fiol, Garriga, and Yebra [13] also
considered nonregular graphs, using a local approach, however. In Section 3 we define the average
weighted excess δD and the generalized spectral excess p�D(λ0) := pD(λ0) + pD+1(λ0) + · · · + pd(λ0),
as generalizations of average excess and spectral excess, respectively, in nonregular graphs, and prove
that

δD � p�D(λ0). (2)

As the spectral excess theorem, distance-regular graphs also attain equality in (2). Moreover, addi-
tional graphs obtain equality (see Remark 3.3 for more details). Furthermore, under the assumption
D = d, we show in Theorem 3.5 that G is distance-regular if and only if equality in (2) holds.

The odd-girth of a graph is the length of its shortest odd cycle. For application, in Section 4, we
demonstrate that a graph with odd-girth 2d + 1 must be distance-regular. The same consequence was
previously proved by van Dam and Haemers [6] under the assumption that G is regular. Moreover,
our result is the solution of a problem raised in the same paper (though these authors also proved
this result for the case d + 1 = 3 and claimed to have proofs for the cases d + 1 ∈ {4,5}). Because the
odd-girth is determined according to the spectrum, this result is also a generalization of the spectral
characterization of the generalized odd graphs [15,16].

2. Preliminaries

In this section, we review the concept of orthogonal polynomials related to G . The basic idea is
to generalize the study of distance-regular graphs (see [1,2,18]). The spectrum of G is denoted by
the multiset sp G = {λm0

0 , λ
m1
1 , . . . , λ

md
d }, and the parameter d is called the spectral diameter of G . It is

well known that D � d and Z(x) := ∏d
i=0(x − λi) is the minimal polynomial of G [1, Chapter 2]. From

the spectrum sp G = {λm0
0 , λ

m1
1 , . . . , λ

md
d } we consider the (d + 1)-dimensional vector space Rd[x] ∼=

R[x]/(Z(x)) of real polynomials of degree at most d with inner product defined by

〈
p(x),q(x)

〉
� :=

d∑
i=0

mi

n
p(λi)q(λi) = tr

(
p(A)q(A)

)
/n.

Using this inner product, there is a unique system of orthogonal polynomials pi(x), i = 0,1, . . . ,d,
where deg pi(x) = i and 〈pi(x), pi(x)〉� = pi(λ0) [17]. These polynomials p0(x), p1(x), . . . , pd(x) are
referred to as the predistance polynomials of G . Moreover, the sum of all predistance polynomials gives
the Hoffman polynomial H(x) [14]:

H(x) := n
d∏

i=1

x − λi

λ0 − λi
= p0(x) + p1(x) + · · · + pd(x), (3)

no matter whether the graph G is regular or not. For a proof, see for instance [5]. Let α be the
eigenvector of A corresponding to λ0 such that αtα = n and all entries of α are positive. Notice
that α = (1,1, . . . ,1)t if and only if G is regular. The following lemma generalizes [14] to nonregular
graphs, which was considered in [8, p. 117].

Lemma 2.1. Let G be a graph with adjacency matrix A. Then, H(A) = ααt . Moreover, G is regular if and only
if H(A) = J , the all 1’s matrix. �

Recall that the spectral excess theorem states that if G is regular then (1) holds. The following
example demonstrates that the regularity assumption of G is necessary.
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Example 2.2. Let P3 be a path of three vertices, with spectrum sp P3 = {√2,0,−√
2}. One can check

that p0(x) = 1, p1(x) = 3
√

2x/4, and p2(x) = 3(x2 − 4/3)/4. Notice that k2 = 2/3 and p2(λ0) = 1/2.
This shows that (1) does not hold.

3. A weighted spectral excess theorem

Let Ai be the i-th distance matrix of G , i.e., the n × n matrix with rows and columns indexed by
the vertex set V G such that

(Ai)uv =
{

1 if ∂(u, v) = i,
0 otherwise.

In particular, A0 = I is the identity matrix and A1 = A is the adjacency matrix. Define Ãi := Ai ◦ H(A),

where “◦” is the entrywise product of matrices. Notice that Ãi can be regarded as a “weighted”
version of Ai since

( Ãi)uv =
{
αuαv if ∂(u, v) = i,
0 otherwise

by Lemma 2.1. This approach of giving weights, the entries of the positive eigenvector, to the vertices
of a nonregular graph has been recently used many times in the literature (see, for instance, [12,9,10,
7]). For instance, this idea was crucial to introduce the concept of pseudo-distance-regularity and the
corresponding (u-local) i-distance matrices in [12]. The reason that Ãi is weighted in the above way
is to have the property that

Ã0 + Ã1 + · · · + ÃD = H(A) = p0(A) + p1(A) + · · · + pd(A)

by Lemma 2.1 and (3). Define δi := 〈 Ãi, Ãi〉 and p�D(x) := pD(x)+ pD+1(x)+· · ·+ pd(x). The number
δD is referred to as the average weighted excess and p�D(λ0) as the generalized spectral excess of G .
Notice that if D = d then p�D(x) = pd(x). For any two n ×n real symmetric matrices M and N , define
the inner product

〈M, N〉 := 1

n
tr(MN) = 1

n

∑
i, j

(M ◦ N)i j .

Moreover, let

ProjN(M) := 〈N, M〉
〈N, N〉 N

denote the projection of M onto Span{N}. The proof of the following lemma is basically the same as
in [11, Lemma 1] (the only difference is the use of “weights”, the entries of α, on the vertices of G).

Lemma 3.1. Proj ÃD
(p�D(A)) = ÃD . �

From Lemma 3.1, we immediately have the following theorem.

Theorem 3.2. Let G be a connected graph with diameter D. Then δD � p�D(λ0) with equality if and only if
ÃD = p�D(A). �

Revisiting the case when G is the path on three vertices P3 described in Example 2.2. Notice that
D = d = 2, α = (

√
3/2,

√
6/2,

√
3/2)t and

ÃD =
( 0 0 3/4

0 0 0
3/4 0 0

)
.

Then δD = 3/8 � 1/2 = p�D(λ0) satisfies inequality in Theorem 3.2.
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Remark 3.3. If G is regular with diameter D = 2, then equality in Theorem 3.2 holds. Indeed, Ã2 =
A2 = J − I − A = H(A) − I − A = p�2(A).

The graph described in Remark 3.3 is a special case of distance-polynomial graphs [19]. It would
be interesting to characterize the graphs which satisfy equality in Theorem 3.2. We complete this
characterization under the assumption D = d in Theorem 3.5. Since p0(A) = I , the following result is
simple, but plays a crucial role in proving the regularity of a graph.

Lemma 3.4. Ã0 = p0(A) if and only if G is regular. �
The following theorem is a “weighted” version of [11, Proposition 2]. The proof is essentially the

same except that here the use of weights on vertices is taking into account.

Theorem 3.5. Let G be a connected graph of diameter D which is equal to the spectral diameter d. Then
ÃD = pD(A) if and only if Ãi = pi(A) for 0 � i � D − 1. Moreover, if ÃD = pD(A) then G is distance-regular.

Proof. The first part of the proof is essentially the same as in [11, Proposition 2]. Suppose ÃD =
pD(A). By the first part we conclude that Ã0 = p0(A), and thus G is regular by Lemma 3.4. Hence G
is distance-regular by [11, Proposition 2]. �
4. Graphs with odd-girth 2d + 1

In this section, assume that G has odd-girth 2d+1. For application of Theorem 3.5, we demonstrate
that G has diameter D = d and G must be distance-regular. The proof is basically identical to [6,
pp. 487–488], except for the weights on the vertices. Let c = n/

∏d
i=1(λ0 − λi), which is the leading

coefficient of the Hoffman polynomial H(x). Notice that the trace tr(A2d+1) of A2d+1 is nonzero since
G has odd-girth 2d + 1. The following lemma determines the average weighted excess δD and the
generalized spectral excess p�D(λ0).

Lemma 4.1. (See [6].) δD = c2 tr(A2d+1)/(n
∑d

i=0 λi) = pd(λ0). In particular, D = d. �
From Lemma 4.1 and Theorem 3.5, we immediately have the following theorem.

Theorem 4.2. A connected graph with d + 1 distinct eigenvalues and odd-girth 2d + 1 is distance-regular. �
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