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Abstract Providing computer-assisted tactics analysis in sports is a growing trend. This
paper presents an automatic system for ball tracking and 3D trajectory approximation from
single-camera volleyball sequences as well as demonstrates several applications to tactics
analysis. Ball tracking in volleyball video has great complexity due to the high density of
players on the court and the complicated overlapping of ball-player. The 2D-to-3D
inference is intrinsically challenging due to the loss of 3D information in projection to 2D
frames. To overcome these challenges, we propose a two-phase ball tracking algorithm in
which we first detect ball candidates for each frame, and then use them to compute the ball
trajectories. With the aid of camera calibration, we involve physical characteristics of ball
motion to approximate the 3D ball trajectory from the 2D trajectory. The visualization of
3D trajectory and the applications to trajectory-based tactics analysis not only assist the
coaches and players in game study but also make game watching a whole new experience.
The experiments on international volleyball games show encouraging results. We believe
that the proposed framework can be extended and applied to various kinds of sports games.
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1 Introduction

The proliferation of multimedia data makes manual annotation of huge video databases no
more practical. This trend facilitates developing automatic systems and tools for content-
based multimedia information retrieval. Recently, sports video is attracting considerable
attention due to the potential commercial benefits and entertaining functionalities. As the
pace of life in the information society accelerates, most viewers desire to retrieve the
significant events or designated scenes and players, rather than watching a whole game in a
sequential way. Various algorithms of shot classification [7, 8, 16, 23], highlight extraction
[2, 9, 32] and semantic annotation [1, 3, 18] in sports video have been developed based on
the combination of low-level visual/auditory features and game-specific rules. Furthermore,
semantic content analysis of sports video requires ball/player tracking [4, 5, 22, 27-29, 31,
33] to acquire the ball-player interaction and camera calibration [10, 11, 24, 29, 30] to
obtain the ball/player positions in the real world coordinates.

Most existing work in sports video analysis is audience-oriented. However, the coaches
and sports professionals desire to acquire tactical, statistical and professional information in
game watching. Traditional interactive video viewing systems which provide quick
browsing, indexing and summarization of sports video no longer fulfill their requirements.
The professionals prefer better understanding of the tactic patterns and statistical data so
that they are able to improve performance and better adapt the operational policy during the
game. To achieve this purpose, the current trend is to employ some personnel for game
annotation, match recording, tactics analysis and statistics collection. However, it is
obviously time-consuming and labor-intensive. Hence, automatic tactics analysis and
statistics collection in sports games are undoubtedly compelling.

Although more and more research in sports video processing concentrates on ball
tracking and trajectory-based tactics analysis, the majority of existing work focuses on
tennis and soccer video [27-29, 33]. Little work was done for volleyball video. However,
volleyball games attract a large amount of audience. Besides, it is very challenging to track
the ball in volleyball video due to the high density of players on the court and the frequent
ball-player overlaps. Hence, ball tracking and 3D trajectory approximation in volleyball
video are worth in-depth investigation. In this paper, we develop an automatic system called
VIA (Volleyball Intelligence Agent), which performs 2D ball tracking and 3D trajectory
approximation from single view video sequences, captured by a fixed camera located
behind the court, for tactics analysis in volleyball games.

Generally speaking, not all of the sports games are broadcasted on TV. As the rapid
evolution of digital equipments, general users are able to capture multimedia data more
easily. It is common nowadays for sports professionals to set up a camera to capture the
video sequences of the games they are interested in for game strategy study. Visual content
analysis is no longer confined to broadcast video. Content analysis in user-generated
multimedia data becomes another burgeoning and critical issue [12, 17, 19]. This trend
necessitates the development of computer-assisted game study system for the user-captured
sports video.

The rest of the paper is organized as follows. Section 2 introduces the related work on
sports video analysis. Section 3 describes the overview of the proposed VIA system. The
processes of audio event detection, camera calibration and 2D ball trajectory extraction are
explained in Sections 4, 5 and 6, respectively. Section 7 elaborates 3D trajectory
approximation. Section 8 presents the trajectory-based applications to tactics analysis.
Section 9 reports and discusses the experimental results. Finally, Section 10 concludes this

paper.
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2 Related work
2.1 Related work on camera calibration

Semantic analysis of sport video requires camera calibration to convert 2D positions in the
video frame to 3D real world coordinates or vice versa. Various camera calibration methods
are based on planar reference objects [10, 11, 24]. These plane-based calibration techniques
require feature points on a plane appearing in different views. Farin et al. [10, 11] propose a
camera calibration algorithm for court sports. They start with identifying the court-line
pixels by exploiting the constraints of color and local texture, and then detect the court lines
by the Hough transform. The intersection points of the court lines are extracted as the
feature points to compute the camera projection matrix via solving a set of linear equations.
For the subsequent frames, a model tracking mechanism is used to predict the camera
parameters from the previous frame. Watanabe et al. [24] propose a soccer field tracking
method, which extracts the field lines, defines a wire frame model based on the official
layout of the soccer field lines, and finally tracks where the field area corresponds to in the
soccer field by utilizing the camera parameters computed via matching the wire frame
model with the extracted field lines.

Yu et al. [29, 30] propose a non-plane based camera calibration method of tennis video.
They approximate the projection geometry by a perspective projection model mapping from
the 3D world to the 2D image. Two techniques are used: frame grouping and Hough-like
search. The grouping technique clusters frames according to camera viewpoint. Then, a
group-wise data analysis is used to obtain stable camera parameters. However, some of the
parameters vary even if they have similar camera viewpoint. A Hough-like search is used to
tune some parameters.

2.2 Related work on ball/player tracking

Since significant events are mainly caused by ball-player and player-player interactions,
balls and players are the most frequently tracked objects in sports video. Yu et al. [27, 28,
31] present a trajectory-based algorithm for ball detection and tracking in soccer video. The
ball size is first estimated from feature objects (the goalmouth and ellipse) to detect ball
candidates. Potential trajectories are generated from ball candidates by a Kalman filter
based verification procedure. Camera motion recovery helps in obtaining better candidates
and forming longer ball trajectories. The true ball trajectories are finally selected from the
potential trajectories according to a confidence index, which indicates the likelihood that a
potential trajectory is a ball trajectory. Zhu et al. [33] analyze the temporal-spatial
interaction among the ball and players to construct a tactic representation called aggregate
trajectory based on multiple trajectories. The interactive relationship with play region
information and hypothesis testing for trajectory temporal-spatial distribution are exploited
to analyze the tactic patterns. Our previous work [4, 5] performs physics-based ball tracking
in broadcast sports video and provide trajectory-based applications, such as pitching
evaluation in baseball and shooting location estimation in basketball.

Some work focuses on 3D trajectory reconstruction based on multiple cameras located at
specific positions [13, 20, 21]. Hawk-Eye system [20] produces computer-generated replays
viewed through 360°. 2D ball tracking is first performed on each of the specifically located
cameras. These 2D trajectories are then sent to a 3D reconstitution module to construct the
3D trajectories, and impact points between separate trajectories (can occur at a bounce or a
strike) are determined. Finally, the complete track is visualized. ESPN K-Zone system [13]
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extracts the trajectory for each pitch and uses computer-generated graphics to outline the
strike zone boundaries. Two cameras linked to two PCs are used to observe the ball and
ecach PC extracts a 2D trajectory. The two pitch-tracking computers combine two 2D
positions which correspond to the same time code into a 3D position. Then, the successive
3D positions are fed into a Kalman filter to determine the final trajectory. UIS (Umpire
Information System) [21] uses multiple cameras to track each pitch and measure the batter’s
strike zone so as to support the strike/ball judgment. Although these systems perform well
in ball tracking and 3D trajectory reconstruction, they have strong limitation of view angles
and require high cost of multiple high speed cameras. Moreover, the high demand for the
camera installation locations and the visible areas constrains their systems to be used in a
studio-like sports field. These systems are not practicable for general users.

Ball tracking in sports video confronts many difficulties [28]: the small ball size in
frames, the varied ball appearance (shape, color, size), the presence of many ball-like
objects, the occlusion of the ball (by a player) and the mergence of the ball with lines or
players. For soccer video, some previous algorithms [27, 28, 31] estimate the ball size,
detect ball candidates by appearance features and extract the ball trajectory based on
Kalman filter. In tennis and baseball videos, there are less ball-player occlusions but the ball
moves very fast. To achieve high accuracy, multiple high-speed cameras are required to
track the ball [13, 20, 21]. As to volleyball video, the high density of players on the court
and the frequent ball-player occlusions make ball tracking much challenging. In this paper,
we utilize the characteristic that the volleyball moves near parabolically to model the ball
motion. The positions of the ball occluded by players can be recovered, and the volleyball
trajectory can be extracted accurately.

3 System overview

To achieve automatic tactics analysis in volleyball games, a system called VIA (Volleyball
Intelligence Agent) is designed in this paper. Based on our previous work [26], which
extracts 2D trajectories for set type recognition, VIA approximates and visualizes 3D ball
trajectories, so that not only trajectory-based game study can be presented but game
watching also becomes an entirely novel experience. The system framework is illustrated in
Fig. 1.

Whistle directly determines the start and end of each play in volleyball games. Thus,
VIA starts with whistle detection to segment the game into plays. Moreover, VIA also

Fig. 1 Block diagram of the

proposed VIA system D[ Cameraj 1. Audio Event Detection
Audio stream Play Boundary
Video|frames Event Index

A 4 +
2. Camera Calibration 3. 2D Ball Trajectory
Feature point finding | Ball Extraction

diameter | Ball candidate detection |

Projection matrix
computation | Trajectory generation |

v Ball positions over frames
4. 3D Trajectory Approximation |—>| Applications |
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detects the sounds of attacks for event indexing. For video frames, VIA first performs
camera calibration via finding the non-coplanar feature points to compute the projection
matrix mapping 3D real world coordinates to 2D image positions. Since we use a fixed
camera for video capturing and there is no camera motion, VIA performs camera calibration
and projection matrix computation once in each game. For 2D ball trajectory extraction,
ball candidates are detected in each frame by the constraints of size, shape and
compactness. However, it is almost impossible to distinguish the ball within a single
frame, so VIA correlates information on the ball candidates over a sequence of frames,
explores potential trajectories and identifies the true ball trajectories. To approximate the 3D
trajectory, we model the 3D trajectory with the parameters: velocities and initial positions
based on the physical characteristics of ball motion. The 3D ball positions over frames can
be represented by equations. The projection matrix computed in camera calibration is then
used to map the equation-represented 3D ball positions to the 2D ball coordinates in frames.
With the 2D coordinates of the extracted ball candidates being known, we can compute the
parameters of the 3D motion equations and approximate the 3D ball trajectory. Finally, VIA
is able to present trajectory-based applications to tactics analysis.

The novelty and contribution of this paper are summarized as follows. The problem of
2D-to-3D inference is intrinsically challenging due to the loss of 3D information in
projection to 2D frames in picture capturing. Incorporating the physical motion information
and domain knowledge, we propose the premier approach capable of 3D trajectory
approximation without the need of multiple cameras, based on the 2D ball tracking method
of our previous work [26]. Moreover, based on the obtained 2D and 3D ball trajectories, we
design several novel applications which meet professionals’ demand including action
detection, set type recognition, 3D virtual replay and serve placement estimation.
Trajectory-based tactics analysis and statistics collection can be accomplished without
manual efforts to support the couch and professionals in game study and performance
evaluation. The novelty of manifold trajectory-based game analysis gives the audience
brand-new experience of game watching.

4 Audio event detection

Several significant events, such as whistle and attack, are difficult to detect from visual
features but can be directly traced through audio features. ZCR (Zero Crossing Rate), which
counts the number of times that the signal crosses the zero axis, is a simple measurement of
the frequency content of a signal. Since whistle has higher frequency than other signals,
ZCR (Zero Crossing Rate) is a distinguishing and easy-to-compute feature for whistle
detection [25, 26]. Thus, we perform whistle detection via picking the ZCR peaks which are
greater than a threshold Z;c.

Attack detection plays an important role in event indexing. The sound of attack is a
transient signal in a very short duration. By analyzing the STE (Short-Time Energy) [34], a
peak can be observed when the attack occurs. Thus, we perform attack detection via
picking the STE peaks which are greater than a threshold Zg7z.

5 Camera calibration

In the pinhole camera model, a camera is a mapping from the 3D real world to the 2D
image space [15]. The real world point (X, ¥, Z)" in 3D space is represented as a
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homogeneous 4-vector W=(X, ¥, Z, 1)" by adding a final coordinate of 1, the image point (x, y)"
in 2D space is represented as a homogeneous 3-vector (x, y, 1)" by adding a final coordinate of
1, and P represents the 3x4 homogeneous camera projection matrix (for homogeneous
representation of points, please refer to p27 in [15]). Then, the mapping from the 3D real world
to the 2D image is written compactly as

m X PW = 0. (1)

To compute the camera projection matrix, we need to extract a set of corresponding
points—the points whose coordinates are both known in the 3D real world and in the 2D
image. We first segment the court region consisting of the court lines L; to L; (see Fig. 2)
using the dominant color feature computed via color histogram. The court lines are detected
by the Hough transform. Then, we can obtain the coordinates of the ground feature points
g; to g;p via computing the intersection of court lines. In addition to the ground feature
points, the computation of camera matrix requires non-coplanar feature points. Thus, we
trace vertically from the ground points gs, g5 in the image and search the two vertical
borders of the net using the Hough transform. The endpoints of the vertical border of the
net (g;; to g;4), together with the ground feature points, form a non-coplanar feature point
set.

Here, we briefly describe the methods of solving for the camera projection matrix P; the
details of these methods are available in [15]. For each correspondence W < m we derive a
relationship from Eq. (1):

OT 7WT yWT Pl
wT or  —xwT P2 =0 (2)
— Tt xwT  of P’

where each P'T is a 4-vector, the i-th row of P. Since only two of the three equations in (2)
are linearly independent, each point correspondence gives two equations:

PI
of —wt yw” _
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Fig. 2 Illustration of the non-coplanar feature points

@ Springer



Multimed Tools Appl (2012) 60:641-667 647

The matrix P has 12 entries, and (ignoring scale) 11 degrees of freedom, so it is
necessary to have at least 11 equations to solve for P. With the 14 non-coplanar point
correspondences obtained, we can solve for P using the direct linear transform (DLT)
algorithm (see p109, p178—184 in [15]).

6 2D ball trajectory extraction

It is a challenging task to identify the ball in frames due to its small size and fast movement.
We have proposed an effective method of 2D ball trajectory extraction in [6]. In this section,
we summarize the processes of 2D trajectory extraction.

6.1 Ball candidate detection

Since we focus on analyzing the video sequences captured by a fixed camera and there is
no camera motion, it is sufficient to detect moving pixels via differencing successive frames
for moving object segmentation. The opening morphological operation (erosion followed
by dilation) by a 3x3 square structuring element are performed to remove noises. Please
refer to Sectio n 9.2 and Section 9.3 in [14] for more details about morphological
operations. Then, moving objects are formed by region growing which iterates the
following procedure until all moving pixels are assigned to regions: start with a seed (a
moving pixel which is not assigned to a region) and grow the region by appending the
neighboring moving pixels to the seed. However, the ball is not the only moving object, but
also the audience and players. Therefore, we design the following sieves to prune non-ball
objects so as to improve the efficiency of the consequent ball tracking step. The remaining
objects which satisfy the constraints of size, shape and compactness are considered as the
ball candidates.

1) Size sieve: The in-frame ball diameter Dy, can be proportionally estimated from the
length between the court line intersections by the pinhole camera imaging principal:

(Dfrm/Dreal) = (d/D)7 Dﬁ‘m = Dreal (d/D) (4)

where D, is the diameter of a real volleyball (= 21 cm), d and D are the in-frame
length and the real-world length of a corresponding line segment, respectively. To
compute the ratio (d/D), we select the two points closest to the frame center from the
court line intersections and calculate the in-frame distance d of the selected two points.
Since the distance of the two points in the real court D is specified in the volleyball
rules, the ratio (d/D) can be computed out. Thus, the planar ball size in the frame can
be estimated as 7t ¢ (Df,m/2)2. The size sieve filters out the objects of which the sizes
are not within the range [7*(Dp/2)° — A, 7(Djn/2)” + A], where A is the extension
for tolerance toward processing faults. In our experiments, the video resolution is 352 %
240, and we set A=10 empirically.

2) Shape sieve: The ball in frames may have a shape different from a circle, but its
height-to-width ratio R;,_,, and width-to-height ratio R,,—;, should be close to 1. Let R,=
max(Ry—,, R,—;). An object will be removed if its R, is greater than a threshold Z,,.

3) Compactness sieve: The compactness sieve is built to filter out the objects with the
compactness degree CD, as defined in Eq. (5), less than a threshold Zqp.

CD = Object Size/Bounding _Box_Area (5)
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The ball is at a distance away from other moving objects in most frames. Thus, the ball
candidates close to other moving objects might be over-segmented regions of players. To
improve the accuracy of ball tracking, ball candidates are classified into isolated or
contacted candidates according to their nearest objects. A candidate is classified as isolated
if there is no neighboring object within a distance of D, (the in-frame ball diameter), and
it is classified as contacted, otherwise.

6.2 Potential trajectory exploration

It is very difficult to identify the ball from the ball candidates within a single frame.
Therefore, motion information over successive frames is required to discriminate the ball
from other moving objects. To visualize the motion of ball candidates, we plot the y-and x-
coordinates of the ball candidates over time (indexed by the frame serial number #), called
y-time plot (YTP) and x-time plot (XTP), respectively. An example of YTP and XTP is
shown in Fig. 3a, where black dots and green crosses represent the detected isolated
candidates and contacted candidates, respectively.

To acquire the characteristics of ball motion, we make YTPs and XTPs for 30 volleyball
clips by manually locating the ball positions over frames. Three examples are shown in
Fig. 4, where the vertical lines indicate the ball-player interactions. We observe that the ball

y-time plot (YTP) x-time plot (XTP)

o 1 W 1 40 8 ™ 80 100 1 1M 1% w0 18 o W M/ % 40 % 0 0 M W WO 0 w0 10 180 80

(a) Plotting the y- and x- coordinates of the ball candidates over time (indexed by the frame serial number n).
Black dots represent isolated candidates and green crosses represent contacted candidates.

®» ™ W W0 1 10 10 W0 180 ] ¥ 4 B R TO & B WO 10 0 1R W 1

(b) Potentlal trajectones the sequences of the linked ball candldates in YTP and XTP.

¥

5

W@ 0 40 s & N @ W W3 10 U0 W0 M0 w0

(C) Integrated trajectory.

Fig. 3 Illustration of the y-time plot and x-time plot for different process stages.
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(a) Example 1 (b) Example 2 (c) Example 3

Fig. 4 YTPs(the upper row) and XTPs(the lower row) of the ball positions manually located

moves near parabolically in y-direction and moves near straightly in x-direction between a
pair of successive ball-player interactions. Therefore, we design an algorithm to explore a
sequence of ball candidates which form a near parabolic curve in YTP and a near straight
line in XTP simultaneously as a potential trajectory.

Figure 5 shows the algorithm of potential trajectory exploration. Initially, each ball
candidate ¢ is linked to the nearest candidate ¢’ in the previous frame if the distance
between ¢ and ¢’ is smaller than Dy, (the in-frame ball diameter). A growing trajectory is
formed when the number of linked ball candidates is up to three (three points form a
parabolic curve), and the prediction functions are defined as Eq. (6) and Eq. (7).

y= aron® + ayen + az,a; < 0, n: frame serial number (6)

x=by*n+ by (7)

Then, the algorithm verifies the ball position prediction of each growing trajectory. The
prediction is considered matched if the distance between a ball candidate and the predicted
position is smaller than Dj,,. A growing trajectory T extends by adding the ball candidate
which matches the predicted position, and the prediction functions are updated by re-
computing the best-fitting functions for the coordinates of the ball candidates in 7 using the
least squares fitting. For a growing trajectory, if no candidate matches the predicted
position, the ball is considered missed and the predicted position is taken as the ball
position. A growing trajectory 7 is finalized as a potential trajectory if the ball is missed for
Z; consecutive frames. A ball candidate added to no growing trajectory is linked to the
nearest candidate in the previous frame for forming a new growing trajectory. The potential
trajectories produced from this procedure are shown as the sequences of the linked ball
candidates in YTP and XTP in Fig. 3b.

6.3 Trajectory identification and integration

For each potential trajectory 7, we define its confidential point to measure how likely 7'is a
ball trajectory. A potential trajectory 7T gains one confidential point for each satisfaction of
the following criteria: 1) the trajectory length is greater than a threshold Zz;, 2) the
percentage of isolated candidates in the trajectory is greater than a threshold Z;., and 3) the
prediction error (defined as the average of the distances from ball candidate positions to the
predicted positions) is less than a threshold Zpz. Obviously, we want ball trajectories to
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Input: BC, the set of detected ball candidates
Output: S, the set of potential trajectories

Initialization for growing trajectories;
for each frame f {
Jor each ball candidate c in f {
JSor each growing trajectory 7{
if (c matches the ball position predicted by T){
AddctoT;
Update the prediction functions of 7}

}
if (c is not added to any growing trajectory and fis not the first frame){
Find in the previous frame the ball candidate ¢’ closest to c;
if(distance(c, c¢') < Dj,){
Link c to ¢}
if (# of linked ball candidates reaches 3){
if (the 3 linked ball candidates form a line in XTP){
Initialize a growing trajectory T}
Initialize the prediction functions of 7}
}
else
Remove the first ball candidate from the link;

}
JSor each growing trajectory 7T {
if (no ball candidate matches the predicted position){
The ball is considered missed;
The predicted position is taken as the ball position;
Set Z = half the number of the ball candidates in T
if (the ball is missed for Z; consecutive frames )
Move T into S;

}

Fig. 5 Algorithm of potential trajectory exploration

have high confidential points. However, we cannot just¢ iteratively select the potential
trajectory 7}, with highest confidential points and discard the trajectories which overlap with
T, because a ball trajectory may be removed wrongly if the adjacent trajectory is over
extended due to a nearby spurious candidate. Hence, we first select the potential trajectories
with 3 confidential points as the true trajectories (we say that these trajectories are
identified). For two overlapped trajectories, we compute the trajectory intersection, and trim
the portion after the intersection in the former trajectory and trim the portion before the
intersection in the latter. Then, we iteratively select the longest 2-point potential trajectories
which do not overlap with identified trajectories until all 2-point potential trajectories
are processed. Finally, the gaps between two successive identified trajectories can be
patched by extending these two trajectories based on their respective prediction
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functions, as shown in Fig. 3c. Thus, the ball positions can be estimated even though the
ball is temporarily occluded.

7 3D trajectory approximation

In volleyball games, the ball trajectory comprises a sequence of near parabolic curves, even
though many factors affect the ball motion, such as velocity, gravitational constant, spin
axis, spin rate, air friction, etc. We call each near parabolic curve in the ball trajectory a sub-
trajectory and roughly model a 3D sub-trajectory as:

X =Xy + Vyt
Y, =Yy + Vyt (8)
Zy=Zy+ Vgt +gt?/2

where (X}, Y, Z,) is the 3D ball coordinate at time ¢, (Xy, Yy, Zy) is the 3D ball coordinate of
the starting position in the sub-trajectory, (Vx, Vy V) is the 3D ball velocity and g is the
gravitational constant.

We use W, = (X;,Y,, 7, 1)T = (Xo + Vxt, Yo + Vyt,Zo + Vgt + gt* /2, 1)T and m,=(x,
v, 1) T, From Eq. (3) each point correspondence gives two equations as

Pl

OT —VVtT ytVVtT 5
=0. 9
VV[T OT 7.xtVVtT 1;3 ( )

Given N detected ball candidates, we obtain 2N equations. Since the entries in P (denoted as
Dj), the 2D image coordinate (x,, y,) and the occurring time ¢ of each ball candidate are
known, we can set up a linear system, as Eq. (10), to compute the six unknowns Xy, Yy, Z,
Vy, Vyand V5. We solve for (Xy, Vy, Yo, Vy Zy, VZ)T using the direct linear transform algorithm
(see p109 in [15]). Thus, each 3D sub-trajectory can be approximated.

P —X1p31 puli —Xipsih P2 —X1p32 Prh —Xipynh piz —Xip3z pisth — Xip3sh

P21 —ip31 patt —yip3tht pa2 —Yip32 prti —yipntt P23 —Yip33 pasti — yVipsst Xo
P11 —X2p3t Pl —Xop3ily P2 —Xop32 praly — Xopyly P13 — Xop33 Pzl — Xop3sh Vx
P21 —Y2p31 Paba —yap3ily pat —Yap32 Palr —yop3zty P23 —yap3z Pl — yap3sh )I; 0
. Y

Zy

D1t —XNp31 Py —XNP3IIN P12 —XNP32 Puly — XNPRIN P13 —XNP33 Pt — XNP3sIN | |y,
P21 —YNP31 P21IN —YNDP3IIN P22 —YNP32  Pu2IN —YNPRIN P23 — YNP33 Pa3in — YNP33IN

xi(pss g /2+ 1) — (pi3 g1/2 + pia)
yilpss g/2+1) — (p3 gi/2 + paa)
x2(p3s g5/2+1) — (P13 g5/2+ p1a)
= | »2(p33 g5/2+1) — (p23 g5/2+ pas)
xv(pss gty/2+1) = (p13 gty/2 + pia)
w(pss gty /2+1) — (p3 g63/2 + pau)

(10)

However, here comes a problem. Since each 3D sub-trajectory is approximated
independently, the 3D coordinate of the transition point between a pair of adjacent sub-
trajectories computed from the preceding sub-trajectory is not always consistent with
the one computed from the succeeding sub-trajectory. To overcome this problem, we
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enhance the algorithm by taking two adjacent sub-trajectories into consideration
simultaneously.

Figure 6 illustrates the procedure of 3D trajectory approximation by a sample ball
trajectory. As shown in Fig. 6a, the ball trajectory contains three sub-trajectories Sy, S; and
S,. Let P; be the transition point between Sy and S;, and P, between S; and S,. Let (Vy;,
Vyi, Vz:) be the 3D ball velocity of the sub-trajectory S;, where i is the index. As shown in
Fig. 6b, we consider the two adjacent sub-trajectories Sy and S; to derive (Vyy, Vyo, Vzo, X1,
Yy, Z1, Vi, Vyi, Vz1). Taking Py as the initial point, the 3D sub-trajectories of Sy and S; are
expressed as Eq. (11) and Eq. (12), respectively.

X =Xy — Vyot
Y, = Y1 — Vyot (11)
Z, =27y — Vgt — gt*/2

Xe=X1 + Vxit
Y=Y+ Vyit (12)
Zi =71 + Vth+g12/2

Using W, = (X, Y., Z;, 1)" = (Xi — Vxot, Y1 — Vyot, Zy — Vot — gi*/2) for Sy and
W, = (X, Y, 7, 1)T = X1 + Vxit, Y1 + Vyit, Zy + Vit +gt?/2) for S;, we obtain two
equations for each ball candidate, as Eq. (9). The 2N equations produced from N ball

(Vxo, Vvo Vzo)

(Vxr, Vvi V) (Vx2, Vo Vo)

A ball trajectory containing three
(a) Py (Xs, Ya, Z5) sub-trajectories: Sp, S; and S,

(Vxo, Vxo Vz0)

V. Vi Vz) - process: So- Pi- S,

Compute :
(Vxo, Vvo, Vo, X1, Y1, Z1, Vxi, Ve, Vi)

Process: S;— P,— S,
Compute:
(Vs Vv, Vzi, X2, Yo, Z3, Vo, V2, V2 )

(VXI ) VYI VZ] )

S Process: Pi— S;- P,
Pi(Xy, Y1, Z)) Known: (X, Y, Z)) and (Xz, Y2, Z2)
) Refine: (Vx;, Vyi, Vz1)

Py (X3, Y2, Z5)

Fig. 6 Procedure of 3D trajectory approximation
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candidates form a linear system, as Eq. (13). Assume that the Sy and S, consist of & and N-k
ball candidates, respectively.

[ p—xips1 puti +xipaity 0 o piz—xipys puti+xipuat 0
pat —yip3s1 - pat +yipait 0 o pn—yips o pah tyipst 0 Xi
: Vxo
) Vxi
P —Xkp3t Pl + Xep3ite 0 e pi3 =Xy putc Hxpte 0 %
P2t —YkP31 P2l + VP31l 0 o P = Pt + i 0 Vl
Pl — Xk+1P31 0 Pitlisl — Xe1p3ilesl o0 P13 — Xk+1P33 0 P13tk + Xkr1P33lk+1 V)o
P21 — Vi+1D31 0 P2uliet = Vir1P3ilirr 0 P23 = Vip1P33 0 P23ti1 + Vir P33t ZIH
: Vo
P11t — XNp31 0 Puty — Xnpaitn s P13 T XNp33 0 Pty — XNp33in Vzi
L P21 —INP31 0 P21iN = YNP3IIN stt P23 — YNP33 0 DP3IN — YNP3IN

[—xi(pss g4/2+ 1)+ (P15 g4/2 +pia)
—vi(pss g1/2+1) + (p23 g63/2 + pas)

—xk(p3s gG/2+ 1) + (P13 g6/2 +pia)
—v(p3s gtg/2+1) + (p2s gtp/2 +p2) (13)
xir1(pa3 g /24 1)+ (pi3 g, /2 +pia)
Virt (P33 gleyi /24 1) + (P23 glg,1/2 +p2a)

xv(pss gy /2+1) = (P13 gty/2 +pia)
Lyw(pss gt3/2+1) — (23 g13/2 + p2a) ]

We solve for (X, Vio, Virs Y1, Vioo Viis Z1, Veo, V- 1)T using the direct linear transform
algorithm. Thus, the coordinate of Py (X, Y;, Z;) is obtained. In the same way, the nine
parameters (Vy;, Vyy, Vzi, Xo, Ya, Z3, Vxa, Vs, V) can be computed by processing S; and
S, simultaneously, as shown in Fig. 6c.

For the sub-trajectory S; between two transition points P, and P, its 3D velocity (Vy;,
Vyi1, Vz;) is computed twice: one when processing So—P;—S; and the other when processing
S1—P,—S,. Thus, we refine (Vy;, Vy;, Vz;) via solving for Eq. (12) with (X, Y, Z)=(X, 1>,
Z,). Finally, the 3D trajectory can be approximated using the 3D ball velocity (Vy;, Vy, V2z)
on each sub-trajectory S; and the coordinate (X}, Y}, Z;) of each transition point P;.

8 Trajectory-based applications

This section presents several applications based on the acquired 2D and 3D trajectories to
demonstrate the utility of the proposed 2D ball tracking and 3D trajectory approximation
scheme. The trajectory-based applications to tactics analysis greatly assist the coaches and
players in game strategy study.

8.1 Action detection and set type recognition using 2D trajectory

In volleyball games, a play begins with a serve followed by the iterative actions: reception,
set and attack. By rules, players are not allowed to hold the ball during a play. Thus, the ball
changes its motion only when interacting with a player. The turning points of the ball
trajectory can be detected and recognized as serve, reception, set and attack in order.

Since in volleyball games the set fype brings most tactical information and typically
dominates whether a team can score or not, we focus on the set action and further recognize
the set type. Figure 7 illustrates ten common set types. A set type is determined according to
its direction (forward or backward), the horizontal and vertical displacements of the ball.
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Fig. 7 Illustration of set type
diagram

Setter

We define the discriminants as Table 1. Set Qa, Ob, Qc and Qd are quick sets which players
try to hit the ball as soon as possible. Set #2 and # 3 are short sets next to the setter while
set #1, #4, #5 and #6 are long sets toward the two sides of the net. A set type can be
recognized by classifying the set curve (the sub-trajectory after the set action) into one of
the ten types by the discriminants, where a, and b; are coefficients in Eq. (6) and Eq. (7),
and y;—y; are thresholds. We use 200 set curves (20 curves per set type) as training data and
manually label the set types. The thresholds y,—y; are determined by seeking for the values
which best classify the set curves in the training data.

8.2 3D virtual replay and serve placement estimation using 3D trajectory

3D trajectory approximation facilitates the enriched visual presentation of 3D virtual replays. The
ball movement can be watched on a virtual court from any viewpoint. This visualization is
exciting and practical that the viewpoints can be switched among the receiver, setter, attacker or
the players opposite the net, which cannot be captured from any camera on the court.

Serve placement (landing position) offers a valuable insight into the game strategy because
the serve-reception directs the first attack in a play. With the 3D trajectory approximated, we
extend the sub-trajectory of a serve and the serve placement can be estimated when the sub-
trajectory reaches the ground (the z-coordinate of the ball equals zero).

9 Experimental results and discussion

The proposed algorithms of audio event detection, 2D ball tracking and 3D trajectory
approximation are implemented in Borland C++ Builder 6.0. For performance evaluation,

Table 1 Discriminants of ten common set types

Set Discriminant Set Discriminant

#1(long) bi<0, [bs>y1, |bila <y Qa (quick) bi<0, |b/|<y 1, y2<Ibillaz<ys
#2(short) b1<0, [b)|<y1, [bil/ar<y- Ob (quick) b;<0, |bl/ar>v;

#3(short) b;>0, |bi[<y 1, bilaz<y. Oc (quick) b1>0, |bi[<y1, v2<|bil/a:<y;
#4(long) b;>0, [bil>yy, 1billaz<y 0d (quick) b;>0, |bjl/az>y;s

#5(long) b;<0, |bs[>y 1, v2<|bil/az<y;

#6 (long) b;>0, |bs|>y 1, y2<|bila:<y;
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the proposed system is tested on the volleyball video sequences (MPEG-1, 352%240, 29.97
fps, Audio: 44.1 kHz, 16 bits, stereo) which we captured in 2005 Asia Men’s Volleyball
Challenge Cup: 1) Taiwan vs. Korea, 2) China vs. Japan, and 3) Japan vs. Korea.

9.1 Parameter setting

In ball candidate detection, an object will be removed by the shape sieve or the
compactness sieve if its R, (the higher value between AR and 1/4R, where AR is the aspect
ratio) is greater than a threshold Zz, or its compactness degree CD is less than Zcp,
respectively. To determine the values of Zz, and Z-p, we use a training data set containing
300 ball candidates which are manually recognized as the true ball. We compute the R, and
CD of the 300 ball candidates, and construct the relative cumulative frequency
distributions, as shown in Fig. 8. For high recall rate, the thresholds Zg, and Zp are
determined in such a way that no more than 5% of the ball candidates in the training data
set will be removed by the shape and compactness sieves.

In potential trajectory exploration, a growing trajectory 7 is finalized as a potential
trajectory if the ball is missed for Z consecutive frames. We set Z;=half the number of the
ball candidates in 7, since a potential trajectory with more than half the ball positions
missed is not reliable. In trajectory identification, we compute the trajectory lengths, the
percentages of isolated candidates in the trajectory and the prediction errors (in pixel) of a
training data set containing 100 true ball trajectories and 100 false trajectories to construct
the relative frequency distributions, as shown in Fig. 9, where the solid lines are for true
ball trajectories and the dotted lines are for false trajectories. The thresholds Z7;, Z;c and
Zpr, are determined at the intersections of the solid lines and the dotted lines.

9.2 Results of 2D trajectory extraction

We achieve good performance of overall 96.5% precision rate and 98.57% recall rate in
whistle detection. The experiment of 2D trajectory extraction is conducted on the shots
which are correctly segmented by whistle detection. The following conventions and
notations are used in presenting the results. For each ball frame (the ball is in the region of
the frame even though the ball is occluded), the ground truth of ball position is obtained by
manual inspection. The system is said to correctly identify a frame fif: 1) it concludes the
ball position within a distance of Dg,, (the in-frame ball diameter) from the ground truth
when f'is a ball frame or 2) it concludes that there is no ball when f'is a no-ball frame. The
system is said to give a false alarm if it concludes the incorrect ball position in a ball frame

(@) (b)
100 -—=——===== ¥ ¥ ¥
90 H----ff e deice e b e :
8 eof ; , S
S 604 E)
g sot§---- g
i ' =
40 +
30 -
1 2 3 4 5
ZRa
Ra

Fig. 8 Relative cumulative frequency distributions of (a) R, and (b) CD
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Fig. 9 Relative frequency distributions of (a) trajectory length, (b) percentage of isolated candidates in the
trajectory, (¢) prediction errors (in pixel)

or it detects a ball in a no-ball frame. Let #frm and #ball-frm denote the numbers of frames
and ball frames in the sequence, respectively. Let #correct be the number of frames which
the system identifies correctly and #false be the number of false alarms.

The results of ball detection and tracking are presented in Table 2. A ball is said to be
detected correctly if it matches a ball candidate. A ball is said to be tracked if the system
can conclude the correct position of the ball on the derived trajectory. An example is given
in Fig. 10. Figure 10a shows the original frame. In Fig. 10b, the ball is missed when the ball
is occluded by or close to the player(s). However, the system can still compute the ball
trajectory and track the ball positions, as shown in Fig. 10c. We achieve the accuracy
(#correct/#frm) of 71.85% on average in ball detection. By inspecting the error cases, we
observe that the ball might be missed before serving in some plays, because the player who
is serving does not toss up the ball high enough. Consequently, the ball which is too close to

Table 2 Performance of ball detection and tracking (accuracy=#correct/#frm)

Sequence Ground truth Detection result Tracking result

#frm #ball-frm #correct  #false accuracy  #correct  #false accuracy
TWN-KOR 15824 11508 11643 426 73.58% 13632 403 86.15%
CHN-JPN 14835 10520 10712 422 72.21% 12877 411 86.80%
JPN-KOR 19241 13147 13499 518 70.16% 16964 506 88.17%
Total 49900 35175 35854 1366 71.85% 43473 1320 87.12%
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Ball is‘ Y
missed

Ball is
B recovered

(a) Original frame (b) Ball detection (c) Ball tracking

Fig. 10 Illustration of ball detection and ball tracking

or occluded by the player is hard to detect. On the other hand, the tracking might fail if too many
ball candidates are missed and not enough ball candidates are detected. However, the proposed
ball tracking method is able to correct most errors and promotes the final accuracy up to 87.12%
on average. Besides, the rate of false alarm (#false/#frm) is very low—an average of 2.65%,
which takes a very small portion in the trajectory. Hence, the high reliability of the extracted
trajectories significantly promotes the feasibility of the subsequent trajectory-based applica-
tions to tactics analysis and 3D trajectory approximation.

Table 3 presents the performance of action detection. Most actions, except serve, are
detected well and the accuracies are about 90%. The misses of serve detection are mainly
caused by the failures in ball tracking before a serve (as mentioned in the previous
paragraph). The 6th column “attack(+audio)” reports the result of attack detection using
both the trajectory and audio information. A peak in STE (Short-Time Energy) after the set
action is recognized as an attack action. Combination of the trajectory and audio
information improves the accuracy of attack detection in two ways: 1) the peaks in STE
before the set action should be false alarms and can be eliminated, and 2) some misses in
trajectory-based attack detection due to the tracking error can be recovered by STE.

Figure 11 demonstrates 2D ball trajectory extraction and action detection. The detected
action: serve, reception, set and attack are shown in Fig. 11a—d, respectively. Set is one of the
actions and the set type is further recognized. In each of Fig. 11a—d, the left image displays
the frame at the moment when the action is detected, with the trajectory superimposed on the
frame. The right image shows the automatic generated close-up for the detected action.

9.3 Simulation results of 3D trajectory approximation

The estimation of 3D ball positions highly relies on the 2D ball positions extracted. Owing
to the high accuracy of the proposed 2D ball tracking scheme, VIA is able to approximate
the 3D trajectory well. Sample simulation results are demonstrated in Figs. 12, 13, and 14.

Take Fig. 12 for explanation. Figure 12a displays the frame at the moment when a serve is

Table 3 Performance of action detection

Action Serve Reception Set Attack Attack(+audio)
#action 133 133 130 125 125
#correct 110 119 120 112 115
Accuracy 82.71% 89.47% 92.31% 89.6% 92%
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Extracted trajectory Detected action

Extracted trajectory  Detected action

Serve Reception

N

Attack

_Set (tiie = #5)

' 4
L
‘

N ‘—*3 .

(c) (d)

Fig. 11 Ball trajectory extraction and action detection: a serve, b reception, ¢ set and d attack

|

(b
d

occurring. The frame is enriched by superimposing the extracted ball trajectory on the
frame and projecting the 3D trajectory on the court plane. Similarly, the enriched frames for
reception, set and attack are shown in Fig. 12b—d, respectively. It can be observed that the
transition positions of the 3D trajectory are almost the locations of the actions occurring,
which verifies the feasibility of the proposed 3D trajectory approximation method. The
trajectory projected on the court model, as shown in Fig. 12e, enables the audience or
professionals to comprehend the transition of ball motion much easily. Figure 12f displays the

(2 (h)

Fig. 12 3D trajectory approximation of sample 1 (set type=#5 and the set action is close to the net): (a)—(d)
The enriched frames for serve, reception, set and attack, respectively (e) Ball trajectory projected on the court
model (f) Serve placement estimation (g)—(h) 3D virtual replays from different viewpoints
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Fig. 13 3D trajectory approximation of sample 2 (set type=#4 and the set action is far from the net): (a)—(d)
The enriched frames for serve, reception, set and attack, respectively (e) Ball trajectory projected on the court
model (f) Serve placement estimation (g)—(h) 3D virtual replays from different viewpoints

(h)

Fig. 14 3D trajectory approximation of sample 3 (set type=#5 and the set action is far from the net): (a)—(d)
The enriched frames for serve, reception, set and attack, respectively (e) Ball trajectory projected on the court
model (f) Serve placement estimation (g)—(h) 3D virtual replays from different viewpoints
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(©

Fig. 15 Example of false 3D ball trajectory approximation: (a) 2D ball trajectory superimposed on the
frame, (b) ball trajectory projected on the court model, (¢) and (d) 3D virtual replays from different
viewpoints

serve placement estimation. Furthermore, virtual replays can be provided and the ball
trajectory in each play can be viewed from any viewpoint, as presented in Fig. 12g—h. In the
play of Fig. 12, the receiver passes the ball close to the net and the setter sets the ball (type=
#5) along the net, which can be seen in Fig. 12e. In Fig. 13, the receiver passes the ball to the
setter about two meters away from the net (see Fig. 13¢), and the set type is #4. In Fig. 14, the
receiver passes the ball to the setter about three meters away from the net (see Fig. 14¢), and
the setter sets the ball (type #5) toward the net so that the attacker can hit the ball at a position
close to the net.

Inspecting error cases, we find that improper segmentation of the ball might lead to the
deviation of the 2D ball candidate coordinate. If there are not enough ball candidates
detected to rectify the deviation, the system might misjudge a far-to-near trajectory as a
near-to-far one, and vice versa, as shown in Fig. 15. Thus, the 3D ball positions would not
be estimated correctly. Strictly speaking, there may be some deviation between the actual
ball trajectory and the approximated 3D trajectory, due to the effects of the physical factors
we do not involve, such as air friction, ball spin rate and spin axis, etc. However, our
experimental results show that the proposed physics-based method is able to approximate
the 3D ball trajectory pretty well for tactics analysis.

Since the 3D ball coordinates in the real world cannot be obtained, we prepare synthesis
data where the ground truth is known and use them to perform quantitative analysis. Table 4
shows the number of ball frames (#ball-frame), the 2D ball tracking accuracy, the average
and the maximum 3D distances between the ground truth and the computed 3D ball
positions. The average 3D distances are about 0.14 m and 0.18 m. The maximum 3D

Table 4 Quantitative analysis of 3D trajectory approximation

#ball-frm 2D ball tracking accuracy Avg. 3D distance Max. 3D distance
Synthesis 1 1409 91.41% 0.14 m 031m
Synthesis 2 1242 90.18% 0.18 m 0.39m
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Table 5 3D trajectory approximation performance on different tracking accuracies

2D ball tracking accuracy (Manually reduced) ~ Avg. 3D distance Max. 3D distance

Synthesis 1 91.41% 0.14 m 031m
Synthesis R1 73.10% 0.28 m 0.63 m
Synthesis R2 60.89% 0.48 m 097 m
Synthesis R3 45.71% 091 m 1.76 m

distances are no more than 0.4 m. To further evaluate the robustness of the proposed 3D
trajectory approximation approach against 2D ball tracking error, we manually reduced the
tracking accuracy via discarding some tracked 2D ball positions and then compute the
average and the maximum 3D distances, as show in Table 5 and Fig. 16. It can be observed
that the average and the maximum distances increase dramatically as the 2D ball tracking
accuracy reduces. That is, the proposed 3D trajectory approximation approach highly relies
on the tracked 2D ball positions.

9.4 Discussion and comparison

The experiments are conducted on an IBM ThinkPad X60 notebook computer (CPU: Intel
Core Duo T2400 1.83 GHz, RAM: 1 GB). Table 6 presents the computing time of each
process stage: 7; for object segmentation, 7, for ball candidate detection, 73 for ball tracking
and 7, for 3D trajectory approximation. The percentage of the computing time of each
process stage to the total computing time 7,(7,; = 71 + 72 + 73 + 74) is given in the
parentheses. The last two rows present the number of frames in the sequence (#frm) and the
average computing time for each frame (7,,/#frm).

Table 6 shows that the computation of 3D trajectory approximation is very efficient,
which takes a quite low percentage of the total computing time (about 1.3%). The
computational cost is mainly from ball tracking (up to 70%). In our statistics, 6.89 ball
candidates are detected from 59.43 objects produced in each frame on average, as presented
in Table 7. The effectiveness is defined as Eq. (14):

Effectiveness = (N, — N,)/N, (14)

where N, an N, are the object numbers before and after applying a sieve to remove non-ball
objects, respectively. The most effective sieve is the size sieve, which is able to remove
68.16% of non-ball objects. The shape and compactness sieves can remove 34.07% and
45.89%, respectively. The computational efficiency of ball tracking can be improved if we
tighten the sieve constraints to remove more non-ball objects. However, more misses will
occur accordingly. Overall, we achieve the average computing time of about 25 ms/frame,
that is, the proposed VIA system is able to extract 2D trajectories and approximate 3D
trajectories in real time.

Fig. 16 3D trajectory approxi- 2
mation performance on different 15 hN —e—Avg. 3D difference
tracking accuracies ’ \ _e—Max. 3D differencel

1
\Q:
0

0% 20% 40% 60% 80% 100%
2D ball tracking accuracy
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Table 6 Computing time of each process stage (7;: object segmentation, 75: ball candidate detection, 73: ball
tracking, 7,: 3D trajectory approximation, 7,y = 7| + 72 + 73 + 74)

Computing time TWN-KOR CHN-JPN JPN-KOR

7 (T1/Tant) 81353 ms (21.77%) 78593 ms (19.61%) 96649 ms (19.93%)
75 (To/Tat)) 23729 ms (6.35%) 24485 ms (6.11%) 37799 ms (7.79%)
73 (T3/Tat)) 264010 ms (70.63%) 292547 ms (72.99%) 343944 ms (70.93%)
Ty (Td/Tat)) 4656 ms (1.25%) 5184 ms (1.29%) 6542 ms (1.35%)
Tall 373748 ms 400809 ms 484934 ms

#frm 15824 14835 19241
Ta/Hfrm 23.62 ms 27.02 ms 25.2 ms

For performance comparison, we implement another ball tracking algorithm based on
Kalman filter, which is widely used in object tracking [13, 27, 28]. To compare the
effectiveness and efficiency of the Kalman filter-based algorithm (KF) with those of our
algorithm, we use #correct (the number of the frames in which the system correctly
identifies the ball), #false (the number of false alarms), accuracy (#correct/#frm) and CT
(the computing time) as criteria, as reported in Table 8. The comparison shows that our
algorithm performs better in eliminating false alarms. Consequently, our algorithm achieves
higher accuracy of about 87% compared to about 80% for KF algorithm. Moreover, our
algorithm requires less computing time. This is because the use of the ball motion
characteristics can prevent searching many false trajectories. In conclusion, our algorithm
outperforms KF algorithm in both effectiveness and efficiency.

As to 3D trajectory approximation, Table 9 shows the comparison between the famous
existing systems [13, 20, 21] and our proposed VIA system. To the best of our knowledge,
there are few researches on 3D trajectory approximation from single-camera video
sequences. The 2D-to-3D inference is also one of the main contribution and novelty of
this paper. Most of the existing 3D trajectory reconstruction systems work on multiple
cameras located on specific positions. The Hawk-Eye system [20] completed its debut at
the Wimbledon Championships 2007 and has been applied to official games for years. It is
claimed that the Hawk-Eye system can provide instant replay within 2—3 seconds and
shows an average error of only 0.36 cm. ESPN K-Zone system [13] officially debuted in
2001 and is claimed to be accurate to within four-tenths of an inch (1.016 cm). The UIS
(Umpire Information System) [21] was first seen on air during the 1997 Baseball World
Series. The UIS claims that each pitch can be tracked and recorded within a half-inch
(1.27 cm) of its actual location. These existing systems have outstanding performance in 3D
trajectory approximation. However, they require high cost of multiple high speed cameras

Table 7 Effectiveness of the size, shape and compactness sieves

Process stage #object (per frame) Effectiveness
Initial 59.43

Apply the size sieve only 18.92 68.16%
Apply the shape sieve only 39.19 34.07%
Apply the compactness sieve only 32.16 45.89%
Apply the above three sieves 6.89 88.41%
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Table 8 Comparison between the Kalman filer-based algorithm and our algorithm (#false: number of false
positive, CT: computing time)

Ball tracking ~ KF algorithm Our algorithm

#correct  #false  accuracy  CT (ms)  #correct  #false  accuracy  CT (ms)

TWN-KOR 12890 775 81.46% 340308 13632 403 86.15% 264010
CHN-JPN 11818 701 79.66% 392012 12877 411 86.80% 292547
JPN-KOR 15427 1019 80.18% 449190 16964 506 88.17% 343944
Total 40135 2495 80.43% 1181510 43473 1320 87.12% 900501

and have strong limitation of view angles. In a way our proposed VIA system better meet
the practical requirement and general users’ needs.

10 Conclusions and future work

The more you know the opponents, the better chance you stand of winning. Therefore, game
strategy study before the play is of vital importance for the coaches and players. To assist game
strategy study and extract tactic information, we design a physics-based system VIA (Volleyball
Intelligence Agent) for ball tracking, 3D trajectory approximation and providing applications to
tactics analysis based on the 2D and 3D trajectories. The problem of 2D-to-3D inference is
intrinsically challenging due to the loss of 3D information in projection to 2D frames. One
significant contribution is the integrated scheme which utilizes the domain knowledge of court
specification for camera calibration and encapsulates physical characteristics of ball motion into
object tracking to achieve 3D trajectory approximation from single view video sequences.
Moreover, the VIA system has illustrated some of the numerous trajectory-based applications
made possible by this scheme, including: action detection, set type recognition, 3D virtual
replays and serve placement estimation. These applications significantly assist the coaches,
players and the audience to have a novel insight into the game.

Every sport has its respective game rules, domain knowledge, court model and tactics.
Therefore, tactics analysis is specially designed for a specific sport. The trajectory-based
applications to tactics analysis presented in this paper cannot be directly applied to other sports.
However, we propose a generalized approach for 2D ball tracking and 3D trajectory
approximation. With domain knowledge-based adaption, the proposed approach can be readily
applied to the sports which have sufficient court information captured in the video and require
ball trajectory extraction for tactics analysis, such as basketball, soccer, tennis and table tennis.
On the other hand, it is also considered as part of our future work to apply the proposed system
to the video of higher resolution, and we believe that better performance can be achieved.

Table 9 Comparison between the famous existing systems [13, 20, 21] and our proposed VIA system on 3D
trajectory approximation

ESPN K-Zone Hawk-Eye QuesTec Our proposed
System [13] System [20] UIS [21] VIA system
Avg. 3D error 1.016 cm 0.36 cm 1.27 cm 14 cm
# of camera(s) 2 6 4 1
High speed camera required? yes yes yes no
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Generally speaking, not all of the sports games are broadcasted on TV. It is a growing trend
that the coaches and players set up a camera to capture the game they want to analyze. This
trend necessitates the development of computer-assisted game study system for the user-
captured sports video like the proposed VIA system. The main difference between the user-
captured video and the broadcast video is that the former has no camera motion while the latter
has. To avoid the effect of camera motion, in this paper we use user-captured video to verify the
proposed 3D trajectory approximation approach. The experiments show convincing results.

The limitation of our proposed system is that only the video sequences captured by a
fixed camera are analyzed. For broadcast video sequences, camera motion increases the
complexity in moving object segmentation. The frame differencing method is no longer
adequate to segment objects when the background keeps changing. On the other hand, the
current system considers the physical effect of gravity acceleration to model 3D ball
trajectories as parabolic curves. However, there are still other factors affecting the ball
motion, such as air friction, ball spin axis, ball spin rate, etc. In the future, we will take
camera motion into consideration for ball tracking in broadcast video sequences. Moreover,
we will involve more physical factors to model the 3D ball trajectory more precisely.
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