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Evolutionary computation has become a popular research field due to its global searching ability. There-
fore, it raises a challenge to develop an efficient and robustness evolutionary algorithm to not only reduce
the evolution process but also increase the chances to meet the global solution. To this end, this study
aims to provide a novel evolutionary algorithm named the partial solutions consideration based self-
adaptive evolutionary algorithm (PSC-SEA) to address this issue; the proposed algorithm is applied to
adjust the parameters of the neuro-fuzzy networks. More specifically, different from the existing evolu-
tion algorithms, the partial solutions consideration (PSC) tends to consider both the specializations and
complementary relationships of the partial solutions from the complete solution to prevent converging
to suboptimal solution. Moreover, a self-adaptive evolutionary algorithm (SEA) is proposed to dynami-
cally adjust the searching space according to the performance. By doing so, the proposed evolutionary
algorithm can consider the influence of partial solutions and provide a suitable searching space to
increase the chances to meet the global solution. As shown in the results, the proposed evolutionary algo-
rithm obtains better performance and smoother learning curves than other existing evolutionary algo-
rithms. In other words, the proposed evolutionary algorithm can efficient tune the parameters of the
neuro-fuzzy networks to meet the global solution. Base on the results, a framework is proposed to build
a benchmark for developing the evolutionary algorithms that can not only consider the influence of par-
tial solutions but also provide a suitable searching space.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In recent decade, the research related to learning structures of
the neuro-fuzzy networks have become a popular research field
due to its powerful adaptive ability in various applications such
as nonlinear control (Lin & Xu, 2007), face detection (Lin, Chuang,
& Xu, 2006), stock prediction (Lee, 2004) and etc. More specifically,
the learning structure is mainly used to let neuro-fuzzy networks
can be suitable for particular application by constructing the rela-
tionship between the input and output patterns. In other words, it
is mainly used to develop the suitable way to adjust the parame-
ters of the neuro-fuzzy networks (Sadighi & Kim, 2011). Thus,
the learning structure plays an important to influence the perfor-
mance of the neuro-fuzzy networks.

Since the learning structures can influence the performance of
the neuro-fuzzy networks, there is an important issue for develop-
ing the suitable learning structure when modeling the neuro-fuzzy
networks. To address this issue, in this study, we aim to develop
the efficiently and robustly learning structure to model the neu-
ll rights reserved.

(P.-C. Hung), sflin@mail.
ro-fuzzy networks that meet the global solution (Lin & Hsu,
2007). Among various global based learning structures, the evolu-
tionary algorithm (Hsu, Lin, & Cheng, 2010) is widely used as the
learning structure of the neuro-fuzzy networks due to its powerful
global searching ability. More specifically, the evolutionary algo-
rithms are parallel and global based search techniques that can
help construct the neuro-fuzzy networks that can meet the optimal
solution. Moreover, it can simultaneously evaluate many points in
the searching space.

Although the evolutionary algorithm can reach our aim, the tra-
ditional evolutionary algorithms only pay more attention to the
whole solution when finding the optimal solution (Karr, 1991;
Lin & Jou, 2000; Lin & Xu, 2006). In other words, single individual
is used to represent the overall performance. However, single solu-
tion cannot consider the specializations to ensure diversity that
can prevent the single solution converging to suboptimal solutions
(Smith, Forrest, & Perelson, 1993). Therefore, in moist serious case,
the single solution consideration may easy meet the suboptimal
solutions.

In addition, the traditional evolutionary algorithms may also fo-
cus on evaluating the fixed searching space for finding the optimal
solution (Karr, 1991; Lin & Jou, 2000; Lin & Xu, 2006). In other
words, the searching space in such algorithms cannot be adjusted
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Table 1
Components of the forward structure.

Component Content

Fuzzy if-then
rules

It consists of an antecedent and consequent part. The
former represents different degree (membership degrees)
that each input patterns belong to each membership
function and the latter means the firing strength of each
fuzzy rule

Fuzzy inference
schema

It is mainly used to conduct the fuzzy output by inferring
fuzzy rules

Defuzzifier
schema

It is used to generate the crisp output from fuzzy output
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according to the performance of each candidate solution. For in-
stance, if a candidate solution is near to the optimal solution, the
candidate solution may still need to search in the large range of
space. Therefore, such algorithms may slowly or even hardly meet
the optimal solution by using the single criterion evaluation.

To address this issue, this study proposed a novel evolutionary
algorithm named partial solutions consideration based self-
adaptive evolutionary algorithm (PSC-SEA). More specifically, the
PSC-SEA can be divided into two parts such as the partial solutions
consideration (PSC) and self-adaptive evolutionary algorithm
(SEA). Regarding the PSC, it is mainly used to consider the influence
of the partial solutions (specializations) from the complete solution
to prevent the single solution converging to suboptimal solutions.
More specifically, the complete solution is partitioned into several
individuals. The PSC considers both specialization of the partial
solution and complementary relationship among individuals to
prevent the evolutionary algorithm to meet the suboptimal solu-
tion. Regarding the SEA, it is mainly proposed to adjust the search-
ing space automatically according to the performance of each
individual. More specifically, an individual can be further searched
in the small range of space when the individual is near to the
optimal solution. Conversely, if an individual is far away from
the optimal solution, the individual should be further searched in
the large range of space. By doing so, the parameters of the neu-
ro-fuzzy network can be tuned efficiently and the accuracy of the
outputs obtained from the neuro-fuzzy networks can be improved.

In summary, this study aims to provide a novel evolutionary
algorithm to not only consider the influence of partial solution
but also provide a self adaptive searching space when adjusting
the parameters of the neuro-fuzzy networks. By doing so, the neu-
ro-fuzzy networks can not only efficiently and robustly tune the
parameters of the neuro-fuzzy networks but also increase the
chances to meet the optimal solution. This paper is organized as
follows. The related works are introduced in Section 2. In Section
3, the methodology development is described. In Section 4, the
illustrative results are presented. In Section 5, a framework related
to the novel evolutionary algorithm is summarized. Finally, the
concluding remarks are showed in the last section.
2. Literature review

The related works of neuro-fuzzy networks and evolutionary
algorithms are shown in the following sub sections.
2.1. Neuro-fuzzy networks

Recently, neuro-fuzzy networks have been widely applied in
several fields (Lee, 2004; Lin & Xu, 2007; Lin et al., 2006). The main
purpose of the neuro-fuzzy networks is to provide robust structure
that can be applied to different applications (Lin & Xu, 2006; Tan &
Quek, 2010). More specifically, in the classical applications, an
accurate mathematical model is required to achieve their pur-
poses. In other words, different applications may need different
mathematical model. However, in real world applications, it is dif-
ficult or even hardly to generate a suitable mathematical model to
represent the applications. Thus, to avoid strongly associated with
the mathematical models especially for nonlinear and complex
problems (Juang & Lin, 1999; Narendra & Parthasarathy, 1990),
the neuro-fuzzy network provide a suitable solution to address di-
verse purposes of different applications.

Generally, the neuro-fuzzy network can be divided into a for-
ward and backward structure (learning structure). Regarding the
forward structure, it is mainly used to produce the output of the
network. More specifically, it consists of a set of fuzzy if-then rules
(Mitra & Hayashi, 2000), fuzzy inference mechanism (Seki &
Mizumoto, 2010) and defuzzifier mechanism (Melgarejo, 2002).
Table 1 shows each of these components.

Regarding the backward structure (learning structure), it is
mainly used to improve the performance of the forward structure
by adjusting the parameters of the neuro-fuzzy network (i.e. the
parameters of the antecedent part and consequent part). Recently,
several studies tend to proposed novel algorithms applied to learn-
ing structure to adjust the parameters of fuzzy if-then rules (Jang,
1993; Juang & Lin, 1998; Lin, Lin, & Shen, 2001; Zahlay, Rao, & Ibra-
him, 2011). Among them, the most well known learning algorithm
is back-propagation (BP) Lin et al., 2001; Zahlay et al., 2011. More
specifically, it is used to adjust the parameters of the neuro-fuzzy
networks by using the steepest descent technique to minimize
the error function (Xu & Zhang, 2010). Since the BP can be success-
fully applied to adjust the parameters of the neuro-fuzzy networks,
it may easily reach the local minima or even never find the global
solution (Lin, Xu, & Lee, 2005). Beside, for different structures of
neuro-fuzzy networks, new mathematical expressions are needed
for each network structure.

To face aforementioned issue, the global based learning struc-
tures are proposed to prevent achieving the sub-optimal solution
(Goldberg, 1989). More specifically, such structures mainly adopt
the principle of the heuristics learning to help the networks meet
the optimal solution (Lin et al., 2005). Among various global based
learning structures, evolutionary algorithms are widely used to
prevent the neuro-fuzzy networks achieving the sub-optimal solu-
tion (Karr, 1991; Lin & Jou, 2000; Lin & Xu, 2006). In other words,
the evolutionary algorithms can be applied to find an optimal solu-
tion when adjusting the parameters of neuro-fuzzy networks.
Moreover, they can also be suitable for different neuro-fuzzy net-
work structures. It implies that evolutionary algorithms do not
need to develop new mathematical expressions for different struc-
tures of the neuro-fuzzy networks. Thus, the evolutionary algo-
rithms are better candidates than the BP algorithms to train the
parameters of the neuro-fuzzy networks. Such arguments can also
explain why this study aims to improve the learning structure
about the evolutionary algorithms.
2.2. Evolutionary algorithm

As mentioned above, the evolutionary algorithms can be suc-
cessfully applied to improve the global searching ability of tradi-
tional learning structure (e.g. BP algorithm). Thus, recently, there
are several evolutionary algorithms have been applied to tune
the parameters of neuro-fuzzy networks for increasing the chances
to meet the optimal solution (Fogel, 1994; Koza, 1992; Rechenberg,
1994). Such algorithms cannot only provide parallel and global
searching techniques to seek the solutions but also simultaneously
evaluate many points in the search space. Among various
evolutionary algorithms, the most well-known model is genetic
fuzzy models (Karr, 1991; Lin & Jou, 2000; Lin & Xu, 2006) that
used the genetic algorithms (GAs) Holland, 1992, to train the
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parameters of fuzzy models. For instance, Karr applied GA to de-
sign a fuzzy controller (Karr, 1991). As shown in his work, the
GA is mainly used to seek the optimal parameters of each member-
ship function. Moreover, Xu and Lin applied reinforcement GA to
seek the optimal parameters of the TSK-type neural fuzzy control-
ler (Lin & Xu, 2006). Their work showed that the well-trained TSK-
type neural fuzzy controller could obtain better performance than
the BP algorithms in several control applications.

Since genetic fuzzy models are useful to improve the global
searching ability, it still has some challenges needed to be taken
into account. More specifically, the major issue of the evolutionary
algorithms is ‘‘how to design the criteria to generate the individu-
als that can meet the optimal solution?’’. In other words, there is a
need to develop a novel architecture to improve the generations of
the evolutionary algorithms. To address this issue, several studies
tend to develop novel evolutionary algorithms. For instance, Smith
et al. proposed a symbiotic evolution to provide a multiple consid-
eration when evaluating the individuals (Smith et al., 1993). More
specifically, the symbiotic evolution divides the complete solution
into several partial solutions. Each partial solution can be charac-
terized as specializations. The specialization property can ensure
the diversity of evolution. In other words, such diversity can pre-
vent a population to meet suboptimal solutions. As shown in their
work, the symbiotic evolution can obtain the well performance by
evaluating the partial solution. Similar to the search of Smith et al.,
Gomez and Schmidhuber also proposed the enforced sub-popula-
tions (ESP) to use multiple considerations to prevent for meeting
the suboptimal solutions (Gomez, 2003). As shown in their works,
the sub-populations are used to evaluate the partial solutions.
Their results indicated that the ESP can obtain better performance
than systems with only single consideration.

More recently, Lin and Xu modified such multiple consider-
ations to efficiently seek the parameters of the particular NFN
(i.e. TSK-type NFN) Lin & Xu, 2007. More specifically, the fine
adjusting is used to adjust the parameters of the NFNs for improv-
ing the evolutionary algorithm. Their work indicated that the mul-
tiple considerations can demonstrate high performance than
traditional evolutionary algorithms. Besides, Lin and Hsu proposed
the hybrid evolutionary learning algorithm (HELA) to apply the
multiple considerations to both a structure and parameter learning
when training the parameters of wavelet neuro-fuzzy networks
(Lin & Hsu, 2007). Their results demonstrated that the HELA obtain
better performance than other existing evolutionary algorithm.

Although aforementioned studies verified the performance of
their proposed algorithms, they may lack to not only take into ac-
count the influence of both specializations and complementary
relationship but also consider adjusting searching space when per-
forming the evolutionary process (e.g. reproduction, crossover and
mutation). More specifically, regarding the former, even if the mul-
tiple considerations can demonstrate high performance (Gomez,
2003; Lin & Hsu, 2007; Lin & Xu, 2007; Smith et al., 1993); they
only focus on evaluating the efficiency of a particular solution by
considering the performance of all the possible combinations that
contains that particular solution. In other words, the performance
of each partial solution cannot completely represent the perfor-
mance of the complete solution. It implies that the aforementioned
algorithms can not exactly combine the partial solutions that indi-
vidually perform well to generate the best performed solution.
Regarding the latter, aforementioned algorithms only focuses on
fixed searching space when performing the evolution. In other
words, such algorithms may not offer a suitable searching space
to increase the chances to let the individuals generate better off-
spring in each generation. In more serious case, these algorithms
may be difficult to meet the optimal solution.

To address aforementioned issues, this study proposed a novel
evolutionary algorithm to consider both multiple considerations
and self adaptive searching space. Regarding the former, the influ-
ence of the specializations and complementary relationship in par-
tial solutions is considered to prevent the evolutionary algorithms
converging to suboptimal solutions. More specifically, each partial
solution can not only be evaluated independently but also consider
the complementary relationship among different partial solutions.
Regarding the latter, the searching space will be adjusted automat-
ically according to the performance of each individual. More spe-
cifically, an individual can be searched in the suitable searching
space. By doing so, the parameters of the neuro-fuzzy network
can be trained efficiently and the accuracy of the outputs obtained
from the neuro-fuzzy networks can be improved.
3. Methodology

The methodology of this study is introduced in this section.
More specifically, the neuro-fuzzy network and partial solutions
consideration based self-adaptive evolutionary algorithm (PSC-
SEA) are described as following sections.
3.1. Neuro-fuzzy network

Neuro-fuzzy networks are mainly used to represent the fuzzy
if–then rules in a network structure. By doing so, the well-know
learning algorithms of artificial neural networks can be applied
to train the fuzzy if–then rules. Generally, the most popular neu-
ro-fuzzy network is Takagi-Sugeno-Kang (TSK) type neuro-fuzzy
networks (Lin & Xu, 2007; Lin et al., 2006; Lin & Xu, 2007) since
it could achieve superior performance than the various neuro-
fuzzy networks in both network size and learning accuracy. To this
end, a TSK-type neuro-fuzzy network (TNFN) is used to reach the
aims of this study. In other words, the PSC-SEA, which will be de-
scribed in the following section, was used to train the parameters
of the TNFN.

The TNFN provides the minimum fuzzy implication to perform
the fuzzy reasoning. Moreover, the consequence of each rule is a
function related to the input variables in the network. The general
adopted function is the linear combination of input variables plus a
constant term. A TSK-type fuzzy rule is shown below

IF x1 is A1j and x2 is A2j . . . and xn is Anj

THEN y ¼ w0j þw1jx1 þ . . .þwnxn
ð1Þ

As shown in Eq. (1), the parameter w0j represents the constant term
that used to plus the linear combination of input variables to gener-
ate the consequence of jth rule node. Moreover, the parameter wij

represents the ith parameter, which used to product the ith input
variable to generate the linear combination of input variables. Since
the consequence of a rule is crisp, the defuzzification step becomes
obsolete in the TSK inference scheme. Instead, the model output is
computed as the weighted average of the crisp rule outputs, which
is computationally less expensive then calculating the center of
gravity.

To further understand the TNFN, the structure of the TNFN is
shown in Fig. 1. It is a five-layer network structure. The function
of each layer is shown below.
3.1.1. Input layer
This layer is mainly used to transmit the input values to the

next layer. The function of each node in this layer is shown below

uð1Þi ¼ xi ð2Þ

where uðkÞi denotes the input value of ith node in the kth layer and xi

denotes ith input dimension.



Fig. 1. Structure of the TSK-type neuro-fuzzy network.
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3.1.2. Membership function layer
The nodes of this layer are used to compute the membership

degree that corresponds to each input node in the Input Layer. By
doing so, the membership degree of each input node that belongs
to a fuzzy set (Wang, Wang, Bai, Chen, & Sun, 2010) is calculated in
this layer. Each node in this layer corresponds to one linguistic la-
bel of the particular input node in the Input Layer. In this study, the
most well know Gaussian membership function is adopted in this
layer (Baradaran-K, Shekofteh, Toosizadeh, & Akbarzadeh-T, 2010).
The function of each node in this layer is shown below

uð2Þij ¼ exp � ½u
ð1Þ
i �mij�2

r2
ij

 !
ð3Þ

where mij andrij are, respectively, the center and the width of the
Gaussian membership function of the ith input node uðkÞi in the jth
rule.

3.1.3. Rule layer
This layer tends to compute the firing strength of each rule.

More specifically, each node in this layer is determined by the
fuzzy inference operation. In this study, the ‘‘AND’’ fuzzy inference
operation is adopted (Wang, He, Peng, & Liang, 2010). In other
words, the product operation is used to compute the firing strength
of each rule. The function of each rule is shown below

uð3Þj ¼
Q

i
uð2Þij ð4Þ
3.1.4. Consequent Layer
The nodes of this layer are mainly used to determine the conse-

quent part of each rule. More specifically, each node in this layer is
compute based on the linear combination of input variables. More-
over, the input nodes in this layer consist of the outputs delivered
from the previous layer and the input variables from the Input
Layer (see Fig. 1). The function of each node is shown below

uð4Þj ¼ uð3Þj w0j þ
Pn
i¼1

wijxi

� �
ð5Þ

where wij are the corresponding parameters of the consequent part.

3.1.5. Output Layer
Each node in this layer is used to compute the crisp output va-

lue. In other words, the defuzzifier operation is performed in this
layer. More specifically, the outputs of the Rule Layer and Conse-
quent Layer are used to compute the crisp output value. The func-
tion of this layer is shown below

y ¼ uð5Þ ¼
PR

j¼1uð4ÞjPR
j¼1uð3Þj

¼
PR

j¼1uð3Þj ðw0j þ
Pn

i¼1wijxiÞPR
j¼1uð3Þj

ð6Þ

where R is the number of fuzz rules.

3.2. Partial solutions consideration based self-adaptive evolutionary
algorithm (PSC-SEA)

In this section, the PSC-SEA is introduced in the following sub-
sections, including learning components (Section 3.2.1) and learn-
ing procedure (Section 3.2.2).

3.2.1. Learning components
This section describes the main components of the proposed

PSC-SEA. More specifically, the required components can be
further divided into the components related to partial solutions
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consideration (PSC) and the components related to Self-Adaptive
Evolutionary Algorithm (SEA). The details of these two types of
components are shown below.

3.2.1.1. Partial solutions consideration (PSC). The main purpose of
the PSC is to consider both specializations and complementary
relationship. Regarding the former, the specializations of both indi-
viduals and population are considered. More specifically, the struc-
ture of the individuals and coding schema should be modified to let
the individuals can be evaluated individually. Regarding the latter,
the fitness value evaluation should be modified to consider not
only the performance of each partial solution but also the comple-
mentary performance among different partial solutions. The details
of these two types of components are shown below.
3.2.1.1.1. Individuals. The idea of PSC is that each individual in a
population represents only a partial solution instead of the com-
plete solution. In other words, complete solution is obtained from
combining several individuals. As mention in Section 2, previous
studies indicated that partial solutions can consider diversity to
prevent the evolutionary algorithms converging to suboptimal
solutions. By doing so, the evolutionary algorithms can have more
chances to meet the optimal solution than the traditional evolu-
tionary algorithms (Fogel, 1994; Karr, 1991; Koza, 1992; Lin &
Jou, 2000; Rechenberg, 1994).

Generally, the applications considered partial solutions only
used a single population to evaluate each partial solution (Smith
et al., 1993). In other words, there is a lack of considering the spe-
cializations of the populations. More specifically, single population
may generate similar individuals when performing the evolution-
ary process. By doing so, the complete solution may generate by
combining several individuals that overlap too much. It is due to
the fact that the evolutionary steps tend to find out the optimal
solution by using selecting the well-perform individuals. In other
words, the well-perform individuals may have more chances to
survive or even reproduce in each generation. However, the indi-
viduals only represent a particular solution. It implies that partic-
ular individuals may generate too much to let the complete
solution too difficult to meet the optimal solution. To this end, this
study proposed partial solutions consideration (PSC) to prevent the
complete solution that generates form similar individuals. In other
words, the specializations of the population are taken into account
Fig. 2. The structure of the
when building the population. More specifically, a single popula-
tion of the PSC consists of several sub-populations. Each sub-
population represents the collection of individuals that represent
the particular partial solution. The complete solution is generated
from selecting individuals from several sub-populations. By doing
so, the PSC can prevent to building the complete solution from
similar individuals.

To further understand the concept of the PSC, the structure of
the population in the PSC is shown in Fig. 2. Fig. 2 showed
that the complete TNFN is constructed from selecting several
individuals from several sub-populations. Each individual in a
sub-population represent only a particular fuzzy rule. In other
words, the number of the sub-population is equals to the number
of the fuzzy rules of the TNFN.
3.2.1.1.2. Coding. After defining the structure of the individuals, the
other issue of the PSC is to encode the adjustable parameters into
an individual. In other words, the parameters of the TNFN are en-
coded into an individual in this operation. More specifically, the
adjustable parameters of each fuzzy rule are translated into an
individual. According to the Eq. (1), the adjustable parameters of
a TSK-type fuzzy rule consist of an antecedent part and a conse-
quence part. Therefore, the parameters of the antecedent and con-
sequence part of a fuzzy rule are encoded in to an individual. The
coding schema of an individual is shown in Fig. 3. As shown in this
figure, i and j represent the ith input node in the jth rule. The cod-
ing type of the chromosomes in this study is a float point type.
3.2.1.1.3. Fitness assignment. Although aforementioned steps can
consider the specializations of both population and individuals,
there still lack of considering the complementary relationship
among various individuals. More specifically, in traditional evolu-
tionary algorithm considered the principle of particular solution
(Gomez, 2003; Lin & Hsu, 2007; Lin & Xu, 2007; Smith et al.,
1993), the performance of an individual is evaluated by summing
up the fitness values of all the possible combinations that contains
that the individual. In other words, the performance of each indi-
vidual cannot really be used to represent the performance of the
complete solution. For instance, a set of individuals with the high-
est performance do not mean they can be used to combine to gen-
erate the complete solution with the highest performance.
Conversely, their combinations may cause the complete solution
to meet the bad performance. Thus, even if the specializations of
population in the PSC.



Fig. 3. The coding schema of a chromosome.
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the population are considered in this study, it may be still difficult
to meet the optimal solution.

To address this issue, there is a need to consider the comple-
mentary relationships among various sub-populations. More spe-
cifically, the performance of the whole solution should be
considered when performing the evolutionary process. To this
end, the fitness assignment is proposed for the PSC that can con-
sider the complementary relationships among various individuals.
Like the traditional evolutionary algorithm (Gomez, 2003; Lin &
Hsu, 2007; Lin & Xu, 2007; Smith et al., 1993), the proposed fitness
assignment also compute the fitness value of an individual by sum-
ming up the fitness values of all the possible combinations which
contains the individual. However, for avoiding aforementioned
problem, the proposed fitness assignment considers the combina-
tion of performance when summing up the fitness values. More
specifically, the performance of the whole solution is also consid-
ered when evaluating the performance of each individual. By doing
so, the performance of each individual can really be used to repre-
sent the performance of the whole solution. Thus, the PSC can in-
crease the chances to meet the optimal solution. The details of
the proposed fitness assignment are described as follows.

Step 1: First of all, the fitness assignment randomly chooses R
fuzzy rules from the R sub-populations to construct a TNFN. The
aforementioned step is repeated for SelectionTimes times, which
is predefined by using triad-and-error testing. The following equa-
tion presents how to form the TNFNs.

TNFNi ¼ fInd1Sel1 ; Ind2Sel2 ; . . . IndRSelRg;
i ¼ 1;2; . . . ; SelectionTimes;

Selj ¼ Random½1; SPsize�;
j ¼ 1;2; . . . R;

ð7Þ

where

TNFNi reprents the ith generated TNFN.
Ind1Sel1 reprents the individual the selects to formthe the TNFN.
Selj means the selected index of the individual in the jth sub-
population.
SPsize represent the number of individuals in a sub-population.
SelectionTimes represets the total number of selected TNFNs in
each generation.

Step 2: The fitness assignment evaluates each TNFN, which is
generated from step1, to obtain a fitness value. The fitness value
is mainly used to represent the performance of each TNFN. In other
words, it is the main process of the evolution because the fitness
value plays an important role to decide whether the optimal solu-
tion is found. The well design fitness value can help the individuals
be evaluated efficiently and vice versa. In this study, the most well-
known root mean square (RMS) errors Veretelnikova, 2004 are
used to evaluate the performance of the TNFN since it can robust
reflect the performance of the models. The following equation pre-
sents the fitness function designed in this study.

FitnessValue ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
jxi�x0

i
j

n

r
þ 1

 ! ; ð8Þ

where xi and x0i represent the ith output of TNFN and the ith desired
output respectively. As shown in Eq. (8), the high FitnessValue
means that the outputs of TNFN are close to the desired outputs
and vice versa.

Step 3: After obtaining the fitness value of each selected TNFN,
the fitness assignment then computes the fitness value of each
individual that contains in the TNFN. More specifically, the fitness
value obtained from step 2 is divided by the number of the fuzzy
rules (i. e. R). After that, the divided fitness value is accumulated
to the selected individuals. To consider the complementary rela-
tionships among the various individuals, this study considers the
performance of the complete solution when accumulating the fit-
ness value to the selected individuals. More specifically, the fitness
value of each individual is computed as Eq. (9). It is mainly used to
prevent the problem that a set of individuals with the highest per-
formance may cause the complete solution to meet the bad perfor-
mance. By doing so, the best combination of the individuals will be
kept.

if Fitness ValueIndij
¼ Best Fitness Value=R

if Fitness Value=R <¼ Best Fitness Value=R
Fitness ValueIndij

¼ Fitness ValueIndij

else
Fitness ValueIndij

¼ Fitness ValueIndij
þ Fitness Value=R

else

Fitness ValueIndij
¼ Fitness ValueIndij

þ Fitness Value=R

ð9Þ

where

Fitness ValueIndij
is the fitness value of the jth individual in ith

sub-population.
Best Fitness Value represents the best fitness value in current
excited generations.

Step 4: In the last step, the accumulated fitness value of each
individual will be further divided by the number of times it has
been selected. After that, the average fitness value represents the
performance of an individual. The following equation presents
how to compute the average fitness value.

Fitness ValueIndij
¼ Fitness ValueIndij

=Select TimesIndij

where

i ¼ 1;2; . . . R;
j ¼ 1;2; . . . SPsize:

Select TimesIndij
means the number of timesIndijhas been selected:

ð10Þ

In summary, the PSC can contribute to consider the specialization
and the complementary relationships when performing the afore-
mentioned steps. More specifically, it can take into account special-
izations of the individual and population. Moreover, the PSC can
also consider the complementary relationships among various
sub-populations to let the set of individuals with the highest perfor-
mance avoid meeting the bad performance. By doing so, the PSC can
not only keep the performance in each generation but also consider
the specializations of both individuals and population to increase
the chances to meet the optimal solution.

3.2.1.2. Self-adaptive evolutionary algorithm (SEA). In addition to the
PSC, the concept of the other proposed method (i.e. SEA) is also
introduced. The main purpose of the SEA is to decide the suitable
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searching space when performing the evolutionary process. More
specifically, the evolutionary steps, which related to seeking the
solutions, will need to consider adjusting the search space accord-
ing to the performance of each individual. In other words, the SEA
is applied to a crossover and mutation step. The details of these
two components are shown below.
3.2.1.2.1Crossover. The major task of the crossover is to exchange
the genes between two parents to generate the offspring (Vereteln,
2004). By doing so, the new combination of the individuals in each
sub-population will be generated in the next generation. Generally,
the individuals in the top help of each sub-population will be used
to perform the crossover to generate the individuals in the other
half of each sub-population. It implies that such evolutionary step
can seek the different combination of the individuals in each sub-
population that perform well to find the optimal solution.

Although the crossover can bring aforementioned benefits, only
the single criterion is used to perform the crossover. More specifi-
cally, in the traditional evolutionary algorithms, the crossover only
tends to exchange the genes that selected randomly (Fogel, 1994;
Gomez, 2003; Holland, 1992; Karr, 1991; Koza, 1992; Lin & Hsu,
2007; Lin & Jou, 2000; Lin & Xu, 2007; Rechenberg, 1994; Smith
et al., 1993). In other words, there is no idea to consider the fitness
value to provide different actions used to generate the different
combination of the chromosomes. More specifically, using a ran-
dom process to generate the searching range of genes may be dif-
ficult to find the optimal solution especially when the solution is
near to the optimal solution. For instance, if the individuals are
near to the optimal solution, it needs to search the optimal solution
in a small searching range. Conversely, if the individuals are far
away from the optimal solution, it needs to search the optimal
solution in a large searching range. To this end, there is a need to
provide multiple criteria based on the fitness value when perform-
ing the crossover. By doing so, the evolutionary step can increase
the chances to find the optimal solution.

To this end, the proposed SEA applies the multiple criteria to
perform the crossover. The multiple criteria are mainly used to
consider the fitness value when performing the crossover. The
main concept of the SEA is to consider the fitness value to provide
different actions to perform the crossover. More specifically, the
SEA for crossover uses the fitness value of parent individuals to
determine the suitable number of genes used to exchanging the
genes to generate offspring in the next generation. By doing so,
the parents with low fitness value may seek the optimal solution
by exchanging many genes. Conversely, the parents with the high
fitness value may seek the optimal solution by exchanging a few
genes. The details of the SEA for crossover are shown in the follow-
ing equations.

CrossoverSite1 ¼ RandðIndLengthÞ ð11Þ

MaxCroPoints ¼ chrLength � ðMaxFitnessvalue=R

� FitnessValueIndij
Þ ð12Þ

CrossoverSite2 ¼ CrossoverSite1 þ Randð�MaxCroPointsÞ
CrossoverSite2 2 ½1; IndLength�

ð13Þ

where

CrossoverSite1 is the first crossover site used to perform the SEA
CrossoverSite2 is the second crossover site used to perform the SEA:
MaxFitnessvalue is the maximal value of fitness value
ðIn this study;theMaxFitnessvalueis1:00Þ:
IndLength is the length of a individual:
MaxCroPoints is the range used to decide theCrossoverSite2:

ð14Þ
As shown in Eq. (12), the relationships between MaxCroPoints
and FitnessValueIndij

are in inverse. It implies that the SEA for cross-
over can exchange many genes of the two parent individuals with
low performance. In contrast, it can also exchange a few genes of
the two parent individuals with high performance (see Eqs. (11)–
(14)). Moreover, for exchanging the genes between two parents,
the two-point crossover, which is mainly used to exchange the
genes between CrossoverSite1 and CrossoverSite2 form the two par-
ents, is adopted in this study (Lin & Yao, 1997). The two-point
crossover is shown in Fig. 4. After doing so, each sub-population
could robust produce the different combination of the individuals
according to their fitness value to seek the optimal solution when
performing the SEA for crossover.
3.2.1.2.2. Mutation. Although the crossover can generate the differ-
ent combinations of the individuals by exchanging the existing
genes, no any new value is considered for seeking the optimal solu-
tion. In other words, the evolution may only depend on the initial
value of the individuals and may difficultly find the optimal solu-
tion. To face this issue, there is a need to attend new genes in exist-
ing individuals (chromosomes) to extend the searching space for
seeking the optimal solution. The mutation is the way to achieve
such purpose. More specifically, it is mainly used to generate
new gene to replace the existing gene in the individuals (Lee, Bai,
& Chen, 2008). By doing so, the individuals can extend their search-
ing space to increase the chance to meet the optimal solution.

Like the crossover, the SEA can also be applied to the mutation,
which is used to consider the fitness value when performing the
mutation, to provide an efficiency way to perform the mutation.
The main concept of the SEA for mutation is to provide the multiple
criteria to adjust the searching space. More specifically, it can con-
sider the fitness value of each individual to determine the range
values used to update the mutation genes. By doing so, the search-
ing space can have a self-adaptive ability. For example, the individ-
uals with low fitness value may seek the optimal solution by
updating a mutation point by using the large value range and vice
versa. The details of the SEA for mutation are shown in the follow-
ing equations.

Fitness Range ¼ Max Fitness Value=R� Fitness ValueIndij
ð15Þ

MutSite ¼ RandðIndLengthÞ ð16Þ

IndMutSite ¼ IndMutSite þMutValue ð17Þ

MutValue ¼ Randð�Range Value� Fitness RangeÞ ð18Þ

Where

MutSite is the mutation site of the mutated individual:
IndMutSite is the MutSite th gene of the mutated chromosome:
RangeValue is the predefined value related to the input space:

ð19Þ

The aforementioned equations indicate that the relationship
between MutValue and Fitness ValueIndij

are in inverse (see Eqs.
(15)–(19)). It implies that the SEA for mutation can rough tune
the selected gene of the individual with low performance while it
can fine tune the selected gene of the individual with high perfor-
mance. By doing so, the SEA can robust adjust the parameters of
the TNFN when performing the mutation.

In summary, the proposed SEA can contribute to consider
the multiple criteria to evaluate the individuals in each sub-
population. More specifically, it can take into account such criteria
to perform the crossover and mutation. By doing so, the evolution-
ary steps cannot only seek in a large searching space when the
solution is far away from the optimal solution but also seek in a
small searching space when the solution is near to the optimal
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solution. Thus, the SEA can provide a robust way to evolutes the
sub-populations.

3.2.2. Learning procedure
After introducing the components of both the PSC and SEA, the

learning procedure of the PSC-SEA is introduced in this section. As
shown in Fig. 5, the procedure consists of eight steps. Each step is
shown below:

P1. In this step, the PSC is applied to generate the initial sub-
populations. Each initial sub-population (see Fig. 2), which con-
sists of several individuals, is generated based on the coding
schema (see Fig. 3). Each gene of an individual is generated ran-
domly according the predefined RangeValue.

P2. The PSC then perform the Fitness Assignment to evaluate the
performance of each individual in each sub-population. In other
words, Eqs. (7)–(10) are used to compute the fitness value of
each individual in each sub-population.
P3. After that, the proposed PSC then judges whether the evolu-
tionary process is finished based on a predefined criterion. Gen-
erally, the criterion is defined according to a predefined
generation times or the predefined desired fitness value (Fogel,
1994; Gomez, 2003; Holland, 1992; Karr, 1991; Koza, 1992; Lin
& Xu, 2007; Rechenberg, 1994; Smith et al., 1993). In this study,
the predefined generation times is used to judge whether the
evolutionary process is finished.
P4. If the evolutionary process is not finished yet, the proposed
PSC then perform the reproduction to keep the well-perform
individuals in the top half of each sub-population. The concept
Fig. 5. Procedures of the PSC-SEA.
of the reproduction is to sum up the fitness values of the top
half of chromosomes in each sub-population and then compute
the fitness ratio of each individual based on the summation fit-
ness values. After doing so, the individuals are reproduced
according to the fitness ratio. In this study, the roulette-wheel
selection is used to select the reproduced individuals since it
provides more robust way than other selection methods (Zou,
Mi, & Xu, 2006).
P5. After performing the reproduction, the SEA then performs the
crossover step. More specifically, a rate will be generated ran-
domly to judge whether the crossover is performed based on
the predefined CrossoverRate. If the crossover needs to be done,
the proposed evolutionary algorithm will continue to perform
the P 6. Otherwise, the evolutionary algorithm will go to the P7.
P6. If the random rate is greater than CrossoverRate, the SEA for
crossover is then performed. The parents, which are used to
perform the SEA for crossover, are chosen randomly from the
top half of each sub-population. After doing so, the SEA for
crossover is performed based on the selected parents (see Eqs.
(11)–(14)).
P7. After that, the SEA then performs the mutation step. Like-
wise, a rate will be generated randomly to judge whether the
mutation is performed based on the predefined MutationRate.
If the mutation needs to be done, the evolutionary process will
go to the P 8. Otherwise, the evolutionary process will go to the
P 2 until the predefined criterion is reached.
P8. The SEA for mutation is performed in this step. More specif-
ically, the individual is selected from the new generated indi-
viduals randomly in each sub-population. After doing so, the
SEA is performed based on the selected individual (see Eqs.
(15)–(19)). After that, the evolutionary process then goes to
the P2.

4. Illustrative examples

To verify the performance of the proposed PSC-SEA, two simu-
lations are discussed in this section. Regarding the first simulation,
the complex identification application given by Narendra and Par-
thasarathy (Juang & Lin, 1998) is applied to not only investigate the
benefits of the PSC-SEA but also demonstrate the performance of
each component. Regarding the other example, a real world appli-
cation is applied to investigate the performance of the proposed
PSC-SEA. More specifically, the proposed PSC-SEA is applied to
forecast the number of sunspots (Lin & Xu, 2006) to verify the
robustness and efficiency of the proposed PSC-SEA in real world
application.
4.1. The Identification of a nonlinear dynamic system

The nonlinear dynamic system given by Narendra and Partha-
sarathy (Juang & Lin, 1998) is used to not only investigate the per-
formance of the proposed PSC-SEA but also verify the performance



Fig. 6. The learning curves of the proposed method.
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of each component. It is due to the fact that such system is easy to
implement and obtain the well performance. Thus, it can be use as
a benchmark to verify the benefits of the PSC-SEA. To this end, the
nonlinear dynamic system should be identified firstly. The follow-
ing equation describes the function related to the system.

xðkþ 1Þ ¼ axðkÞð1� xðkÞÞ ð20Þ

According to the Eq. (20), the output of the nonlinear dynamic sys-
tem is nonlinearly influenced by the past state of the output and in-
put value. Generally, the training patterns were generated by
setting the input values to sin(2pk/25) (i.e. u(k) = sin(2pk/25)).
Moreover, the first 100 pairs (i.e. y(1) to y(100)) are used as the
training patterns to model the TNFN that suits for identifying such
system while the other 100 pairs (from y(101) to x(200)) are used as
the testing patterns to validate the performance of the well-trained
TNFN.

In addition, there is also an issue to determine the predefined
parameters of the PSC-SEA. To address such issue, a parameter
exploration proposed by De Jong (De Jong, 1975) is adopted to
determine the suitable predefined parameters since it is suitable
for the smaller dataset. To this end, the parameter exploration
was applied to decide the predefined parameters of the proposed
PSC-SEA. More specifically, it uses the different ranges of the values
to evaluate the performance of the PSC-SEA to judge whether the
values are suitable. For instance, the number of fuzzy rules has
the range from 3 to 10 in increments of 1, the number of individ-
uals in a sub-population (i.e. SPsize in Eq. (7)) has the range from
10 to 50 in increments of 5, the crossover rate has the range from
0.20 to 0.80 in increments of 0.05 and the mutation rate has the
range from 0.0 to 0.4 in exponential increments. The other param-
eters of the PSC-SEA are defined as the same way. After performing
the parameter exploration, the parameters of the proposed PSC-
SEA are defined in Table 2.

After deciding the parameters, the proposed PSC-SEA is then
used to perform the evolutionary procedure (see Fig. 5). The simu-
lation was carried out for 15 runs and each run starts with the
same initial parameters. Such simulation can provide the reliable
evidence about the performance of the proposed PSC-SEA.

After performing the simulation, the learning curves of 15 runs
are shown in Fig. 6. To easy identify the performance of the pro-
posed PSC-SEA, each learning curve is represented by using the
RMS error (Vereteln, 2004) instead of the fitness value. The RMS er-
ror (Vereteln, 2004) is showed in the following equation.

RMSerror ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1jxi � x0ij

2

n

s
ð21Þ

As shown in Fig. 6, each learning curve of the proposed PSC-SEA can
reach the low RMS error. It implies that the proposed PSC-SEA can
obtain good performance in 15 runs. To further verify the perfor-
mance of the proposed PSC-SEA, a tradition genetic algorithm
(GA) Karr, 1991 and evaluated sub-population (ESP) Gomez, 2003,
which is related to the application of the particular solution consid-
eration, are used to compare the performance with the PSC-SEA.
Table 2
The predefined parameters of the PSC-SEA.

Parameters Value

The number of rules 5
The number of individuals in a sub-population 20
The number of generation times 100
Selection times 30
RangeValue for weight [5.000,�5.000]
RangeValue for membership functions [2.000, -2.000]
Mutation rate 0.3
Crossover rate 0.5
Like the PSC-SEA, the parameters of the GA and ESP are defined
by using the parameter exploration. Moreover, such two algo-
rithms are used to perform the simulation for 15 runs. The learning
curves of the GA and ESP are shown in Figs. 7 and 8. Comparing to
Fig. 6, the proposed PSC-SEA can dramatically outperform than the
GA and ESP. The reason may be because that the proposed PSC-SEA
can take into account both specializations and suitable searching
space to increase the chances to meet the optimal solution. By
doing so, the PSC-SEA can generate efficiency candidate solutions.
Thus, the PSC-SEA can obtain better performance than others (GA
and ESP). Moreover, the learning curves in Fig. 6 are smoother than
those of Figs. 7 and 8. It also implies that the PSC-SEA can improve
to search the better solution in each generation by using the pro-
posed PSC and SEA.

For further demonstrating such argument, the testing patterns
are used to evaluate the performance of the proposed PSC-SEA,
GA and ESP. More specifically, regarding the PSC-SEA, the testing
result (see Fig. 9(a)) and testing errors (see Fig. 9(a)) between the
desired output and the outputs obtained by the well-trained TNFN
are shown in Fig. 9. Regarding the GA and ESP, the testing results
and errors are show in Figs. 10 and 11. As shown in Figs. 9–11,
we can further verify that the PSC-SEA can outperform than the
Fig. 7. The learning curves of the traditional GA (Karr, 1991).



Fig. 8. The learning curves of the ESP (Gomez, 2003).
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GA and ESP. It implies that the proposed PSC-SEA can efficiently
and robustly adjust the parameters of the TNFN than the tradi-
tional GA (Karr, 1991) and ESP (Gomez, 2003).
Fig. 9. The testing results (a) and errors (b) of the PSC-SEA.

Fig. 10. The testing results (a) and errors (b) of the traditional GA.
In addition, for providing reliable evidence about the perfor-
mance of the PSC-SEA, various existing well-known genetic algo-
rithm mentioned in Section 2, including (Gomez, 2003; Karr,
1991; Lin & Hsu, 2007; Lin & Xu, 2007; Smith et al., 1993), are also
applied to compare the performance with the proposed PSC-SEA.
Likewise, the parameters of these algorithms are also defined by
using the parameter exploration. Moreover, each algorithm is used
to perform the simulation for 15 runs. The performance, which con-
sists of mean and standard deviation of the RMS errors and CPU
Time, of aforementioned algorithms in both training and testing re-
sults are shown in Tables 3. The PSC-SEA can outperform than other
algorithms (Gomez, 2003; Karr, 1991; Lin & Hsu, 2007; Lin & Xu,
2007; Smith et al., 1993). In other words, the PSC-SEA cannot only
spend smaller CPU time but also obtain lower RMS errors than other
algorithms in both training and testing results.

In brief, the proposed PSC-SEA can demonstrate high perfor-
mance via the both PSC and SEA. More specifically, the PSC can take
into account not only specializations of both individuals and pop-
ulation but also the complementary relationships to prevent the
evolutionary algorithm meeting the sub-optimal solution. More-
over, the SEA can used multiple criteria to adjust the searching
space to let the evolutionary process can seek the solution in a
suitable searching space. Thus, the PSC-SEA can obtain the better
performance than other existing evolutionary algorithms.

Although aforementioned results can demonstrate the perfor-
mance of the proposed PSC-SEA, only the complete PSC-SEA is



Fig. 11. The testing results (a) and errors (b) of the ESP.
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evaluated. In other words, each proposed component of the both
PSC and SEA cannot be evaluated independently. Therefore, we
cannot demonstrate the contribution of each proposed component.
Table 3
The performance comparison of various existing models.

Method RMS errors (training) RMS erro

Mean Deviation Mean

PSC-SEA 0.0037 0.0015 0.0043
Lin and Xu (2007) 0.0074 0.0034 0.0087
Gomez (2003) 0.0082 0.0026 0.0096
Smith et al. (1993) 0.012 0.007 0.015
Lin and Hsu (2007) 0.057 0.009 0.041
Karr (1991) 0.064 0.012 0.054

Table 4
The training and testing performance of different components.

Method RMS errors (training) RMS errors (t

Mean Deviation Mean

PSC-SEA 0.0037 0.0015 0.0043
PSC 0.0063 0.0024 0.0071
SEA 0.0053 0.0018 0.0059
PSC-SEA-I 0.0045 0.0020 0.0049
PSC-SEA-II 0.0049 0.0021 0.0056
To this end, in this example, we also tend to investigate the perfor-
mance of each proposed component.

As shown in Table 4, the five types of models, including the PSC-
SEA, PSC, SEA, PSC-SEA-I and PSC-SEA-II are used to evaluate the
training and testing performance. Regarding the PSC, instead of
the proposed SEA in the PSC-SEA, it adopts the traditional two-
point crossover (Lin & Yao, 1997) and mutation (Lee et al., 2008)
to generate the offspring. Regarding the SEA, instead of the pro-
posed PSC, it adopts the traditional GA to perform the SEA. In other
words, the SEA only considers the complete solution when per-
forming the evolutionary process. Regarding the PSC-SEA-I, instead
of the SEA for crossover, it adopts the traditional two-point cross-
over to generate the offspring. In other words, the proposed SEA is
only applied to perform the mutation. Regarding the PSC-SEA-II,
the traditional unit mutation (Lee et al., 2008) is used to mutate
the unit gene of the single individual. Thus, the proposed SEA is
only applied to perform the crossover.

Table 4 indicates that the SEA outperform than the PSC. In other
words, the SEA can obtain better performance than the PSC. It im-
plies that the suitable searching space is an important issue when
developing the evolutionary algorithm. Thus, even if the proposed
PSC can take into account not only the specializations of the indi-
viduals and population but also the complementary relationships
among various particular solutions, it still needs a suitable search-
ing space to perform the evolutionary procedure. It is due to the
fact that the searching space may influence the converging effi-
ciency when performing the evolutionary process so the SEA can
improve the efficiency of the PSC.

Besides, the PSC-SEA-I outperform than the PSC-SEA-II. In other
words, the SEA for crossover can obtain better performance than
the SEA for mutation. It may be because that the crossover is the
main evolutionary procedure for finding the optimal solution
(Pitangui & Zaverucha, 2008) so the modifications in the crossover
step can bring much more benefits than those in the mutation step.

However, as shown in Table 4, we can further see that the pro-
posed PSC-SEA, which combines both the PSC and complete SEA,
can obtain the best performance among five types of the models.
Thus, we can demonstrate that each component of the PSC-SEA is
necessary used to improve the performance. In summary, the
components of the PSC-SEA are complementary to each other to
increase the chances to meet the optimal solution. Thus, the
PSC-SAE can be successfully applied to adjust the parameters of
the TNFNs.
rs (testing) CPU time (training)

Deviation Mean (second) Deviation (second)

0.0018 2.76 0.21
0.0039 13.87 2.10
0.0029 4.18 1.25
0.008 13.73 3.19
0.011 14.61 2.92
0.017 11.52 3.74

esting) CPU time (training)

Deviation (second) Mean Deviation (second)

0.0018 2.76 0.21
0.0027 2.42 0.22
0.0020 1.87 0.18
0.0022 2.69 0.23
0.0024 2.78 0.26



Fig. 12. The learning curves of the proposed PSC-SEA.
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4.2. Forecasting the number of sunspot

Since the contributions of the PSC-SEA can be demonstrated in
the Section 4.1, the example is too simple to demonstrate the
robustness and efficiency of the PSC-SEA. Moreover, Section 4.1
only applied the PSC-SEA to the application related to function
identification. In other words, how the PSC-SEA work in real appli-
cation cannot be evaluated. To this end, in this section, the real
world application is adopted to evaluate the efficiency and robust-
ness of the proposed PSC-SEA. More specifically, the PSC-SEA is ap-
plied to forecast the number of sunspots (Lin & Xu, 2006).

As showed in previous studies, the sunspot prediction is a diffi-
cult task since it displays the distribution of nonlinear, nonstation-
ary and non-Gaussian cycles (from 1700 to 2004) Lin & Xu, 2006.
Thus, it is suitable for applying to evaluate the performance of
the PSC-SEA in real application. To this end, we apply the proposed
PSC-SEA to forecast the number of sunspots. The following equa-
tion describes the function related to the input and out pairs of
the sunspots forecasting.

Input Pattern¼½x1ðtÞ;x2ðtÞ;x3ðtÞ�;
Output Pattern¼yðtÞ
where
xiðtÞ¼yðt� iÞ;
t represents the year and yðtÞ is the number of sunspots at the t th year:

ð22Þ

According to the Eq. (22), each training pattern consists of input and
output patterns. Regarding the input pattern, it consists of three
past values of the number of sunspots. Regarding the output pattern
(i.e. y(t)), it represents the number of sunspots at tth year. Gener-
ally, the first 180 years (from 1705 to 1884) of the sunspots data
are used as the training patterns while the remaining 120 years
(from 1885 to 2004) of the sunspot numbers were used as testing
patterns to evaluate the performance of proposed PSC-SEA.

Likewise, the RMS error is also used to evaluate the perfor-
mance of the PSC-SEA. Moreover, the parameter exploration was
also applied to decide the predefined parameters of the proposed
PSC-SEA (see Table 5).The simulation was carried out for 15 runs
and each run starts with the same initial parameters.

The learning curves of the PSC-SEA are shown in Fig. 12. It ver-
ifies that the proposed PSC-SEA can still keep reaching the good
performance when solving such complex real application. Beside,
for further investigating such argument, the testing results of the
PSC-SEA (Fig. 13) are also investigated. The testing results indicate
that the outputs of the PSC-SEA can accurately match the desired
outputs of the sunspots (see Fig. 13(b)). It implies that the PSC-
SEA can robustly and efficiently obtain well performance when
solving the different or even complex application.

In addition, for providing reliable evidence about the aforemen-
tioned argument, other existing well-known evolutionary algo-
rithms (i.e. Gomez, 2003; Karr, 1991; Lin & Hsu, 2007; Lin & Xu,
2007; Smith et al., 1993 are also applied to compare the perfor-
Table 5
The predefined parameters of the PSC-SEA.

Parameters Value

The number of rules 6
The number of individuals in a sub-population 30
The number of generation times 300
SelectionTimes 50
RangeValue for weight [5.000,0.000]
RangeValue for membership functions [1.000,0.000]
Mutation rate 0.2
Crossover rate 0.4

Fig. 13. The testing prediction results (a) and errors (b) of the PSC-SEA.
mance with the proposed PSC-SEA. The performances, which in-
clude mean and standard deviation value of RMS errors and CPU
Time, the training error of the training patterns and the forecasting



Table 6
The performance comparison of various existing models.

Method Training Testing

RMS errors Training error CPU Time RMS errors Testing error

Mean Dev. Mean Dev. Mean Dev. Mean Dev. Mean Dev.

PSC-SEA 8.78 1.24 6.25 1.24 38.28 3.15 12.45 1.79 8.58 1.64
Lin and Xu (2007) 15.67 3.72 13.54 2.98 196.15 69.21 18.31 3.53 16.67 3.41
Gomez (2003) 21.71 3.14 18.43 2.57 81.45 7.18 24.54 2.84 21.45 2.69
Smith et al. (1993) 31.29 3.96 26.26 3.14 181.27 45.91 34.25 3.67 29.64 3.52
Lin and Hsu (2007) 35.67 4.16 31.91 3.72 208.91 91.16 39.72 4.91 36.59 4.87
Karr (1991) 43.54 5.94 38.61 4.54 176.82 68.61 48.64 6.53 42.13 6.12

Fig. 14. The framework of the PSC-SEA.

Table 7
Components of the framework.

Part Components Purposes

Training patterns
capturer

It is mainly used to capture the input and output patterns used to train the neuro-fuzzy networks

Neuro-fuzzy
networks

It is used to discuss the relationship between the captured input patterns and outcomes

Evolutionary
procedure

Population
construction

It adopts the specializations of populations to construct the population

Individual Coding It uses the specializations of individuals to code the individuals
Fitness Assignment It uses the complementary considerations to design the fitness value of each individual
Crossover It is mainly used to apply the SEA to perform the crossover
Mutation It is mainly used to apply the SEA to perform the mutation

PSC Specializations of
Individuals

Each individual represents only particular solution. It can increase the chances to meet the optimal solution

Specializations of
population

Each sub-population is used to evaluate each particular solution independently. It can prevent building the complete
solution from similar individuals

Complementary
relationships

It is used to keep the best combination of the individuals

SEA Multiple criteria It considers multiple criteria to adjust the searching space when performing the crossover and mutation
Recorder It is used to store the best solution (e.g. the best combination of the parameters of the TNFN)
Real applications It is mainly used to apply the recorder to address the real applications
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error of the testing patterns, of these compared evolutionary algo-
rithms in both training and testing steps are shown in Tables 6.
Again, the PSC-SEA can not only spend smaller CPU time but also
obtain better performance (i.e. lower RMS errors, training error
and testing error) than other evolutionary algorithms.
In summary, like the results obtained from the Section 4.1, the
proposed PSC-SEA can demonstrate high performance than other
existing evolutionary algorithms in the real application. It implies
that the PSC-SEA can be suitable for solving complex and nonlinear
real problems. In other words, the PSC-SEA can robustly and
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efficiently adjust the parameters of the TNFN to meet the optimal
solution of different complex and nonlinear applications. Thus, we
can demonstrate that considering both the specializations (i.e. PSC)
and suitable searching space (i.e. SEA) can help the evolutionary
algorithm obtain the better performance than others.
5. The development of the framework

This paper aims to develop a novel evolutionary algorithm for
helping the neuro-fuzzy networks that can meet the optimal
solution. As shown in the results, the proposed PSC-SEA is a suit-
able algorithm for achieving such purpose by considering not only
specializations and complementary relationship to prevent the
algorithm meet the suboptimal solution but also multiple criteria
to decide the suitable searching space. In addition, the results also
indicate that the PSC-SEA can contribute to provide robust way to
obtain the better performance than existing evolutionary algo-
rithms. Moreover, the results also demonstrate that the PSC-SEA
can successfully apply to complex real application. In brief, the
PSC-SEA can be used to reach the aims of this study. Based on
the results, the framework is developed for implementing the evo-
lutionary algorithm that can apply the concept of partial solutions
and multiple criteria to increase the chance to meet the optimal
solution when constructing the neuro-fuzzy networks (Fig. 14).
The details of the framework are showed below.

As shown in Fig. 14, the framework consists of seven parts such
as a training patterns capturer, neuro-fuzzy networks, evolutionary
procedure, partial solution consideration (PSC), self-adaptive evo-
lutionary algorithm (SEA), recorder and real applications. Each part
is described in Table 7.

In summary, the framework is helpful to develop an evolution-
ary algorithm that can help the neuro-fuzzy networks to meet the
optimal solution. More specifically, it can consider both specializa-
tion and complementary relationships to prevent the evolutionary
algorithm converging to the sub-optimal solution. Moreover, it can
use multiple criteria to automatically adjust the searching space to
let the evolutionary algorithm seek the optimal solution in a suit-
able searching space. By doing so, the performance of the evolu-
tionary algorithm can be improved. Thus, the framework can be
tread as a benchmark when developing the evolutionary algorithm
that can increase the chances to meet the optimal solution.
6. Conclusion

This study aims to develop the novel evolutionary algorithm
(PSC-SEA) to adjust the parameters of the TSK-type neuro-fuzzy
network (TNFN). More specifically, regarding the PSC, it cannot
only consider both specializations of the individuals and popula-
tion but also take into account the complementary relationships
among various particular solutions. Regarding the SEA, it can con-
sider multiple criteria to adjust the searching space (i.e. the num-
ber crossover points and the range of mutated value) for improving
the performance of evolutionary algorithm. As shown in the re-
sults, the PSC-SEA can efficiently and robustly adjust the parame-
ters of the TNFN to meet the good performance. Moreover, the
performance of each component of the PSC-SEA can also be verified
in our results. In brief, the components of the PSC-SEA are comple-
mentary to each to increase the chances to meet the optimal solu-
tion. Based on the results, the framework is proposed for
developing a novel evolutionary algorithm that can increase the
chance to meet the optimal solution by considering the both spe-
cializations of complete solution and suitable searching space.

Although the PSC-SEA can bring several benefits, there are still
some limitations that need to be addressed in the future study.
More specifically, some parameters of the proposed SPC-SEA such
as crossover rate, mutation rate, population size, generation times,
number of fuzzy rules and value ranges, need to be defined before
performing the PSC-SEA. Thus, there is a need to provide an auto-
matic and robust way to define these parameters. In addition, in
this study, the PSC-SEA is only used to demonstrate the perfor-
mance in the applications related to identification and prediction.
Thus, the future works should pay more attention to applying
the proposed PSC-SEA to other real applications (e.g. stock predic-
tion (Lee, 2004), image processing (Lin et al., 2006) and controller
(Lin & Xu, 2007) to demonstrate that the proposed framework can
be suitable for seeking the optimal solution in various real
applications.
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