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a b s t r a c t

The use of dimension reduction techniques has attracted considerable attention owing to information

explosion. Without considering the underlying phenomena of interest, traditional dimension reduction

approaches aim to search a feature set for optimizing performance. In recommending entertainment

videos, beyond the successful recommendations, marketing strategy can be benefited from interpreting

precise social context information accurately. Therefore, how to find an easy-to-explain feature set to

achieve optimal prediction performance becomes an important issue. In this paper, we propose a three-

phase feature synthesis approach to search heuristically optimal feature set within exponential easy-to-

explain features. The first phase performs feature selection by screening low-informative features, the

second phase shrinks the high-dependent feature subset, and the third phase enhances the dominated

features. An implemented social recommendation system and the 11 months purchasing data from the

largest commercial entertainment video Web shop in Taiwan are adopted to evaluate the effectiveness and

efficiency of the proposed feature synthesis method in the experiments. The experimental results show

that our approach can obtain the interpretable clustering results as well as improve the recommendation.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The problem of dimension reduction has attracted considerable
research effort in machine learning and data mining fields. One
important goal of dimension reduction techniques is to improve the
precision of automatic learning systems as well as to overcome the
curse of dimensionality [1]. However, implicit reasons of making
decisions dramatically reduce the effects of learning systems. In
network security, failing to identify the behaviors of predicted
threats in the understandable way of domain experts raises the
difficulties of repairing the vulnerabilities. In e-commerce, intelli-
gent social recommendation systems can benefit marketing strat-
egy, such as slotting strategy and shooting plan, if precisely social
context can be extracted during the learning phase. The advanced
developments of nonlinear learning algorithms decrease these
profits while gaining higher precisions.

Traditional dimension reduction techniques which aim to
search much less features retaining the key characteristics of
data structure can be categorized into feature extraction and
feature selection. Feature extraction (also named feature synth-
esis) algorithms search the best feature subset in much larger
ll rights reserved.
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feature space generated from original features via particular
operations [2–4,6,9,10,11,13,20,22,23]. These linear or nonlinear
transformations may produce the implicit features which for a
human is difficult to comprehend and hence affect the benefits of
intelligent system, even the linear system.

On the other hand, feature selection algorithms search the optimal
feature subset of human-understandable features. Due to the com-
putational complexity, various heuristic search algorithms are pro-
posed to earn computational benefit as well as sub-optimal solutions,
including Oscillating search [16], random subspace [8], local-learning-

based algorithms [18], evolutionary algorithms [5], memetic algorithms

[24], multiple criterion [21] and tabu search [19]. With the exception of
the exhaustive search, optimal solutions are exploited by Branch &
Bound algorithms [12,17]. However, these optimal methods can be
used only with monotonic criteria. Although these feature selection
algorithms maintain the human-understandable features, it usually
requires nonlinear learning systems to achieve higher precision due
to the complexity of modern data.

One of the easy-to-explain knowledge form is disjunction of
conjunctive form. Since the optimization space of disjunction of
conjunctive features is much larger than that of original features,
the following linear learning system can hence gain better precision
while keeping predicted results explainable. In this paper, we propose
a three-phase feature synthesis algorithm to search heuristically
optimal features within easy-to-explain features generated via logic
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operators. The first phase performs feature selection by screening
low-informative features; the goal of the second phase is to shrink the
high-dependent feature subset, and the third phase enhances the
dominated features.

To evaluate our feature synthesis algorithm, the entertainment
video recommendation is selected as an application. In our
experiments, 11 months purchasing data containing 28,249
transactions with 10,906 users are from the largest entertainment
video Web shop in Taiwan. The experimental result shows our
approach can obtain interpretable clustering results with repre-
sentative user characteristics and the improvement of our imple-
mented social recommendation system.

The remainder of this paper is organized as follows: In Section
2, we introduce the necessary data mining preliminaries and
notations used throughout this paper. Easy-to-explain feature
synthesis problem is defined and discussed in Section 3. In
Section 4, we proposed our feature synthesis algorithm and the
corresponding theoretical benefits. Section 5 presents experi-
ments and performance results in entrainment video recommen-
dation. Our conclusion is given in Section 6.
2. Preliminaries and notations

2.1. Itemsets and notations

In online entertainment video business, folksonomy-based
tags are usually used to describe video contents and hence
applied to be features of users’ preferences. Unlike traditional
data mining, each transaction contains only one purchased video
and the corresponding annotated tags. An itemset is hence a
feature subset, not a set of goods. For simplifying descriptions, we
introduce the following notations:

U set of customers
F set of features (folksonomy-based tags)
Ti,j indicator of whether jth tag occurred in ith

transaction or not
sðf Þ frequency of occurrence of an itemset f DF (support

count)
Sðf Þ fraction of transactions containing an itemset f (support)
Cðx9yÞ ratio of co-occurrence of an itemset x over an itemset y

(confidence)

Let F be a feature set. A set IDF is called a large itemset of F if
SðIÞ exceeds maximum support threshold. A set IDF is called a
closed itemset of F if there is no superset I0*I such that I0DF.

Large itemsets are often used in association rule mining to
catch the key data characteristics which is usually a successful
factor of dimension reduction. Due to the label-insensitive nature
of large itemsets, the corresponding dimension reduction applica-
tion is suitable for both supervised and unsupervised learning. In
the meanwhile, statistical approaches consider the independently
and identically distributed (i.i.d) assumption, while closed item-
sets can be used to approximately meet the i.i.d assumption. It
cannot guarantee that generated features are i.i.d, but it can
reduce the dependence between generated features.

2.2. Multivariate information gain

Let X be the random variable and pðxÞ is the probability mass
function of outcome x. The Shannon entropy [15] is defined as

HðXÞ ¼
X

x

�pðxÞ log2 pðxÞ ð1Þ

Let X and Y be two random variables. pðyÞ and pðy9xÞ are the
probability mass function of outcome y and the conditional
probability mass function of outcome y is given asX ¼ x, respec-
tively. The information gain [14] is defined as

IGðY9XÞ ¼HðYÞ�
X

x

pðxÞ
X

y

�pðy9xÞ log2 pðy9xÞ

 !
ð2Þ

The information gain is a criterion to evaluate the quality of
features. However, the original information gain is used to quantify
the difference between response and individual feature. Popular
multivariate quantify is multivariate mutual information measuring
the information of a feature set and the response. For the purpose
discrimination, only total contribution of feature set to the response is
needed to be considered. Other information may distract the original
purpose. According to this observation, we propose a new quantity,
multivariate information gain, measuring the total contribution of
feature set to the response for the discrimination purpose.

Definition 1. The multivariate information gain of random vari-
ables X1,y,Xn on observation Y is defined as follows:

MIGðY9X1,. . .,XnÞ ¼HðYÞ�
X

x1 ,...,xn

p x1,. . .,xnð Þ

� �
X

y

pðy9x1,. . .,xnÞðlog2pðy9x1,. . .,xnÞ

 !

where H(Y) is the Shannon entropy of random variable Y.
3. Easy-to-explain feature synthesis problem

Original features selected to describe certain phenomena by
domain experts are explainable. Nevertheless, attractable phe-
nomena are usually complex and the selection criterion of
features for domain experts is based on the relevance between
these features and interested phenomenon whether the relevance
is significant or not. It causes high dimensional data and feature
dependency problem which are dangerous to the performance of
learning systems. Traditional dimension reduction techniques
search the optimal feature subsets based on different biases.
Feature selection algorithms assume that the optimal solution
exists in the power set of original feature set, while the assump-
tion of feature extraction algorithms is the existence of optimal
solution in a specific feature space generated from original
features via certain operators. Due to the complexity of modern
data, feature selection algorithms do not perform well with linear
systems providing explainable results. It is potentially dangerous
for feature extraction algorithms to erase the explanation power
of generated features if search space is not restricted in the
human explainable space.

Disjunction of conjunctive form is one of the human under-
standable knowledge form. For example, three features ‘‘Idol’’,
‘‘Album’’ and ‘‘Female’’ can be interpreted as three distinct user
preferences, and any disjunction of conjunctive form of these
features is still interpretable. (‘‘Idol and Album’’ or ‘‘Idol and
Female’’) can also be interpreted as this user interests in Idol’s
Album or Female Idol. To maintain the explanation power of
generated features by feature extraction algorithms, operators for
generating new features should be limited in logic operators.
Therefore, new features are explainable because every logic expres-
sion can be transformed into disjunction of conjunctive form. We
can hence define easy-to-explain features and easy-to-explain
feature synthesis problem as follows:

Definition 2. For a feature set F ¼ ff 1,f 2,. . .,f ng, f0 is easy-to-
explain if f0 is a subset of 2F

�f|g, the power set of F does not
contain the empty set.
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Easy-to-explain feature synthesis problem definition
Given a training data D and the corresponding feature set F,

find a minimal easy-to-explain feature set F0 corresponding to F

such that multivariate information gain of F0 over D is maximum.
Each element in the power set of F can be considered as the

conjunctive form of original features and a set of these elements
is hence a disjunction of conjunctive form. Easy-to-explain
feature space is much larger than that of feature selection
algorithms search. For given n features, the search space of
feature selection algorithms contains only d¼ 2n

�1 potential
candidates while there are 22d

�1
�1 candidates in easy-to-explain

feature space. The huge number of candidates raises the compu-
tational cost for searching optimal solution in acceptable time.
Therefore, heuristic approaches can be applied to solve this
optimization problem. Our proposed heuristic feature synthesis
approach will be discussed in the next section.
4. Technical approach

In e-commerce, social recommendation system has won its
reputation. The success of social recommendation system relies
on precise social context. Folksonomy-based tags are common
description of video contents and usually used to build the user
preference profile. These tags can be considered as Boolean-typed
features (variables or attributes) in machine learning field. Table 1
shows an example of partial user log matrix for a mobile video
order record. Row i represents that a tag subset of predefined tags
accompanies the video purchased by a customer in the ith
transaction. User’s preference can be considered as the disjunctive
of the corresponding active tags. For instance, U5 may prefer
Chinese song or fast song or rookie performer according to the
last transaction.

However, folksonomy-based tag system which lacks semantic
consistency control usually contains feature dependency pro-
blem. This user preference model cannot provide precise user’s
characteristic and hence leads to doubtful social context informa-
tion from poor fancier clustering results. We aim to search an
optimal feature subset to describe users’ characteristic as well as
to improve the precision of social recommendation system.
Different from traditional feature extraction techniques, the
generated features should be easy-to-explain.

4.1. Screening low-informative features

According to Table 1, it is easy to find the tags: ‘‘Canto’’ with
very low frequency of utilization and ‘‘Chinese’’ appears in all
transactions. For the purpose of discriminating users with differ-
ent preferences, these tags are less relevant to prediction perfor-
mance, i.e. low-informative. Theorem 1 supports that a feature
Table 1
A partial original user log.

No. User Features

Slow songs Lyric Single Male Canto

1 U1 1 1 1 0 0

2 U2 1 1 0 0 0

3 U3 1 1 0 0 0

4 U2 0 0 0 0 1

5 U1 1 1 1 1 0

6 U4 1 1 1 0 0

7 U4 1 1 0 0 0

8 U5 0 0 1 0 0

9 U6 1 1 0 1 0

10 U5 0 0 0 0 0
does not benefit in multivariate information gain if almost
instances act the same on this feature. This leads to our first
heuristic that features with almost the same value in collected
data are useless for discrimination. From the viewpoint of
dimension reduction, it is acceptable to retain similar discrimina-
tion information after eliminating numerous features.

According to Corollary 1, our first heuristic is to evaluate the
support of each feature to determine whether the feature is
informative or not. If a feature’s support value is less than the
minimum threshold or more than the maximum threshold, then
this feature is useless for characteristic analysis. Corollary 1 also
provides an implicit relationship between the discrimination
information loss and support threshold while the support count
of screened tag approaches to 0 or total number of instances. The
proof of Theorem 1 is provided in Appendix.

Theorem 1. Let Y ,F1,. . .,Fn be random variables and m be the

number of instances, if random variable Fn has an outcome a, then

lim
Pðf n ¼ aÞ-1

MIGðY9F1,. . .,FnÞ ¼MIGðY9F1,. . .,Fn�1Þ:

Corollary 1. Let Y ,F1,. . .,Fn be random variables and m be the

number of instances, if for each i, Fi has binary outcomes, then

limsðf nÞ-mMIGðY9F1,. . .,FnÞ ¼MIGðY9F1,. . .,Fn�1Þ and limsðf nÞ-0 MIG
ðY9F1,. . .,FnÞ ¼MIGðY9F1,. . .,Fn�1Þ.

Proof. Because Fn has binary outcomes and sðf nÞ approaches to m, it
implies that PðFn ¼ 1Þ approaches to 1. By Theorem 1, we can achieve
that limsðf nÞ-mMIGðY9F1,. . .,FnÞ ¼MIGðY9F1,. . .,Fn�1Þ. Similarly, we
can also achieve that limsðf nÞ-0MIGðY9F1,. . .,FnÞ ¼MIGðY9F1,. . .,Fn�1Þ

by Theorem 1, because sðf nÞ-0) PðFn ¼ 0Þ-1.

4.2. Shrinking high-dependent features

From the view of social recommendation systems, the char-
acteristics of users’ preference are usually assumed as disjunctive
of original features. Users’ preferences should be characterized
more precisely instead of disjunctive form, while high dependent
tags should be shrunk into one feature for reducing over-con-
cerning. For example, ‘‘slow songs’’ and ‘‘lyric’’ are always co-
occurrence in Table 1. The new feature ‘‘slow songs and lyric’’ will
more precisely describe users’ preference, instead of ‘‘slow songs’’
and ‘‘lyric’’. From the theoretic views, these two tags contribute
similar discrimination information and therefore are high-redun-
dant. Theorem 2 guarantees that shrinking high-dependent
(High-redundant) features affect multivariate information gain

slightly if the distributions of these two random variables (fea-
tures) are almost the same. This leads to our second heuristic
which merging two high-dependent features into a new feature
does not harm the prediction performance much. The proof of
Theorem 2 is provided in Appendix.
Chinese Fast songs Idol Crude Hot rookie

1 0 0 1 0 0

1 1 0 1 1 0

1 1 0 1 1 0

1 0 0 1 0 1

1 0 0 1 0 0

1 0 0 1 0 0

1 1 0 0 0 0

1 0 0 1 0 1

1 1 0 1 1 0

1 1 0 0 0 1
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Theorem 2. Let Y ,F1,. . .,Fn be random variables and m be the

number of instances, if for all e40, there exists a d40,
9Pðf n�1 ¼ f nÞ�19od such that 9MIGðY9F1,. . .,FnÞ�MIG
ðY9F1,. . .,Fn�2,fFn�1,FngÞ9oe.

Corollary 2. Let Y ,F1,. . .,Fn be random variables and m be the

number of instances, if for each i, Fi has binary outcomes, then

limCðf n�19f nÞ-1MIGðY9F1,. . .,FnÞ ¼MIGðY9F1,. . .,Fn�2,fFn�1,FngÞ.

4.3. Enhancing dominated features (optional)

In entertainment video business, a user purchasing a video
indicates that the property of this video meets his preference.
However, there is no obvious information when user does not
purchase some video contents. That is, feature does not contri-
bute equally on different feature value in recommending videos.
The only information of this tag provides for discrimination if it
appears in purchase history. Following this observation, feature
with higher frequency in transactions will bring more information
about users’ preferences. From the viewpoint of association rule
mining, large itemsets represent the significant characteristics of
data. Therefore, our last heuristic is to enhance the features with
obvious information by mining the large itemsets.

4.3.1. Feature synthesis algorithm

Input:
Transactions Data ½C9T�m�ð9F9þ1Þ where C records which custo-
mer in each transaction, T is the tag-transaction mapping
matrix and F is the set of tags.
Maximum support threshold, TM

Minimum support threshold, Tm

Minimum support threshold, T
m’

Confidence threshold, Tc

Output: easy-to-explain feature subset F

Method:
STEP 1. Build the user profile P9U9�9F9 by calculating the
frequency of features in Transaction Data ½C9T�.
STEP 2. Normalize each column vector Pð: ,iÞ.
STEP 3. for each feature f in F, remove f from F if Sðf Þ4TM or
Sðf ÞoTm.
STEP 4. for each feature fi in F, find each feature fj in F with
Pðf i,f jÞ4Tc , remove fj from F,add f i [ f j into F and Pð: ,Iðf i [

f jÞÞ ¼ Pð: ,iÞþPð: ,jÞ where Iðf i [ f jÞ is the index of new feature
f i [ f j in F. Remove fi from F if there exists a feature containing fi.
STEP 5. Repeat STEP 4 until the cardinality of F remains
the same.
STEP 6. for each feature f, remove f from F if Sðf ÞoTm0 .
(optional)
The proposed feature synthesis algorithm follows the above
heuristics to search easy-to-explain features for maximizing
multivariate information gain and hence to improve the preci-
sion of social recommendation systems. Step 3 screens the
low-informative features. Steps 4 and 5 shrink the high-
dependent features iteratively. This shrinking phase also trans-
forms original Boolean-typed features into discrete-typed
Fig. 1. The data set of all user
features for redeeming the potential information loss. If the
confidence of two features approximates 1, some customers
may be interested in only one feature. This fuzzy recovery will
retain this kind of preference differences. Notice that there is
only one feature used to merge with other features in each
round. Therefore, after each round, the number of features is
equal to the previous one or decreased by 1, relying on the
selected feature highly depending on some of the rest features
or not. Step 6 enhances the dominated features which bring
more information of describing users’ preferences. The
enhancement we adopt here is the extreme Boolean version
which is to keep dominated features and to remove the rest.
Theorem 3 guarantees that feature synthesis algorithm pro-
duces easy-to-explain features. Our proposed feature synthesis
algorithm search part of easy-to-explain features which are
the conjunctive form of original features. It is because that the
applying linear function (similarity measurement) will lead to
simultaneous interpretation of whole features. However, this
search space is still larger than that of feature selection
algorithms search (22n

�1
�1 compared to 2n

�1).

Theorem 3. Feature synthesis algorithm produces easy-to-explain

features.

Proof. It can easily be verified that all steps of feature synthesis
algorithm on feature set are logic operators. Because every logic
expression can be transformed into a disjunction of conjunctive
form, the produced features are in the disjunction of conjunctive
form of original features. Therefore, we can claim that feature
synthesis algorithm produces easy-to-explain features.
5. Experiments

5.1. Experimental design

In this paper, we aim to search an easy-to-explain feature subset
which can properly characterize the users’ preferences while con-
quering the curse of dimensionality. The experiment data were
offered by the largest commercial entertainment video Web shop in
Taiwan. There are total 1487 available videos and purchase informa-
tion of 10,906 customers during 2008/06/12–2009/05/07. Each video
contains several suitable tags selected from 117 predefined tags. The
28,249 transactions are separated into training data (from 2008/06/12
to 2008/11/23) and testing data (from 2008/11/24 to 2009/05/07),
The training data is further split into training set and validation set for
the purpose of model selection. Fig. 1 shows the data sizes and the
corresponding duration and the detail of data statistics is shown in
Table 2.

Our feature synthesis algorithm consists of three phases: feature
screening phase, feature shirking phase and feature enhancing phase.
In feature screening phase, only features with support between 0.1
(Tm) and 0.9 (TM) are kept. While shirking features with confidence
over 0.9 (Tc) in feature shirking phase, only features with support
over 0.5 (Tm0 ) are kept in feature enhancing phase.
log and Model Selection.
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Content-based collaborative filtering (CBCF) recommendation
approach is based on the assumption that people will be inter-
ested in those persons with similar preferences in interests. The
well-known k-means clustering algorithm [7] is used to cluster
users with similar preferences. The similarity measures, cosine
similarity, are selected for k-means because of discrete type of
feature. In particularly, for two vectors V1 and V2, the cosine
similarity of V1 and V2, CosðV1,V2Þ ¼ V1UV2=9V199V29. The cluster
number for k-means algorithm is selected from 2 to 10 via model
selection mechanism. The lengths of recommendation lists are set
as 5 and 10. The experimental results will be analyzed and
discussed in the next Section.

5.2. Experimental results

The goal of recommendation system is to recommend products
which customers will be interested in and purchase. The hit rate is a
suitable criterion to measure the performance of a recommendation
system. We call hit if one of someone’s testing data is in the
recommendation list. So the hit rate means the fraction of hit number
divided by the number of total testing users. Our recommendation is
based on CBCF with k-means clustering algorithm. However, k-means
algorithm is very sensitive on initial setting. The first randomly
selected k centroids will affect the performance of k-means algorithm
much. To avoid this issue of k-means, we repeat our experiments 50
times on each attribute set. For each experiment, the number of
clusters is decided by model selection.

5.2.1. Effectiveness evaluation

The experimental result is shown in Table 3. The results show
that our searched feature subsets perform well in recommending
entertainment videos, especially the feature screening phase
improves the most hit rate. This explains that low informative
features have bad influences on recommending video and this
serious problem exists in folksonomy-based tag system. The
feature enhancing phase improves performance when the recom-
mendation list length is 5. This is because little recommendations
need to focus on the sufficient users’ preferences. When
Table 2
The details of data statistics of purchase information.

Transaction
number
(percentage)

Customer
number
(percentage)

Avg. purchase
per customer
(std.)

Training

data

Training

set

13854 (49.04%) 5869 (53.81%) 2.36 (1.87)

Validation

set

5921 (20.96%) 2640 (24.21%) 2.43 (4.08)

Total 19775 (70.06%) 8509 (78.02%) 2.32 (3.71)

Testing data 8474 (29.94%) 3454 (31.67%)

Table 3
The results of recommendations.

Feature set List length (L): 5

Best K Avg. hit rate (Std.)

1-itemset (without screening) 3 4.080% (0.013)

1-itemset (with screening) 6 6.114% (0.014)

Closed itemset (with screening) 8 6.930% (0.008)

Large closed itemset (with screening) 8 7.262% (0.008)

Forward feature selection 9 3.35% (0.009)

Backward feature elimination 9 5.455% (0.023)
producing 10 recommendations, the feature enhancing phase
does not perform well since producing long recommendation list
requires more information which is ignored by this phase.

For comparison purpose, the well-known wrapper-based fea-
ture selection techniques, forward feature selection (FFS) techni-
que and backward feature elimination (BFE), have been selected
for comparison. FFS evaluates each candidate feature subset and
selects the best candidate feature subset to generate the next
candidate feature subsets by adding one remain feature into it.
FFS stops if the new selected feature does not benefit in prediction
performance. On the contrast, the candidate feature subsets of
BFE are formed by eliminating one feature from current best
feature subsets. In our experiments, each candidate feature subset
is evaluated by the same model selection procedure which is
decided by different cluster number setting for k-means algo-
rithm (from 2 to 10). We also repeat 50 times our experiments
on feature subsets selected by FFS and BFE. The comparison is
also shown in Table 3. FFS performs poorly (average hit rates are
3.35% (the length of recommendation list L¼5) and 7.059%
(L¼10)), while BFE performs slightly better than FFS (5.455%
(L¼5) and 11.214% (L¼10)). The results show that our proposed
feature synthesis algorithm outperforms FFS and BFE on this
data set.

Best k in model selection is also a criterion to evaluate the quality
of clustering algorithms. Cluster number refers to the degree of
discrimination between distinct customers’ preferences. Table 3
shows that Best k increases when each phase of our feature synthesis
algorithm applies. For example, the characteristic ‘‘Idol and Album’’
and ‘‘Idol and Female’’ are different clusters’ characteristic. According
to our observations, ‘‘Idol’’ is the characteristic of single cluster; we
can use the more precise features to describe the users’ preferences.
This leads to more precisely fancier clustering results as well as more
successful recommendations. Our experimental results demonstrate
that out proposed feature synthesis algorithm performs well on the
entertainment video recommendation in three aspects: (1) better
characterization of users’ preferences, (2) easier interpretation of
clustering results and (3) better performance of recommendation
system.

5.2.2. Process time comparison

The experiments are run on an IBM eServer x3400 server with two
Intels Xeons Processor E5420 (12 M Cache, 2.50 GHz and 1333 MHz
FSB), 4 Gb RAM and Microsoft Windows Server 2008 SP2 operating
system. The algorithm is implemented by Microsoft Visual Studio
2008 and Microsoft SQL server 2005. We further apply parallel
programming technique to speed up the exhaustive computations
of forward feature selection (FFS) technique and backward feature
elimination (BFE) technique. Our proposed feature synthesis algo-
rithm is a kind of filter-based feature selection techniques. Therefore,
it produces the same feature subset regardless of the recommenda-
tion list length. In contrast, FFS and BFE are both sensitive on the
List length (L): 10 Feature number

Best K Avg. hit rate (Std.)

5 10.885% (0.029) 117

7 11.570% (0.015) 44

8 11.954% (0.025) 17

7 11.598% (0.018) 15

8 7.059% (0.013) L¼5 L¼10

5 6

10 11.214% (0.106) L¼5 L¼10

114 115



Fig. 2. The Process Time of dimension reduction algorithms.
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setting of the recommendation list length (L). The comparison result
is shown in Fig. 2. The x-axis represents different dimension reduction
approaches, including three phases of our approach (phase 1, phase
2 and phase 3), FFS (FFS_L5 and FFS_L10) and BFE (BFE_L5 and BFE
_L10) with different recommendation list length setting. The y-axis
shows process time in millisecond.
6. Conclusion

For the purpose of providing explainable predicted results and
improving the performance of learning system, we define easy-to-
explain features to provide large search space for feature extraction
algorithm. Upon easy-to-explain search space, linear learning system
can achieve better performance while the predicted results are still
explainable. Our proposed feature synthesis algorithm is unsuper-
vised and lightweight. We described the algorithm in the context of
clustering and social recommendation, but we suppose its applic-
ability can be much broader. The theoretical constraints are relaxed to
achieve practical benefits. This relaxation motivates future research
attentions on exploring the relations among joint mass distribution of
features, support and confidence. The experimental results show that
our approach can obtain the interpretable clustering results as well as
improve the recommendation.
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Appendix. Proofs of Theorems 1 and 2

Multivariate information gain measures the quantity of uncer-
tainty change of interested phenomenon after giving several
features. It can be considered as the amount of discrimination
information from these features. In Theorems 1 and 2, we are
interested in the influence of individual feature on discrimination
information, especially in features with support approximating to
1 or 0 and feature sets with confidence approximating to 1. To
achieving these goals, we find upper bounds and lower bounds of
multivariate information gain. Theorems 1 and 2 state that these
upper bounds and lower bounds approach identical in different
cases.
Lemma 1. Let F1,. . .,Fn be random variables and m be the number of

instances, if there are k instances with feature f n ¼ a then

pðf 1,. . .,f n�1Þ�
m�k

m
rpðf 1,. . .,f n�1,f n ¼ aÞrpðf 1,. . .,f n�1Þ

and

pðf 1,. . .,f n�1Þ�
k

m
rpðf 1,. . .,f n�1,f naaÞrpðf 1,. . .,f n�1Þ:

Proof. Because of the definition of joint probability, we have

pðf 1,. . .,f n�1Þ ¼ pðf 1,. . .,f n�1,f n ¼ aÞþpðf 1,. . .,f n�1,f naaÞ, ð3Þ

and also simple inequalities that

0rpðf 1,. . .,f n�1,f naaÞrpðf naaÞ ¼
m�k

m
: ð4Þ

By (3) and (4), it can be derived that

pðf 1,. . .,f n�1Þ�
m�k

m
rpðf 1,. . .,f n�1,f n ¼ aÞrpðf 1,. . .,f n�1Þ: ð5Þ

Similarly, 0rpðf 1,. . .,f n�1,f n ¼ aÞrpðf n ¼ aÞ ¼ k=m. We can also

derive that

pðf 1,. . .,f n�1Þ�
k

m
rpðf 1,. . .,f n�1,f naaÞrpðf 1,. . .,f n�1Þ: & ð6Þ

Proof of Theorem 1. By Definition 1, we have

MIGðY9F1,. . .,FnÞ ¼HðYÞ

�
X

f 1 ,...,f n

pðf 1,. . .,f nÞ �
X

y

pðy9f 1,. . .,f nÞlog2pðy9f 1,. . .,f nÞ

 !
: ð7Þ

When given different feature sets, only the second term of

right hand-side of eq. (7) varies which is denoted by EF1 ,...,Fn

ðHðY9F1, . . .,FnÞÞ.

X
f 1 ,...,f n

pðf 1,. . .,f nÞ �
X

y

p y9f 1,. . .,f n

� �
log2 pðy9f 1,. . .,f nÞ

 !

¼
X

f 1 ,...,f n�1

pðf 1,. . .,f n�1,f n ¼ aÞ

�
X

y

pðy9f 1,. . .,f n�1,f n ¼ aÞ log2 pðy9f 1,. . .,f n�1,f n ¼ aÞ

 !

þ
X

f 1 ,...,f n�1

pðf 1,. . .,f n�1,f naaÞ

�
X

y

pðy9f 1,. . .,f n�1,f naaÞ log2 pðy9f 1,. . .,f n�1,f naaÞ

 !
: ð8Þ

By Lemma 1 and the definition of conditional probability,X
f 1 ,...,f n�1

pðf 1,. . .,f n�1,f n ¼ aÞ

�
X

y

pðy9f 1,. . .,f n�1,f n ¼ aÞ log2 pðy9f 1,. . .,f n�1,f n ¼ aÞ

 !

r
X

f 1 ,...,f n�1

pðf 1,. . .,f n�1Þ

�
X

y

pðy,f 1,. . .,f n�1,f n ¼ aÞ

Pðf 1,. . .,f n�1,f n ¼ aÞ
log2

pðy,f 1,. . .,f n�1,f n ¼ aÞ

Pðf 1,. . .,f n�1,f n ¼ aÞ

 !

r
X

f 1 ,...,f n�1

pðf 1,. . .,f n�1Þ �
X

y

p y,f 1,. . .,f n�1

� �
Pðf 1,. . .,f n�1Þ�ðm�k=mÞ
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log2

p y,f 1,. . .,f n�1

� �
�ððm�kÞ=mÞ

Pðf 1,. . .,f n�1Þ

�

Since pðf 1,. . .,f n�1,f naaÞ approaches to zero as the number of

instances with feature f n ¼ a approaches to m, we have

limPðf n ¼ aÞ-1EF1 ,...,Fn
ðHðY9F1,. . .,FnÞÞrEF1 ,...,Fn�1

ðHðY9F1,. . .,Fn�1ÞÞ:

ð9Þ

We can also apply Lemma 1 to derive the lower bound.X
f 1 ,...,f n�1

pðf 1,. . .,f n�1,f n ¼ aÞ

�
X

y

pðy9f 1,. . .,f n�1,f n ¼ aÞ log2 pðy9f 1,. . .,f n�1,f n ¼ aÞ

! 

Z

X
f 1 ,...,f n�1

pðf 1,. . .,f n�1Þ�
m�k

m

� �

�
X

y

pðy,f 1,. . .,f n�1,f n ¼ aÞ

Pðf 1,. . .,f n�1,f n ¼ aÞ
log2

pðy,f 1,. . .,f n�1,f n ¼ aÞ

Pðf 1,. . .,f n�1,f n ¼ aÞ

 !

Z

X
f 1 ,...,f n�1

pðf 1,. . .,f n�1Þ�
m�k

m

� �

�
X

y

pðy,f 1,. . .,f n�1Þ�m�k=m

P f 1,. . .,f n�1

� � log2
pðy,f 1,. . .,f n�1Þ

Pðf 1,. . .,f n�1Þ�m�k=m

 !

When the number of instances with feature f n ¼ a approaches

to m, we can derive that

limPðf n ¼ aÞ-1EF1 ,...,Fn
ðHðY9F1,. . .,FnÞÞZEF1 ,...,Fn�1

ðHðY9F1,. . .,Fn�1ÞÞ:

ð10Þ

According to inequalities (9) and (10), by the sandwich theo-

rem, we can claim that

limPðf n ¼ aÞ-1EF1 ,...,Fn
ðHðY9F1,. . .,FnÞÞ ¼ EF1 ,...,Fn�1

ðHðY9F1,. . .,Fn�1ÞÞ

Therefore, limPðf n ¼ aÞ-1MIGðY9F1,. . .,FnÞ ¼MIGðY9F1,. . .,Fn�1Þ.

Based on Lemma 1 and the similar idea, we can also derive that

limPðf n ¼ aÞ-1MIGðY9F1,. . .,FnÞ ¼MIGðY9F1,. . .,Fn�1Þ
Lemma 2. Let F1,. . .,Fn be random variables and m be the number
of instances, if there are k instances with features f n�1 ¼ f n then

pðf 1,. . .,f n�1Þ�pðf n�1,f c
n�1Þrpðf 1,. . .,f n�1,f n�1Þrpðf 1,. . .,f n�1Þ:

Proof. Because of the definition of joint probability, we have

pðf 1,. . .,f n�1Þ ¼ pðf 1,. . .,f n�1,f n�1Þþpðf 1,. . .,f n�1,f c
n�1Þ, ð11Þ

and also simple inequalities that

0rpðf 1,. . .,f n�1,f c
n�1Þrpðf n�1,f c

n�1Þ, ð12Þ

where f c
n�1 is the complement of f n�1. By (11) and (12), it can be

derived that

pðy,f 1,. . .,f n�1Þ�pðf n�1,f c
n�1Þrpðy,f 1,. . .,f n�1,f n�1Þrpðy,f 1,. . .,f n�1Þ:

ð13Þ

Proof of Theorem 2. By Definition 1, we have that

MIGðY9F1,. . .,FnÞ ¼HðYÞ�
X

f 1 ,...,f n

pðf 1,. . .,f nÞ
�
X

y

pðy9f 1,. . .,f nÞ log2 pðy9f 1,. . .,f nÞ

 !
:

When given different feature sets, only the second term of right

hand-side of eq. (7) varies which is denoted by EF1 ,...,Fn
ðHðY9F1,

. . .,FnÞÞ.

X
f 1 ,...,f n

pðf 1,. . .,f nÞ �
X

y

pðy9f 1,. . .,f nÞ log2 pðy9f 1,. . .,f nÞ

 !

¼
X

f 1 ,...,f n�1

pðf 1,. . .,f n�1,f n�1Þ

�
X

y

pðy9f 1,. . .,f n�1,f n�1Þ log2 pðy9f 1,. . .,f n�1,f n�1Þ

 !

þ
X

f 1 ,...,f n�1

pðf 1,. . .,f n�1,f c
n�1Þ

�
X

y

pðy9f 1,. . .,f n�1,f c
n�1Þ log2 pðy9f 1,. . .,f n�1,f c

n�1Þ

 !

By Lemma 2 and the definition of conditional probability,X
f 1 ,...,f n�1

pðf 1,. . .,f n�1,f n�1Þ

ð�
X

y

pðy9f 1,. . .,f n�1,f n�1Þ log2 pðy9f 1,. . .,f n�1,f n�1ÞÞ

r
X

f 1 ,...,f n�1

pðf 1,. . .,f n�1Þ

�
X

y

pðy,f 1,. . .,f n�1,f n�1Þ

Pðf 1,. . .,f n�1,f n�1Þ
log2

pðy,f 1,. . .,f n�1,f n�1Þ

Pðf 1,. . .,f n�1,f n�1Þ
Þ

 

by (13)

r
X

f 1 ,...,f n�1

pðf 1,. . .,f n�1Þ

�
X

y

pðy,f 1,. . .,f n�1Þ

Pðf 1,. . .,f n�1Þ�pðf n�1,f c
n�1Þ

log2
pðy,f 1,. . .,f n�1Þ�pðf n�1,f c

n�1Þ

Pðf 1,. . .,f n�1Þ
Þ

 

(By Lemma 2)

Since pðf n�1,f c
n�1Þ approaches to zero as Cðf n�19f nÞ approaches to

1, we have

limCðf n�19f nÞ-1EF1 ,...,Fn
ðHðY9F1,. . .,FnÞÞrEF1 ,...,Fn�1

ðHðY9F1,. . .,Fn�1ÞÞ:

ð14Þ

Again, we apply Lemma 2 to achieve lower bound.X
f 1 ,...,f n�1

pðf 1,. . .,f n�1,f n�1Þ

�
X

y

pðy9f 1,. . .,f n�1,f n�1Þ log2 pðy9f 1,. . .,f n�1,f n�1Þ

( )

Z

X
f 1 ,...,f n�1

ðpðf 1,. . .,f n�1Þ�pðf n�1,f c
n�1ÞÞ

�
X

y

pðy,f 1,. . .,f n�1,f n�1Þ

Pðf 1,. . .,f n�1,f n�1Þ
log2

pðy,f 1,. . .,f n�1,f n�1Þ

Pðf 1,. . .,f n�1,f n�1Þ

 !

Z

X
f 1 ,...,f n�1

ðpðf 1,. . .,f n�1Þ�pðf n�1,f c
n�1ÞÞ

�
X

y

pðy,f 1,. . .,f n�1,f n�1Þ�pðf n�1,f c
n�1Þ

Pðf 1,. . .,f n�1,f n�1Þ

 

log2
pðy,f 1,. . .,f n�1,f n�1Þ

Pðf 1,. . .,f n�1,f n�1Þ�pðf n�1,f c
n�1Þ

!
:
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When Cðf n�19f nÞ approaches to 1, we can derive that

limCðf n�19f nÞ-1EF1 ,...,Fn
ðHðY9F1,. . .,FnÞÞZEF1 ,...,Fn�1

ðHðY9F1,. . .,Fn�1ÞÞ:

ð15Þ

According to inequalities (14) and (15), we can claim that

limCðf n�19f nÞ-1EF1 ,...,Fn
ðHðY9F1,. . .,FnÞÞ ¼ EF1 ,...,Fn�1

ðHðY9F1,. . .,Fn�1ÞÞ

Let a random variable fFn�1,Fng ¼ Fn�1, then

limC f n�19f nð Þ-1MIGðY9F1,. . .,FnÞ ¼MIGðY9F1,. . .,Fn�2,fFn�1,FngÞ
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