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The free vibrations of rectangular FGM plates with through internal cracks are investigated using the Ritz
method. Three-dimensional elasticity theory is employed, and new sets of admissible functions for the
displacement fields are proposed to enhance the effectiveness of the Ritz method in modeling the behav-
iors of cracked plates. The proposed admissible functions accurately describe the stress singularities at
the fronts of the crack and display displacement discontinuities across the crack. The correctness and
validity of the present approach are established through comprehensive convergence studies and com-
parisons with published results for homogeneous cracked plates, based on various plate theories. The
locally effective material properties of FGM in the thickness direction are estimated by a simple power
law. The effects of the volume fraction of the constituents of FGM and the thickness-to-length ratio on
the frequencies are investigated. Frequency data for FGM square plates with three types of boundary con-
ditions along the four side faces and with internal cracks of various crack lengths, positions and orienta-
tions are tabulated for the first time.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Laminated composite materials have been successfully utilized
in engineering systems, particularly in aircraft and aerospace
structures, primarily because they have excellent strength-
to-weight and stiffness-to-weight ratios. Nevertheless, the abrupt
change in material properties across the interface between mate-
rial layers can produce large interlaminar stresses and cause del-
aminations. Recently, functionally graded materials (FGMs),
which are heterogeneous composite materials and whose material
properties vary continuously with a change in the volume fraction
of its constituents, have been invented to overcome the disadvan-
tages of conventional laminated composite materials. These have
found various applications in various engineering fields. Function-
ally graded materials can be designed to have high resistance to
temperature gradients, significant reduction in residual and ther-
mal stresses, and high wear resistance.

Rectangular plates are very common structure components in
real applications. Cracks in structural components cause local
changes in the stiffness of the structure and may result in the
changes to the global dynamic characteristics. If a cracked plate
is in resonance, the crack can propagate very rapidly. To prevent
fracture by such vibration, the vibration characteristics of the
cracked plate must firstly be classified.
ll rights reserved.
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uang).
Most studies of the vibrations of cracked plates involve homo-
geneous plates and utilize different solution techniques and plate
theories. Based on the classical plate theory, integral equation
techniques [1–6], finite element methods [7,8], extended finite ele-
ment method [9], and the Ritz method [10–13] have been applied
to solve for the vibrations of cracked rectangular plates. Similarly,
based on the first-order shear deformation plate theory, finite ele-
ment solutions [14] and solutions obtained using the Ritz method
[15,16] have also been proposed.

The research on vibrations of homogenous rectangular plates is
extensive, but a number of studies of FGM rectangular plates,
based on various plate theories, have also been published. Abrate
[17] and Zhang and Zhou [18] demonstrated that an FGM thin plate
behaves like a homogeneous plate if a proper reference plane is
adopted in the classical thin plate theory. Based on the first-order
shear deformation plate theory, Hosseini-Hashemi et al. [19] pre-
sented analytical solutions for the vibrations of a rectangular plate
that was simply supported at its two opposite edges and was lying
on either Winkler or Pasternak elastic foundations, and Zhao et al.
[20] analyzed vibrations of square and skew plates under different
combinations of boundary conditions using the element-free
kp-Ritz method. Ferreira et al. [21] determined the vibration fre-
quencies of square plates employing the first-order, third-order
shear deformation plate theories and the collocation method with
multiquadric radial basis functions. Using higher-order shear
deformation plate theory, Qian et al. [22] applied the Petrov–Galer-
kin meshless method to find the vibration frequencies of FGM thick
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simply-supported square plates, while Roque et al. [23] adopted
the multiquadric radial basis function method to determine the
vibration frequencies of FGM thick plates with various combina-
tions of boundary conditions. Matsunaga [24] employed a 2D high-
er-order approximate plate theory and found analytical solutions
for the vibrations of FGM simply-supported rectangular plates.
Based on three-dimensional elasticity theory, Vel and Batra [25]
presented exact solutions for the vibrations of simply supported
plates, while Reddy and Cheng [26] provided an asymptotic solu-
tion using a transfer matrix approach. Uymaz and Aydogdu [27]
showed numerical solutions for three-dimensional vibrations of
plates with various combinations of boundary conditions using
the Ritz method.

Only one published paper addresses the vibrations of cracked
FGM plates. Huang et al. [28] utilized the Ritz method and Reddy’s
plate theory to study the vibrations of FGM thick plates with side
cracks. No investigation of vibrations of FGM plates with internal
cracks based on various plate theories or three-dimensional elas-
ticity theory has been published. The main purpose of this study
is to present accurate three-dimensional solutions for vibrations
of rectangular FGM plates with through internal cracks that have
arbitrary orientations and positions. Since the configurations under
consideration are rather simple, the well-known Ritz method is
adopted and the admissible functions include crack functions that
are proposed properly to account for stress singularities at the
fronts of an internal crack and to allow for displacement disconti-
nuities across a crack. To ensure the admissible functions form a
complete set, orthogonal polynomials are also included in the
admissible functions.

The proposed solution is verified by comprehensive conver-
gence studies and by comparisons with published solutions for
homogeneous cracked plates that were obtained using various
plate theories and methods. The accuracy of the present solution
is further confirmed by comparisons with a finite element solution
for an FGM cracked plate. Numerous non-dimensional frequencies
and nodal patterns are reported herein for the first time for cracked
rectangular FGM plates with various thickness-to-length ratios,
different combinations of boundary conditions, and having internal
cracks of various crack lengths, positions, and angles of inclination.
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Fig. 1. A rectangular functionally graded material plate with an internal crack (x0

and y0 locate the center of the crack).
The effects of the volume fraction in the modeling of material
distribution in the thickness direction on the vibration frequencies
are also examined. The relevant results are presented in tables and
figures as references for future research.

2. Geometric configuration and model of material properties

Fig. 1 displays a rectangular FGM plate (of length a, width b and
thickness h) with an internal crack and also shows the rectangular
coordinate (x, y, z) originating at the mid-plane of the plate. Two
polar coordinates (r1, h1) and (r2, h2) originating at the two intersec-
tions of crack fronts with the mid-plane of the plate, respectively,
are also given to describe the stress singularities as r1 and r2 ap-
proach zero. The configuration of the internal crack is defined by
the mid-point of the crack in the mid-plane of the plate (x0, y0),
the angle of inclination a, and the length of the crack, d.

The functionally graded material of interest is a mixture of me-
tal and ceramics. The material properties (elastic modulus, E = E(z),
Poisson’s ratio, t ¼ tðzÞ, and mass density, q = q(z)) vary through-
out the thickness of the plate in a manner determined by the vol-
ume fractions of the constituents. A power-law describes the
variation of material properties in z direction:

PðzÞ ¼ ðPt � PbÞVðzÞ þ Pb; ð1aÞ

VðzÞ ¼ z
h
þ 1

2

� � �m

; ð1bÞ

where P denotes a property of the material; Pt and Pb represent the
properties at the top (z = h/2) and the bottom (z = �h/2) faces,
respectively, and �m is the parameter of volume fraction that gov-
erns the material variation profile in the thickness direction. The
FGM plates considered herein are made of aluminum (Al) and
ceramic (alumina (Al2O3)), whose material properties are given in
Table 1 [24].

3. Methodology

The Ritz method is employed to determine the natural frequen-
cies of an FGM plate with an internal crack because it has a very
robust mathematical basis and is a very popular method for finding
the natural frequencies of plates with simple geometry. In the Ritz
method, the dynamic characteristics of the plate are predicted by
minimizing the energy functional

P ¼ Vmax � Tmax; ð2Þ

where Vmax and Tmax are the maximum strain energy and the max-
imum kinetic energy of the plate under simple harmonic motion,
respectively. According to three-dimensional elasticity theory,

Vmax¼
1
2

Z
V

kðzÞðU1;xþU2;yþU3;zÞ2þGðzÞ½2ðU1;xÞ2þ2ðU2;yÞ2
n

þ2ðU3;zÞ2þðU1;yþU2;xÞ2þðU2;zþU3;yÞ2þðU3;xþU1;zÞ2�
o

dV ð3aÞ

Tmax ¼
x2

2

Z
V
qðzÞ U2

1 þ U2
2 þ U2

3

� �
dV ð3bÞ
Table 1
Material properties of the FGM components.

Material Properties

E (GPa) Poisson’s ratio (t) q (kg/m3)

Aluminum (Al) 70 0.3 2702
Alumina (Al2O3) 380 0.3 3800
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where

kðzÞ ¼ tðzÞEðzÞ
ð1þ tðzÞÞð1� 2tðzÞÞ ; ð4aÞ

GðzÞ ¼ EðzÞ
½2ð1þ tðzÞ� ; ð4bÞ

x is the circular frequency of vibration; Ui (x, y, z) (i = 1, 2, 3) are the
vibration amplitudes in x, y and z directions, respectively, and the
subscript comma denotes partial differentiation with respect to
the coordinate defined by the variable after the comma.

The Ritz method provides accurate solutions, whose accuracy
and efficiency depend mainly on the proper choice on admissible
functions. To obtain accurate solutions for vibrations of a plate
with an internal crack, two sets of admissible functions are applied
to approximate each of the mechanical displacement amplitude
functions, Ui (x, y, z). The mechanical displacement amplitude func-
tions are expressed as

Ui ¼ bUip þ bUic ð5Þ

where bUip are expressed in terms of a set of polynomial functions,
which form a mathematically complete set if an infinite number
of terms are used; bUic are expressed in terms of a set of special func-
tions to supplement the polynomials to describe appropriately the
essential singular stresses at the crack fronts and displacement dis-
continuities across the crack.

A Gram–Schmidt process, proposed by Bhat [29], is utilized to
construct orthogonal polynomials in the x and y directions, de-
noted by PðiÞj ðxÞ and Q ðiÞk ðyÞ, respectively. bUip is expressed as

bUipðx; y; zÞ ¼ fiðzÞ
XNiz

l¼1

XNix

j¼1

XNiy

k¼1

AðiÞjklP
ðiÞ
j ðxÞQ

ðiÞ
k ðyÞz

l�1 ði ¼ 1;2;3Þ; ð6Þ

Notably, PðiÞj ðxÞ satisfy the geometric boundary conditions for Ui on
the faces of the plate, x = 0 and x = a, while Q ðiÞk ðyÞ satisfy the geo-
metric boundary conditions for Ui on the faces, y = 0 and y = b. In
Eq. (6), ordinary polynomials are used in the z direction to resemble
the kinematic assumption of displacements that is made in the var-
ious shear deformation plate theories. Function fi(z) is selected to
satisfy the geometric boundary conditions for Ui on the top and bot-
tom faces. Herein, completely stress-free top and bottom surfaces
are considered, such that fi(z) = 1.

The functions in Eq. (6) are continuous everywhere and do not
result in any stress singularities. Clearly, these functions do not im-
prove the Ritz method by capturing a crack in the plate. In Eq. (3),
the integration domain for an intact plate does not differ from that
for a cracked plate. Consequently, if only the admissible functions
in Eq. (6) are employed, then the effect of the crack on the behav-
iors of the plate cannot be reflected and the resulting solutions ap-
ply to an intact plate.

To make the Ritz method capable of taking into account the
influence of a crack on the vibrations of the plate, some special
functions are needed to describe accurately the behaviors of the
plate along the crack. The two important features of the behaviors
of the plate along the crack are stress singularities at the fronts of
the internal crack and displacement discontinuities across the
crack. Using three-dimensional elasticity theory, Hartranft and
Sih [30] and Chaudhuri and Xie [31] showed that the order of the
stress singularity at a crack front is �0.5 for a cracked homogenous
plate with free–free crack-side boundary conditions. Huang and
Chang [32,33] found that a cracked FGM plate has the same order
of stress singularity as a homogenous plate.

Considering a homogenous wedge without loading and using
the cylindrical coordinates shown in Fig. 2, Hartranft and Sih [30]
proposed a series solution for displacement components with the
following form
u ¼
X1
m¼0

X1
n¼0

rkmþnUðmÞn ðh; z; kmÞ;

v ¼
X1
m¼0

X1
n¼0

rkmþnV ðmÞn ðh; z; kmÞ; w ¼
X1
m¼0

X1
n¼0

rkmþnW ðmÞ
n ðh; z; kmÞ ð7Þ

where u, v and w are the displacement components in r, h and z
directions, respectively. They found that

UðmÞ0 ¼ BðmÞ1 ðzÞ cosðkm þ 1Þhþ BðmÞ2 ðzÞ sinðkm þ 1Þhþ CðmÞ1 ðzÞ

� cosðkm � 1Þhþ CðmÞ2 ðzÞ sinðkm � 1Þh ð8aÞ

V ðmÞ0 ¼ �BðmÞ1 ðzÞ sinðkm þ 1Þhþ BðmÞ2 ðzÞ cosðkm þ 1Þh

þ km þ 3� 4t
km � 3þ 4t

CðmÞ2 ðzÞ cosðkm � 1Þh� CðmÞ1 ðzÞ sinðkm � 1Þh
h i

ð8bÞ

W ðmÞ
0 ¼ AðmÞ1 ðzÞ cos kmhþ AðmÞ2 ðzÞ sin kmh ð8cÞ

When a crack with free crack surfaces is under consideration,
km ¼ m=2; m ¼ 1;2;3; . . . Wang [34] proposed the following set
of functions included in the admissible functions of the Ritz solu-
tions to describe the behaviors of a crack in vibrations of a rectan-
gular plate with a side crack,

zkrð2n�1Þ=2 cos
2lþ1

2
h and zkrð2n�1Þ=2 sin

2lþ1
2

h

�
k¼0;1;2; . . . ; l¼0;1;2; . . . ;n; and n¼1;2;3; . . .
���� �

: ð9Þ

The solution terms corresponding to n = 0 and
km ¼ m=2 with m ¼ 1;3;5; . . . in Eq. (7) can be linearly expanded
by the above set of functions.



Table 2
Convergence of frequency parameters xðb2

=hÞ
ffiffiffiffiffiffiffiffiffi
q=E

p
for a homogeneous SSSS square thin plate (h/b = 0.05) having a horizontal central crack with d/a = 0.3.

Mode No. Crack functions (Nc) Polynomial solution size (Nx � Ny) at [ ] Nz = 3; ( ) Nz = 4; { } Nz = 5 Stahl and Keer [2]� and Huang et al. [16]+

3 � 3 4 � 4 5 � 5 6 � 6 7 � 7 8 � 8 9 � 9

1 0 [6.319] [5.928] [5.928] [5.928] [5.928] [5.928] [5.928] 5.70�, 5.589+

(6.313) (5.922) (5.922) (5.922) (5.922) (5.922) (5.922)
{6.313} {5.922} {5.922} {5.922} {5.922} {5.922} {5.922}

2 [5.814] [5.769] [5.753] [5.747] [5.740] [5.738] [5.732]
(5.806) (5.761) (5.745) (5.738) (5.732) (5.730) (5.723)
{5.806} {5.761} {5.745} {5.738} {5.731} {5.730} {5.723}

4 [5.624] [5.619] [5.613] [5.612] [5.609] [5.608] [5.606]
(5.615) (5.610) (5.604) (5.603) (5.600) (5.599) (5.598)
{5.615} {5.610} {5.604} {5.603} {5.600} {5.599} {5.598}

5 [5.612] [5.609] [5.605] [5.604] [5.602] [5.602] [5.601]
(5.604) (5.600) (5.596) (5.595) (5.593) (5.593) (5.592)
{5.604} {5.600} {5.596} {5.595} {5.593} {5.593} {5.592}

6 [5.609] [5.605] [5.601] [5.601] [5.599] [5.599] [5.599]
(5.600) (5.596) (5.592) (5.592) (5.591) (5.591) (5.590)
{5.600} {5.596} {5.592} {5.592} {5.591} {5.591} {5.590}

2 0 [17.82] [17.51] [14.69] [14.69] [14.65] [14.65] [14.65] 14.67�, 14.19+

(17.77) (17.45) (14.66) (14.66) (14.62) (14.62) (14.62)
{17.77} {17.45} {14.66} {14.66} {14.62} {14.62} {14.62}

2 [15.45] [15.10] [14.38] [14.34] [14.31] [14.29] [14.29]
(15.41) (15.06) (14.34) (14.30) (14.27) (14.26) (14.25)
{15.41} {15.06} {14.34} {14.30} {14.27} {14.26} {14.25}

4 [14.30] [14.28] [14.28] [14.27] [14.26] [14.26] [14.26]
(14.26) (14.24) (14.24) (14.23) (14.22) (14.22) (14.22)
{14.26} {14.24} {14.24} {14.23} {14.22} {14.22} {14.21}

5 [14.28] [14.27] [14.27] [14.26] [14.26] [14.25] [14.25]
(14.24) (14.23) (14.22) (14.22) (14.22) (14.21) (14.21)
{14.24} {14.23} {14.22} {14.22} {14.22} {14.21} {14.21}

6 [14.26] [14.26] [14.26] [14.25] [14.25] [14.25] [14.25]
(14.22) (14.22) (14.22) (14.21) (14.21) (14.21) (14.21)
{14.22} {14.22} {14.22} {14.21} {14.21} {14.21} {14.21}

3 0 [17.82] [17.51] [14.69] [14.69] [14.65] [14.65] [14.65] 14.90�, 14.55+

(17.77) (17.45) (14.66) (14.66) (14.62) (14.62) (14.62)
{17.77} {17.45} {14.66} {14.66} {14.62} {14.62} {14.62}

2 [15.96] [15.73] [14.66] [14.65] [14.62] [14.62] [14.62]
(15.92) (15.69) (14.63) (14.62) (14.59) (14.59) (14.59)
{15.92} {15.69} {14.63} {14.62} {14.59} {14.59} {14.59}

4 [14.65] [14.61] [14.61] [14.61] [14.61] [14.61] [14.61]
(14.62) (14.58) (14.58) (14.58) (14.58) (14.58) (14.58)
{14.62} {14.58} {14.58} {14.58} {14.58} {14.58} {14.58}

5 [14.65] [14.61] [14.60] [14.60] [14.60] [14.60] [14.60]
(14.62) (14.58) (14.57) (14.57) (14.57) (14.57) (14.57)
{14.62} {14.58} {14.57} {14.57} {14.57} {14.57} {14.57}

6 [14.65] [14.60] [14.60] [14.60] [14.60] [14.60] [14.60]
(14.62) (14.57) (14.57) (14.57) (14.57) (14.57) (14.57)
{14.62} {14.57} {14.57} {14.57} {14.57} {14.57} {14.57}

4 0 [27.49] [27.13] [23.24] [23.24] [23.18] [23.18] [23.18] 23.87�, 22.90+

(27.37) (27.01) (23.17) (23.17) (23.11) (23.11) (23.11)
{27.37} {27.01} {23.17} {23.17} {23.11} {23.11} {23.11}

2 [25.08] [24.20] [23.13] [23.11] [23.07] [23.06] [23.06]
(24.98) (24.11) (23.05) (23.03) (22.99) (22.98) (22.98)
{24.98} {24.11} {23.05} {23.03} {22.99} {22.98} {22.98}

4 [23.09] [23.06] [23.05] [23.04] [23.04] [23.03] [23.03]

(continued on next page)
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When a plate with an internal crack as shown in Fig. 1 is under
consideration, there are two crack fronts. The following special
functions called crack functions are introduced to express bUic in
Eq. (5),

bUic¼giðx;y;zÞ
XNiz

m¼1;2

XNi 1

n¼1

Xn

l¼0

BðiÞmnlr
ð2n�1Þ=2
1 cos

2lþ1
2

h1

(

þ
XNi 2

n¼1

Xn

l¼0

~BðiÞmnlr
ð2n�1Þ=2
2 cos

2lþ1
2

h2þrb
2 sin2ðh2=2Þ

XNi 1

n¼1

Xn

l¼0

CðiÞmnlr
ð2n�1Þ=2
1

sin
2lþ1

2
h1þrb

1 sin2ðh1=2Þ
XNi 2

n¼1

Xn

l¼0

~CðiÞmnlr
ð2n�1Þ=2
2 sin

2lþ1
2

h2

)
zm�1 ð10Þ

where gi(x, y, z) (i = 1, 2, 3) are included to satisfy the geometric
boundary conditions for Ui on the plate faces. The crack functions
are expected to work well in the Ritz solution because a similar
methodology was applied to study vibrations of a Mindlin plate
with an internal crack in [16].

Notably, because sin 2lþ1
2 h1


 �
with l = 0, 1, 2, . . . in Eq. (10) are

discontinuous at h1 = ±p, these functions are multiplied by
sin2(h2/2) to force the resulting functions to be continuous across
the plane h2 = 0. Moreover, sin2(h2/2) is symmetric with respect
to h2 = 0 and does not change the symmetry of the term
sin 2lþ1

2 h1

 �

upon multiplication. Hence, sin2ðh2=2Þ sin 2lþ1
2 h1


 �
re-

mains anti-symmetric with respect to the plane of the crack. The
singularity at r2 = 0 is found in the first derivatives of sin2(h2/2)
with respect to x and y; then, sin2(h2/2) is multiplied by rb

2 with
b P 0.5 to ensure that incorrect singular behaviors for stresses near
r2 = 0 are not obtained. The same applies to the sin 2lþ1

2 h2

 �

terms.
In the following analyses, b = 1.5 is used to ensure that
rb

i sin2ðhi=2Þ (i = 1 and 2) yields no stress singularities. Conse-
quently, the admissible functions in Eq. (10) result in the correct
stress singularity order at r1 = 0 and r2 = 0.

For simplicity, set Ni_1 = Ni_2 = Nc, Nix = Nx, Niy = Ny, and Niz = Nz

for i = 1, 2, and 3 in Eqs. (6) and (10) herein. Substituting Eqs. (6)
and (10) into Eqs. (2) and (3) and minimizing the energy functional
P with respect to the to-be-determined coefficients
AðiÞjkl;B

ðiÞ
mnl;C

ðiÞ
mnl;

eBðiÞmnl; and eC ðiÞmnl yield 3Nz(Nx � Ny + 2Nc � (Nc + 3)) lin-
ear algebraic homogenous equations for those coefficients. An
eigenvalue problem is thus obtained, in which the eigenvalues
are the natural frequencies of the plate.

A FORTRAN computer program with variables of 128-bit preci-
sion was developed. Subroutines ‘‘DQDAG’’ and ‘‘DTWODQ’’ in
IMSL were adapted to evaluate the integrals of functions involved
in establishing the matrixes in the eigenvalue problem. These sub-
routines integrate a function by means of a globally adaptive
scheme based on Gauss–Kronrod rules [35]. ‘‘DTWODQ’’ was ap-
plied to the integration of a function with respect to x and y while
‘‘DQDAG’’ was used for the integration with respect to z. When bUic

and their derivatives are involved in the integration, the whole
integration domain is divided into six sub-domains in x–y plane
as shown in Fig. 3, and the crack is not inside any one of the
sub-domains. Consequently, the displacement or slope discontinu-
ities do not occur inside any of these integration sub-domains, and
‘‘DTWODQ’’ can be efficiently executed.

4. Convergence and comparison

The Ritz approach herein yields natural frequencies that
converge to exact values from the upper bounds as the number
of appropriate admissible functions increases sufficiently. Conver-
gence studies were conducted for square plates with different h/b,
�m, and boundary combinations to verify the correctness of the
proposed solutions. Two types of boundary conditions on side faces
1–4 (see Fig. 1) are considered-SSSS and CFFF, where S, F and C



Table 3
Comparisons of xðb2

=h
ffiffiffiffiffiffiffiffiffi
q=E

p
Þ predicted by various theories for homogeneous SSSS square plates with horizontal central cracks.

d/a h/b Mode

1 2 3 4 5

0.3 0.01 [5.70] [14.67] [14.90] [23.87] [27.12]
(5.701) (14.65) (14.89) (23.81) (27.09)
{5.701} {14.65} {14.89} {23.82} {27.11}

0.05 [5.70] [14.67] [14.90] [23.87] [27.12]
(5.589) (14.19) (14.55) (22.90) (25.59)
{5.590} {14.21} {14.57} {22.94} {25.62}

0.1 [5.70] [14.67] [14.90] [23.87] [27.12]
(5.411) (13.15) (13.71) (20.85) (23.00)
{5.421} {13.22} {13.76} {20.97} {23.13}

0.2 [5.70] [14.67] [14.90] [23.87] [27.12]
(4.933) (10.69) (11.48) (16.40) (17.83)
{4.960} {10.84} {11.61} {16.64} {18.06}

0.5 0.01 [5.70] [13.02] [14.74] [23.52] [24.86]
(5.347) (12.96) (14.71) (23.46) (24.76)
{5.353} {12.98} {14.72} {23.46} {24.79}

0.05 [5.70] [13.02] [14.74] [23.52] [24.86]
(5.232) (12.23) (14.36) (22.40) (23.56)
{5.238} {12.28} {14.37} {22.44} {23.60}

0.1 [5.70] [13.02] [14.74] [23.52] [24.86]
(5.060) (11.02) (13.50) (20.22) (21.33)
{5.069} {11.10} {13.55} {20.35} {21.44}

0.2 [5.70] [13.02] [14.74] [23.52] [24.86]
(4.612) (8.640) (11.32) (15.73) (16.71)
{4.633} {8.764} {11.43} {15.97} {16.89}

Note: [ ]:classical thin plate theory [2]; ( ): Mindlin plate theory [16]; { }: present 3-D elasticity-based solution.

Table 4
Convergence of frequency parameters xðb2

=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
for a CFFF FGM ð �m ¼ 5Þ square thick plate (h/b = 0.1) having a vertical central crack with d/a = 0.6.

Mode No. Crack functions (Nc) Polynomial solution size (Nx � Ny) at [ ] Nz = 3; ( ) Nz = 4; { } Nz = 5

3 � 3 4 � 4 5 � 5 6 � 6 7 � 7 8 � 8 9 � 9

1 0 [0.7076] [0.6987] [0.6915] [0.6894] [0.6878] [0.6870] [0.6864]
(0.7063) (0.6969) (0.6900) (0.6879) (0.6863) (0.6855) (0.6849)
{0.7062} {0.6968} {0.6900} {0.6878} {0.6862} {0.6854} {0.6848}

2 [0.6599] [0.6523] [0.6460] [0.6441] [0.6421] [0.6411] [0.6401]
(0.6565) (0.6489) (0.6429) (0.6411) (0.6390) (0.6379) (0.6369)
{0.6564} {0.6488} {0.6429} {0.6410} {0.6389} {0.6378} {0.6368}

3 [0.6356] [0.6322] [0.6305] [0.6294] [0.6287] [0.6274] [0.6271]
(0.6324) (0.6291) (0.6274) (0.6263) (0.6256) (0.6245) (0.6241)
{0.6323} {0.6291} {0.6273} {0.6263} {0.6255} {0.6244} {0.6240}

4 [0.6296] [0.6279] [0.6271] [0.6268] [0.6261] [0.6258] [0.6255]
(0.6265) (0.6250) (0.6241) (0.6238) (0.6232) (0.6229) (0.6225)
{0.6264} {0.6249} {0.6240} {0.6237} {0.6231} {0.6228} {0.6225}

5 [0.6273] [0.6264] [0.6260] [0.6258] [0.6254] [0.6253] [0.6250]
(0.6244) (0.6235) (0.6231) (0.6229) (0.6225) (0.6224) (0.6221)
{0.6243} {0.6234} {0.6230} {0.6229} {0.6224} {0.6223} {0.6220}

2 0 [1.719] [1.646] [1.639] [1.620] [1.618] [1.612] [1.611]
(1.710) (1.632) (1.624) (1.606) (1.603) (1.598) (1.597)
{1.709} {1.632} {1.624} {1.605} {1.603} {1.597} {1.596}

2 [1.637] [1.605] [1.598] [1.584] [1.581] [1.576] [1.575]
(1.620) (1.586) (1.579) (1.565) (1.562) (1.558) (1.556)
{1.619} {1.586} {1.578} {1.564} {1.561} {1.557} {1.556}

3 [1.597] [1.586] [1.584] [1.580] [1.577] [1.574] [1.573]
(1.578) (1.566) (1.564) (1.560) (1.558) (1.555) (1.554)
{1.578} {1.566} {1.564} {1.560} {1.557} {1.555} {1.554}

4 [1.584] [1.580] [1.577] [1.574] [1.573] [1.572] [1.571]
(1.564) (1.561) (1.558) (1.556) (1.555) (1.554) (1.553)
{1.564} {1.561} {1.557} {1.555} {1.554} {1.553} {1.553}

5 [1.578] [1.575] [1.574] [1.572] [1.572] [1.571] [1.571]
(1.559) (1.556) (1.555) (1.554) (1.554) (1.553) (1.553)
{1.559} {1.556} {1.555} {1.554} {1.553} {1.553} {1.552}

3 0 [4.501] [4.119] [4.059] [4.031] [4.019] [4.015] [4.011]
(4.500) (4.080) (4.016) (3.992) (3.981) (3.976) (3.972)
{4.500} {4.079} {4.014} {3.990} {3.979} {3.975} {3.971}

2 [3.601] [3.564] [3.526] [3.502] [3.479] [3.465] [3.453]
(3.556) (3.522) (3.477) (3.454) (3.432) (3.419) (3.405)
{3.555} {3.521} {3.476} {3.453} {3.430} {3.417} {3.403}

3 [3.331] [3.302] [3.267] [3.242] [3.236] [3.227] [3.224]
(3.285) (3.256) (3.225) (3.202) (3.196) (3.187) (3.184)
{3.284} {3.254} {3.223} {3.200} {3.195} {3.186} {3.183}

(continued on next page)
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Table 4 (continued)

Mode No. Crack functions (Nc) Polynomial solution size (Nx � Ny) at [ ] Nz = 3; ( ) Nz = 4; { } Nz = 5

3 � 3 4 � 4 5 � 5 6 � 6 7 � 7 8 � 8 9 � 9

4 [3.234] [3.221] [3.214] [3.211] [3.207] [3.205] [3.203]
(3.194) (3.181) (3.175) (3.172) (3.168) (3.166) (3.164)
{3.193} {3.180} {3.174} {3.171} {3.167} {3.165} {3.163}

5 [3.220] [3.210] [3.207] [3.205] [3.201] [3.200] [3.198]
(3.181) (3.172) (3.168) (3.167) (3.163) (3.162) (3.161)
{3.180} {3.171} {3.167} {3.166} {3.162} {3.161} {3.160}

4 0 [5.174] [4.336] [4.314] [4.300] [4.295] [4.291] [4.289]
(5.137) (4.336) (4.314) (4.300) (4.295) (4.291) (4.289)
{5.136} {4.336} {4.314} {4.300} {4.295} {4.291} {4.289}

2 [3.884] [3.847] [3.831] [3.823] [3.818] [3.814] [3.812]
(3.884) (3.847) (3.831) (3.823) (3.818) (3.814) (3.812)
{3.884} {3.847} {3.830} {3.823} {3.817} {3.814} {3.812}

3 [3.847] [3.831] [3.822] [3.816] [3.814] [3.811] [3.810]
(3.846) (3.831) (3.822) (3.815) (3.813) (3.811) (3.809)
{3.846} {3.831} {3.822} {3.815} {3.813} {3.810} {3.809}

4 [3.830] [3.822] [3.817] [3.813] [3.812] [3.810] [3.809]
(3.829) (3.821) (3.817) (3.813) (3.811) (3.809) (3.808)
{3.829} {3.821} {3.817} {3.813} {3.811} {3.809} {3.808}

5 [3.820] [3.815] [3.814] [3.812] [3.810] [3.809] [3.808]
(3.820) (3.815) (3.813) (3.811) (3.810) (3.808) (3.808)
{3.820} {3.814} {3.813} {3.811} {3.810} {3.808} {3.807}

5 0 [6.377] [5.793] [5.139] [5.112] [5.077] [5.074] [5.070]
(6.324) (5.733) (5.094) (5.066) (5.033) (5.031) (5.028)
{6.322} {5.731} {5.093} {5.064} {5.032} {5.030} {5.026}

2 [5.091] [5.038] [4.881] [4.872] [4.849] [4.846] [4.840]
(5.041) (4.986) (4.839) (4.829) (4.806) (4.803) (4.797)
{5.040} {4.984} {4.838} {4.827} {4.804} {4.802} {4.796}

3 [4.832] [4.819] [4.799] [4.791] [4.781] [4.779] [4.777]
(4.790) (4.776) (4.757) (4.749) (4.739) (4.738) (4.736)
{4.789} {4.775} {4.756} {4.748} {4.738} {4.737} {4.735}

4 [4.801] [4.789] [4.779] [4.777] [4.775] [4.774] [4.772]
(4.759) (4.747) (4.738) (4.736) (4.734) (4.733) (4.732)
{4.758} {4.746} {4.737} {4.735} {4.733} {4.732} {4.730}

5 [4.789] [4.781] [4.774] [4.773] [4.772] [4.771] [4.771]
(4.748) (4.740) (4.733) (4.732) (4.731) (4.730) (4.730)
{4.747} {4.739} {4.732} {4.731} {4.730} {4.729} {4.729}

Table 5
Frequency parameters xðb2

=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
for FGM SSSS square thin plates (h/b = 0.02) with horizontal internal cracks (a = 0�).

�m (x0/a, y0/b) d/a Mode

1 2 3 4 5

0 0 5.965 14.88 14.88 23.76 29.66
(0.5,0.5) 0.1 5.939 14.88 14.88 23.74 29.36

0.3 5.665 14.58 14.84 23.68 26.71
0.5 5.318 12.82 14.66 23.28 24.52

(0.5,0.75) 0.1 5.951 14.76 14.88 23.76 29.50
0.3 5.789 13.67 14.85 23.63 27.71
0.5 5.470 12.39 14.72 21.46 23.01

0.2 0 5.536 13.81 13.81 22.06 27.54
(0.5,0.5) 0.1 5.513 13.81 13.81 22.04 27.27

0.3 5.259 13.53 13.78 21.99 24.80
0.5 4.937 11.91 13.61 21.62 22.77

(0.5,0.75) 0.1 5.524 13.71 13.81 22.06 27.39
0.3 5.374 12.70 13.79 21.94 25.74
0.5 5.078 11.50 13.65 19.95 21.37

5 0 3.925 9.787 9.787 15.62 19.49
(0.5,0.5) 0.1 3.906 9.785 9.786 15.61 19.27

0.3 3.725 9.581 9.760 15.56 17.53
0.5 3.496 8.419 9.638 15.30 16.10

(0.5,0.75) 0.1 3.915 9.706 9.785 15.62 19.38
0.3 3.808 8.984 9.766 15.53 18.19
0.5 3.597 8.138 9.685 14.06 15.12
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denote simply supported, free and clamped, respectively. The
geometric boundary conditions of SSSS plates are U2 = U3 = 0
at x = 0 and x = a, and U1 = U3 = 0 at y = 0 and y = b. Thus, in
Eq. (10), g1(x, y, z) = y(b � y), g2(x, y, z) = x(a � x), and g3(x, y, z) =
x(a � x)y(b � y). For the CFFF plates, gi(x, y, z) = x for i = 1, 2 and 3
in Eq. (10). In the following, Poisson’s ratio is set to 0.3 for homo-
geneous plates.

Since the literature includes no results concerning vibrations of
a plate with an internal crack based on three-dimensional elastic-
ity theory, the published results based on plate theories are used to



Table 6
Frequency parameters xðb2

=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
for FGM SSSS square thick plates (h/b = 0.2) with horizontal internal cracks (a = 0�).

�m (x0/a, y0/b) d/a Mode

1 2 3 4 5

0 0 5.304 9.742 9.742 11.65 11.65
(0.5,0.5) 0.1 5.258 9.742 9.742 11.60 11.64

0.3 4.959 9.728 9.742 10.84 11.60
0.5 4.633 8.763 9.638 9.742 9.974

(0.5,0.75) 0.1 5.272 9.714 9.742 11.47 11.64
0.3 5.059 9.465 9.728 10.55 11.58
0.5 4.710 8.969 9.483 9.632 10.28

0.2 0 4.950 9.280 9.280 10.92 10.92
(0.5,0.5) 0.1 4.907 9.280 9.280 10.88 10.92

0.3 4.627 9.266 9.280 10.18 10.88
0.5 4.322 8.245 9.183 9.280 9.500

(0.5,0.75) 0.1 4.920 9.254 9.280 10.75 10.91
0.3 4.723 9.017 9.267 9.880 10.86
0.5 4.397 8.544 8.877 9.175 9.795

5 0 3.406 6.296 6.296 7.347 7.347
(0.5,0.5) 0.1 3.377 6.296 6.296 7.317 7.346

0.3 3.185 6.274 6.296 6.823 7.322
0.5 2.976 5.462 6.257 6.296 6.444

(0.5,0.75) 0.1 3.386 6.278 6.296 7.241 7.341
0.3 3.247 6.119 6.279 6.656 7.303
0.5 3.020 5.800 5.883 6.211 6.714

Table 7
Frequency parameters xðb2

=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
for FGM CFFF square moderately thick plates (h/b = 0.1) with horizontal or vertical internal cracks.

�m a d/a Mode

1 2 3 4 5

0 0 1.042 2.446 6.107 6.601 7.732
0� 0.1 1.041 2.439 6.103 6.582 7.649

0.3 1.041 2.419 6.102 6.426 7.198
0.5 1.039 2.399 6.088 6.117 6.576

90� 0.1 1.039 2.440 6.056 6.584 7.704
0.3 1.020 2.420 5.727 6.427 7.567
0.5 0.9795 2.398 5.185 6.096 7.398

0.2 0 0.9678 2.275 5.682 6.289 7.193
0� 0.1 0.9675 2.269 5.682 6.273 7.120

0.3 0.9667 2.251 5.680 6.125 6.703
0.5 0.9648 2.233 5.665 5.828 6.122

90� 0.1 0.9651 2.270 5.635 6.273 7.167
0.3 0.9473 2.251 5.330 6.123 7.039
0.5 0.9100 2.231 4.826 5.808 6.882

5 0 0.6844 1.595 3.969 4.287 5.026
0� 0.1 0.6843 1.591 3.969 4.276 4.973

0.3 0.6837 1.577 3.967 4.175 4.674
0.5 0.6824 1.562 3.956 3.973 4.262

90� 0.1 0.6825 1.591 3.935 4.276 5.007
0.3 0.6694 1.577 3.719 4.174 4.918
0.5 0.6423 1.561 3.365 3.960 4.808
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validate the present solutions. Consequently, Table 2 summarizes
the convergence studies of the first five non-dimensional fre-
quency parameters xðb2

=hÞ
ffiffiffiffiffiffiffiffiffi
q=E

p
for a simply supported homoge-

neous square thin plate (h/b = 0.05) having a horizontal central
crack ((x0/a, y0/b) = (0.5, 0.5)) with crack length d/a = 0.3. The re-
sults were obtained using orthogonal polynomials Nx � Ny = 3 � 3,
4 � 4, . . . , 9 � 9, ordinary polynomials Nz = 3, 4, 5, and crack func-
tions Nc = 0, 2, 4, 5, 6. Table 2 also lists the published non-dimen-
sional frequencies obtained using the classical thin plate theory
[2] and Mindlin plate theory [16]. Stahl and Keer [2] used an accu-
rate Fredholm integration approach, while Huang et al. [16] em-
ployed the Ritz method with the admissible functions including a
set of crack functions that are suitable for the Midlin plate theory
with the shear correction factor equal to p2/12. Using only polyno-
mials as admissible functions gives incorrect convergent solutions
as the number of admissible functions is increased. The incorrect
convergent results are the frequencies for an intact plate. Adding
crack functions into the admissible functions yields upper bounds
that converge to the values that agree excellently with the
published results of Huang et al. [16]. As expected, the convergent
non-dimensional frequencies are somewhat lower than those of
Stahl and Keer [2] that were obtained using the classical thin plate
theory, which neglects shear deformation. Using the admissible
functions with Nx � Ny = 9 � 9, Nz = 4 and Nc = 6 (totally 2268
terms) gives the frequencies that converge to at least three signif-
icant figures.

Table 3 compares the first-five non-dimensional frequencies
herein with published results obtained using classical plate theory
[2] and Mindlin plate theory [16] for SSSS homogeneous cracked
square plates with different thickness-to-length ratios. The non-
dimensional frequencies in Table 3 are for centrally cracked plates
with four different thickness-to-length ratios (h/b = 0.01, 0.05, 0.1
and 0.2) and horizontal cracks of two lengths (d/a = 0.3 and 0.5).
For comparison, only the frequencies for the out-of-plane modes



Table 8
Frequency parameters xðb2

=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
for FGM CFFF square thick plates (h/b = 0.2) with horizontal or vertical internal cracks.

�m a d/a Mode

1 2 3 4 5

0 0 1.016 2.233 3.306 5.361 6.828
0� 0.1 1.016 2.227 3.298 5.361 6.750

0.3 1.016 2.195 3.221 5.359 6.285
0.5 1.014 2.160 3.065 5.339 5.671

90� 0.1 1.013 2.227 3.298 5.315 6.805
0.3 0.9897 2.195 3.220 5.010 6.686
0.5 0.9431 2.156 3.055 4.529 6.162

0.2 0 0.9448 2.084 3.150 5.012 6.372
0� 0.1 0.9447 2.077 3.142 5.012 6.300

0.3 0.9441 2.049 3.069 5.010 5.869
0.5 0.9426 2.017 2.920 4.990 5.300

90� 0.1 0.9417 2.078 3.142 4.969 6.350
0.3 0.9203 2.048 3.068 4.684 6.239
0.5 0.8774 2.013 2.911 4.233 5.872

5 0 0.6637 1.432 2.154 3.396 4.347
0� 0.1 0.6637 1.427 2.148 3.396 4.297

0.3 0.6633 1.406 2.098 3.394 3.992
0.5 0.6622 1.381 1.998 3.380 3.586

90� 0.1 0.6615 1.427 2.149 3.367 4.333
0.3 0.6458 1.405 2.098 3.172 4.259
0.5 0.6145 1.378 1.991 2.862 4.032

Table 9
Frequency parameters xðb2

=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
for FGM CFCF square thick plates (h/b = 0.2) with internal cracks (a = 90� or 150�).

�m (x0/a, y0/b) a d/a Mode

1 2 3 4 5

0 0 5.382 6.089 8.893 9.536 12.28
(0.5,0.5) 90� 0.1 5.351 6.089 8.891 9.492 12.26

0.3 5.148 6.080 8.891 9.263 11.84
0.5 4.857 6.024 8.873 9.105 9.933

150� 0.1 5.374 6.089 8.888 9.423 12.28
0.3 5.325 6.063 8.785 8.881 12.14
0.5 5.268 5.965 8.105 8.781 10.59

(0.25,0.5) 90� 0.1 5.374 6.084 8.865 9.513 12.22
0.3 5.261 6.050 8.605 9.254 11.78
0.5 4.922 5.984 8.125 8.678 11.22

0.2 0 5.050 5.715 8.473 8.940 11.58
(0.5,0.5) 90� 0.1 5.020 5.713 8.471 8.897 11.56

0.3 4.827 5.707 8.470 8.679 11.18
0.5 4.550 5.654 8.452 8.530 9.374

150� 0.1 5.041 5.715 8.467 8.834 11.58
0.3 4.995 5.691 8.237 8.461 11.45
0.5 4.941 5.600 7.599 8.361 9.988

(0.25,0.5) 90� 0.1 5.042 5.711 8.446 8.919 11.52
0.3 4.938 5.679 8.199 8.677 11.10
0.5 4.623 5.618 7.741 8.135 10.57

5 0 3.400 3.820 5.774 5.976 7.609
(0.5,0.5) 90� 0.1 3.382 3.820 5.774 5.950 7.598

0.3 3.259 3.815 5.773 5.813 7.348
0.5 3.082 3.782 5.715 5.773 6.173

150� 0.1 3.395 3.820 5.774 5.905 7.607
0.3 3.365 3.805 5.490 5.752 7.531
0.5 3.330 3.748 5.035 5.602 6.704

(0.25,0.5) 90� 0.1 3.395 3.817 5.756 5.962 7.570
0.3 3.321 3.795 5.591 5.798 7.296
0.5 3.103 3.751 5.284 5.439 6.949
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are given. As expected, the three different theories yield highly
consistent vibration frequencies for very thin plates (h/b = 0.01).
The variation among the results is less than 1%. When the thick-
ness-to-length ratio changes from 0.01 to 0.05, the results obtained
using classical plate theory become significantly larger than those
obtained using the other theories, and the differences may exceed
6%. The differences become even greater as the thickness-to-length
ratio increases. The frequencies obtained using Mindlin plate the-
ory are lower than the three-dimensional results, and their varia-
tion is less than 2% even when the thickness-to-length ratio is 0.2.

Table 4 presents the convergence of the non-dimensional fre-
quencies for a moderately thick (h/b = 0.1) and cantilevered (CFFF)
FGM square plate with a vertical central crack and a crack length of
d/a = 0.6. The plate is made of aluminum (Al) and alumina (Al2O3),



Fig. 4. Mode shapes, nodal patterns and xðb2
=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
for a SSSS square FGM thick cracked plate (h/b = 0.2, a = 0o).
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and the material properties vary according to Eq. (1) with �m ¼ 5 in
the thickness direction. The non-dimensional frequency parameter
xðb2

=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
, in which subscript ‘‘c’’ refers to ceramic (Al2O3), is

adopted. The numerical results were obtained using orthogonal
polynomials Nx � Ny = 3 � 3, 4 � 4, . . . , 9 � 9, ordinary polynomials
Nz = 3, 4, 5 and crack functions Nc = 0, 2, 3, 4, 5. The convergent re-
sults that were obtained using no crack functions agree well with
those obtained by Zhao et al. [20] using Mindlin plate theory. Zhao
et al. [20] employed the element-free kp-Ritz method to obtain the
first four non-dimensional frequencies of an intact FGM plate,
which are 0.6768, 1.568, 3.927 and 4.263. Incorporating crack
functions into the admissible functions substantially enhances
the convergence of solutions. Using the admissible functions with
Nx � Ny = 9 � 9, Nz = 5 and Nc = 5 (a total of 2415 terms) gives the
solutions that are accurate to at least three significant figures,
while using the admissible functions with Nx � Ny = 3 � 3, Nz = 5
and Nc = 5 (a total of 1335 terms) yields results that are accurate
to two significant figures.

To further confirm the accuracy of the proposed solutions, the
non-dimensional frequencies for the same case as Table 4 except
for �m ¼ 1 were determined by the present approach and a
finite element method. Using the admissible functions with
Nx � Ny = 9 � 9, Nz = 5 and Nc = 5 gives the first five non-
dimensional frequencies xðb2

=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
, which are 0.7494,

1.841, 3.983, 5.072, and 5.669, respectively. The first five non-
dimensional frequencies determined by the ABAQUS finite ele-
ment package, in which twenty-node isoparametric quadratic
brick elements (C3D20R) were used, are 0.7493, 1.841, 3.984,
5.092, and 5.670. These results were obtained using 80 elements
in each of x and y directions and 128 elements in z direction
(resulting in 1,958,184 nodes). Because the material properties
linearly vary in z direction, material properties in an element were
set equal to the average material properties in the element. An
excellent agreement is found between the present results and
the finite element results.

5. Frequencies and nodal patterns

Following verification of its convergence and high accuracy, the
developed approach is employed to compute the non-dimensional
frequency parameters xðb2

=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
for FGM square plates with

various thickness-to-length ratios, boundary conditions and inter-
nal cracks with various locations, angles of inclination, and lengths.
Three classes of boundary conditions on side faces 1–4 (see Fig. 1)



Fig. 5. Mode shapes, nodal patterns and xðb2
=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
for a CFFF square FGM thick plate with a central crack (h/b = 0.2, (x0/a, y0/b) = (0.5, 0.5)).
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are considered. They are SSSS, CFFF and CFCF. The frequencies of
plates with h/b less than 0.05 and larger than (or equal to) 0.1 were
obtained using the admissible functions with Nz = 4 and Nz = 5,
respectively. The admissible functions with Nx = Ny = 10 and no
crack functions were used for intact plates. The results for cracked
plates with crack lengths (d/a) less than 0.3 were obtained using
the admissible functions with Nx = Ny = 8 and Nc = 5; in other cases
Nx = Ny = 9 and Nc = 5 were used. The results given below are exact
to at least three significant figures according to the comprehensive
convergence studies in the preceding section and extensive con-
vergence studies that are not shown herein. In the following, the
plates under consideration are made of aluminum (Al) and alumina
(Al2O3), and their material properties vary in the thickness direc-
tion according to Eq. (1) with �m ¼ 0;0:2 and 5. The crack length
(d/a) are equal to 0, 0.1, 0.3 and 0.5.

Tables 5 and 6 list the first five non-dimensional frequency
parameters for SSSS square plates (h/b = 0.02 and 0.2) with hori-
zontal central cracks of various lengths at (x0/a, y0/b) = (0.5, 0.5).
As expected, an increase in the length of the crack reduces the
stiffness of the plate and the frequencies. The non-dimensional fre-
quencies also fall as the thickness of the plate increases because
the definition of the non-dimensional frequency parameter in-
volves thickness. The frequencies decrease as �m increases because
increasing �m reduces the stiffness more than it does the mass
of the plate. When the location of the crack changes from
(x0/a, y0/b) = (0.5, 0.5)–(0.5, 0.75), the frequencies of the first mode
increase, and the frequencies of the other modes may increase or
decrease, depending on the mode number and the crack length.
A small crack with d/a = 0.1 only reduces the first five frequencies
of the plate less than 2% relative to those for an intact plate. A large
crack with d/a = 0.5 reduces the fifth mode frequency of a thin
plate (h/b = 0.02) and the fourth mode frequency of a thick plate
(h/b = 0.2) by as much as 22% and 17%, respectively. Tables 7
and 8 display the first five non-dimensional frequencies for CFFF
square plates with h/b = 0.1 and 0.2, respectively. The two consid-
ered angles of inclination of the crack are a = 0� and a = 90�. As do
those in Tables 5 and 6, the non-dimensional frequencies in Tables
7 and 8 decrease as the thickness of the plate, crack length or value
of �m increases. As the angle of inclination of the crack changes from
0� to 90�, the frequencies of the first mode and the third mode de-
crease, indicating that the stiffness decreases in these two modes.
However, the frequencies of the fifth mode vary oppositely. Again,
a small crack with d/a = 0.1 reduces the frequencies of the plate by
less than 2% from those for an intact plate, whereas a large crack
with d/a = 0.5 decreases the frequencies by up to 16%. Comparisons
of the results for plates with horizontal central cracks in Tables 6



Fig. 6. Mode shapes, nodal patterns and xðb2
=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qc=EC

p
for a CFCF square FGM thick plate with a central crack (h/b = 0.2, (x0/a, y0/b) = (0.5, 0.5)).
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and 8 reveal that the SSSS plates have higher frequencies than the
CFFF plates.

Table 9 summarizes the first five non-dimensional frequencies
for CFCF thick square plates (h/b = 0.2). Two angles of inclination
of the crack are considered – a = 90� and a = 150�. As the position
of the crack changes from (x0/a, y0/b) = (0.5,0.5) � (0.25,0.5), the
frequencies of the first mode increase while most of the frequen-
cies of the other modes decrease. As the angle of inclination of
the crack, a, changes from 90� to 150�, the frequencies of the first
and fifth modes increase, and most of the frequencies of the other
modes decline. A small crack with d/a = 0.1 reduces the frequencies
by less than 2% from those of an intact plate, while a large crack
with d/a = 0.5 reduces the frequencies of the fifth mode by up to
19%. Comparisons of Tables 8 and 9 reveal that CFCF boundary con-
ditions yield higher frequencies than CFFF boundary conditions.

To investigate the effects of a crack on vibration mode shapes,
Figs. 4–6 illustrate the first five vibration mode shapes for FGM
plates with h/b = 0.2, d/a = 0 and 0.3, and �m ¼ 5, considered in
Tables 6, 8 and 9, respectively. Figs. 4–6 provides three-dimen-
sional vibration mode shapes and the corresponding nodal
patterns showing only the deformations on mid-plane. Blank mode
shapes indicate in-plane deformation-dominated modes. For the
out-of-plane flexural modes, the contour plots for out-of-plane dis-
placement are given, and the nodal lines are represented as dashed
lines. Since the value of �m does not significantly affect the mode
shapes, only the results for �m ¼ 5 are depicted. The nodal patterns
of the out-of-plane flexural modes for intact SSSS and CFFF plates
are very similar to those for homogeneous plates with h/b = 0.1 ob-
tained using Mindlin plate theory [16], while the nodal patterns for
SSSS and CFFF plates with horizontal central cracks with d/a = 0.3
also resemble very much those for cracked homogeneous Mindlin
plates with h/b = 0.1 and d/a = 0.2, presented by Huang et al. [16]. A
crack with d/a = 0.3 does not make most of the mode shapes for a
cracked plate considerably different from those for an intact plate.

6. Concluding remarks

Accurate free vibration analyses of FGM rectangular plates with
through internal cracks were carried out using the Ritz method and
three-dimensional elasticity theory. New sets of admissible func-
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tions, which appropriately describe the stress singularities at the
fronts of the crack and displacement discontinuities across the
crack, were proposed for displacement fields to supplement sets
of polynomials, which can constitute mathematically complete
sets of functions. The efficiency of the proposed admissible func-
tions was substantiated through comprehensive convergence stud-
ies of non-dimensional frequencies for simply supported, thin
homogeneous and cantilevered thick FGM square plates with hor-
izontal central cracks. The convergent results for the cracked thin
homogeneous plate (h/b = 0.05) agree excellently with previously
published results obtained using Mindlin plate theory. Further-
more, an excellent agreement is found between the present results
and the results obtained using commercial finite element package
ABAQUS for a cracked FGM plate, verifying the correctness and
accuracy of the present solutions.

The proposed approach was employed to obtain accurate fre-
quency data for square Al/Al2O3 FGM plates with internal cracks.
The material properties of FGM are assumed to vary in the thickness
direction, in a manner described by a power law. The results are
accurate to at least three significant figures. Three types of bound-
ary condition along the four side faces were considered. They were
SSSS (simply supported), CFFF (cantilevered) and CFCF. The effects
of the volume fraction ( �m ¼ 0;0:2 and 5), thickness-to-length ratio
(h/b = 0.02, 0.1, 0.2), crack length (d/a = 0.1, 0.3 and 0.5), position
((x0/a, y0/b) = (0.5,0.5), (0.5,0.75) and (0.25,0.5)) and orientation
of the crack (a = 0�, 90� and 150�) on the non-dimensional fre-
quency parameters xðb2

=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
were investigated. The non-

dimensional frequencies decline as thickness-to-length ratio (h/b)
or crack length (d/a) increases because the definition of the non-
dimensional frequency parameter involves h/b, and the stiffness
of the plate decreases with the increase of crack length. The fre-
quencies of the Al/Al2O3 FGM plates also decrease as �m increases.
These data can be used as standard to judge the accuracy of other
numerical methods and various plate theories.
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