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Energy  efficiency  has  become  one  of the  most  important  design  issues  for  embedded  systems.  To  examine
the  power  consumption  of an  embedded  system,  an  energy  profiling  tool  is  highly  demanded.  Although
a  number  of  energy  profiling  tools  have  been  proposed,  they  are  not  directly  applicable  to  the  embedded
processors  with  power  management  functions  that  are  widely  utilized  in  battery-operated  embedded
eywords:
nergy profiling
ower management
mbedded processor
ower consumption

systems  to reduce  power  consumption.  Hence,  this  study  presents  a high-level  energy  profiling  tool,  called
SEProf, that  estimates  the  energy  consumption  of  an  embedded  system  running  multithread  software  and
a multitasking  operating  system  (OS)  that  supports  power  management  functions.  This  study  implements
the  proposed  SEProf  in  Linux  2.6.19  and evaluates  its  performance  on an ARM11  MPCore  processor.
Experimental  results  demonstrate  that the  proposed  tool  can  provide  accurate  energy  profiling  results
with a low  profiling  overhead.
. Introduction

Energy efficiency has become one of the most important issues
n the design of embedded systems, especially for battery-operated
evices such as mobile phones. To evaluate the energy effi-
iency of an embedded system, accurate energy profiling tools are
equired. Previous studies on the energy profiling of embedded
oftware adopt measurement-based and model-based approaches.
easurement-based approaches, such as PowerScope (Flinn and

atyanarayanan, 1999), directly measure the power consumption
f an embedded system using an oscilloscope or a digital multi-
eter, and profiling software runs on the target system to collect

ystem events. This approach analyzes the energy consumption of
he embedded software by associating measurement results with
ystem events. The types and number of system events recorded
y the profiling software and the sampling rate of the metering
oftware restrict the granularity of power consumption analy-
es of the system, and setting up a high-resolution measurement
nvironment and recording a large number of system events are
ostly. Synchronizing the measurement data on the meter and
he system events on the target is also challenging because the
etering and profiling software run on different machines. Further-
ore, measurement-based tools usually generate a large amount
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of measurement data and system logs, and post processing is time
consuming.

The other approach to profile the energy consumption of an
embedded system is based on power models. Model-based tools
estimate the energy consumption of embedded systems by mon-
itoring the occurrences of representative events during system
execution, along with the energy weights of these events. Model-
based tools can be further classified into low-level model and
high-level model approaches. Low-level model approaches con-
sider architecture-level or instruction-level power models for a
processor and estimate the power consumption of software via
simulation or emulation of software execution. Wattch (Brooks
et al., 2000) adopted an architecture-level power model that was
integrated into the SimpleScalar simulator (Burger and Austin,
1997). Wattch modeled the power consumption of the primary
units of an embedded processor, e.g. functional units and caches,
and monitored the number of accesses to these units to estimate
the energy consumption of embedded software (Monchiero et al.,
2008). Unlike architecture-level power models, instruction-level
models (Tiwari et al., 1994; Sinha and Chandrakasan, 2001; Blume
et al., 2007a,b) divide a processor’s instruction set into a number
of classes according to the average power consumption of each
instruction execution. These tools can determine the energy con-
sumption information of a program by accumulating the number
of executed instructions for each class. Tan et al. proposed EMSIM

(Tan et al., 2002, 2003), based on the instruction-level power model
presented in (Sinha and Chandrakasan, 2001) to further support
per-task and function-level energy estimation in an embedded
Linux environment.

dx.doi.org/10.1016/j.jss.2012.03.027
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
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Although low-level model approaches can provide accurate
valuation results, they require a significant amount of time to
ollect necessary information for energy estimation. This is par-
icularly true for embedded systems running complex software,
uch as multithread programs and multitasking operating systems
OSs). High-level model tools estimate the power consumption of
oftware at basic block levels (Tiwari et al., 1994; Tan et al., 2001)
r function levels (Qu et al., 2000; Hsu et al., 2007; Li and John,
003). The power consumption of basic blocks or functions is first
etermined via direct measurements or low-level power models.
he embedded software then runs directly on a target platform, and
nergy-profiling tools collect execution information of these basic
locks or functions to estimate the power consumption of the soft-
are. High-level model approaches make a tradeoff between the
rofiling accuracy and overhead. Tiwari et al. (1994) built a base
nergy cost for basic blocks of the target program. The energy con-
umption of the program can be evaluated by accumulating the
umber of times that each basic block is executed multiplied by its
ase energy cost. Another basic-block power analysis was proposed

n Tan et al. (2001).  This approach groups consecutive basic blocks
n the target program together, and derives the energy weight of
ach group using regression analysis. Qu et al. (2000) presented

 function-level power analysis. In this approach, a database, or
ower data bank, stores the average power and execution times
f library functions and basic instructions. This method evaluates
he energy consumption of a program through the number of times
hat each function is invoked multiplied by its average power and
xecution time recorded in the power data bank. Another function-
evel power analysis tool proposed in Hsu et al. (2007) is a software
nergy estimation tool for heterogeneous dual-core processor. This
unction-level power model measures the average power con-
umption of different digital signal processing (DSP) algorithms in
dvance and stores the data in an energy library. The energy con-
umption of DSP algorithms can be calculated by multiplying the
xecution time of each DSP algorithm by its average power in the
nergy library. Li and John (2003) revealed a correlation between
nstructions per cycle (IPC) and the average power consumption of
S routines, and proposed a linear regression model to estimate the
ower consumption of OS routines instead of assuming constant
ower consumption for the evaluation.

Unfortunately, these high-level tools do not consider the power
anagement functions usually supported by modern embedded

rocessors. Embedded processors, and especially those designed
or battery-operated devices, are sensitive to power consump-
ion, and provide sophisticated operating modes, voltages, and
requencies (Choi et al., 2005; Isci et al., 2006; Kumar et al.,
003). Operating systems (OSs) can use the power management
eatures of the embedded processors to achieve dynamic power

anagement functions, optimizing the energy efficiency of the
mbedded system. For example, ARM9, ARM11, Marvell (formerly
ntel) XScale, Texas Instruments OMAP, etc. all support dynamic
oltage and frequency scaling (DVFS) functions. The Linux kernel
tarting from version 2.6.0 also provides a CPUfreq subsystem to
acilitate DVFS management and control. Without considering the
perating modes, voltages, and frequencies of an embedded pro-
essor and the dynamic power management functions of an OS,
oftware energy profiling results become inaccurate. As a result,
ystem designers are limited in their ability to evaluate the power
anagement strategies on the embedded system.
This study presents an energy profiling tool called SEProf.

he proposed SEProf is similar to a model-based tool since we
anipulate the power tables to derive the power consumption
f a software. Although, in this paper, the power tables were
btained through a measurement-based tool, the power tables
an be also derived by using model-based approaches such as

attch (Brooks et al., 2000) and EMSIM (Tan et al., 2002, 2003).
 and Software 85 (2012) 1757– 1769

Compared with measurement-based approaches, the proposed tool
reduces the cost and overhead for evaluating the power con-
sumption of an embedded system. The proposed tool also reduces
the profiling time significantly when compared with low-level
model approaches. The proposed tool is a practical solution for
evaluating the power consumption of a complex embedded sys-
tem with a multitasking OS and multithread programs. Unlike
other conventional high-level approaches, our design considers
the power management functions of modern embedded proces-
sors and OSs such as different idle mode, suspend mode, and
dynamic voltage and frequency scaling, etc., and can provide a
fast run-time power estimation of a complex embedded system.
System designers can thus run the embedded system under differ-
ent execution environments and run-time parameters for a time
period, examine the characteristics of the power consumption of
the system, and fine tune dynamic power management strate-
gies of the embedded software. Furthermore, the proposed tool
supports energy profiling at different granularities. Therefore, sys-
tem designers can apply various profiling granularities in different
processes and/or functions on an embedded system according to
the requirements of the profiling accuracy. The proposed SEProf
was implemented in Linux 2.6.19. Experimental results show
that the average energy estimation error of using SEProf is less
than 2%, and the overhead introduced by SEProf is less than
5%.

The rest of this paper is organized as follows. Section 2 describes
the design and implementation of the proposed tool, SEProf. Sec-
tion 3 presents experimental results and a case study based on an
ARM11 MPCore processor. Section 4 concludes this study.

2. Design and implementation of SEProf

Fig. 1 provides an overview of the proposed energy-profiling
tool, SEProf.  Before profiling embedded software, we have to con-
struct a power table database for the target embedded processor in
Step 1. This power table database is a collection of power tables that
SEProf uses to estimate the power consumption of the processor,
and it can be built via measurement tools or low-level model tools.
In this study, we  used a direct measurement tool to build the power
tables in SEProf. If low-level model tools are used, the power table
can be constructed by running the programs on an instruction-
level energy simulator, and the power tables for the process and
its functions can be obtained. It is important to note that different
embedded systems may  share certain common processes and/or
functions, such as an OS and libraries; the power tables of these
common processes and functions can be reused when evaluating
the energy consumption of other embedded systems based on the
same embedded processor.

A power table has a number of entries, and each entry denotes
the average power consumption required for the processor to exe-
cute multiple programs, a multithread program, or a code block of
a program. A code block represents a sequence of instructions, such
as a basic block, a function, or a sequence of basic blocks in OS or
applications. The granularity of entries in a power table indicating
the profiling granularity influences the profiling accuracy and the
overhead, and the profiling granularity is a configurable parame-
ter in SEProf. SEProf is designed to support different granularities
for profiling the energy consumption of embedded software. If
system designers require a fast estimation of the energy consump-
tion of an embedded system and can tolerate certain estimation
errors, they can specify a per-system power table or per-process

power tables in SEProf to achieve fast evaluation. Upon identify-
ing the major processes that consume the most energy, they can
specify per-function power tables for the major processes and con-
duct further detailed examination. System designers can make a
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Fig. 1. Overview of SE

radeoff between profiling accuracy and overhead, and choose dif-
erent profiling granularities in different processes and/or functions
n an embedded system depending on the target accuracies. The
roposed tool enables system designers to obtain the evaluation
esults, with sufficient profiling accuracies at a minimized profiling
ost.

Since the goal of SEProf is to estimate the energy consumption of
 processor enabling power management functions, a power table
an consist of more than one power consumption value. Each value
epresents the average power consumption of multiple processes,

 process, or a code block in a process executed under a specific CPU
ower configuration. A CPU power configuration represents a com-
ination of a specific operating power mode, voltage, and frequency
f the processor. Once the embedded OS activates the dynamic
ower management functions, it changes CPU power configura-
ion, and SEProf ensures that the proper power consumption value
s used.

After establishing the power table database in Step 1, SEProf
nserts codes to user-level embedded software in Step 2 accord-
ng to the desired profiling granularity. For example, a system
esigner can build power tables for the major functions of pri-
ary embedded software based on either a measurement-based

ool or a low-level model tool such as EMSIM (Tan et al., 2002,

003). If the processor supports five different power configurations,

 power table of a function contains five power consumption val-
es, each representing the average power for executing the function
nder a particular power configuration. SEProf then inserts codes in
nd its operating steps.

the user-level software to associate the power tables before enter-
ing the corresponding functions, and to disassociate them when
leaving these functions. The instrumented codes tell SEProf which
power table is associated with the running function. The instru-
mentation in the OS kernel is similar to user-level software, and
the OS kernel functions must associate kernel power tables. There-
fore, Step 2′ in Fig. 1 shows that the OS kernel is instrumented.
After Step 2 and Step 2′, Step 3 and Step 3′ compile the OS kernel
and the user-level programs. In Step 4, SEProf runs the program on
the target embedded system, and stores the estimated energy con-
sumption results in the kernel space. Users can access the results
through SEProf application programming interfaces (APIs) in Step
5.

2.1. Power table association and power configuration setting

User-level programs and OS kernel can associate and disassoci-
ate power tables through SEProf APIs upon entering and leaving a
process or code blocks of a process. The association and disassocia-
tion operations must be coupled. If a power table, say power table
A, is associated, power table A will be used to estimate the average
power consumption of the executing software. If another power
table, say power table B, is associated before power table A is dis-

associated, the new power table, i.e. power table B, will be used. If
power table B is disassociated, the previous power table, i.e. power
table A, is then used again to estimate the power consumption of the
executing software. Fig. 2 shows an example of using power tables
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Fig. 2. An example of using power t

n SEProf. Assume that function-level power tables have been built,
nd the embedded processor supports three different CPU power
onfigurations. For the ease of illustration, this example omits sev-
ral detailed procedures before entering the main() function of the
rogram. In Step 1, the CPU operates at the maximum speed in
ower configuration 3, and executes kernel codes to fork a thread,
alled T. SEProf initiates internal data structures for energy pro-
ling at this stage, and associates the power tables of thread T’s
arent with thread T. In Step 2, thread T enters its main function,
nd SEProf associates thread T with the power table of main(),
main(3). Pmain(3) denotes the CPU power consumption of running
he main() function under CPU power configuration 3. This power
able is used to estimate the power consumption in the following
perations until thread T invokes a system call, say A(), in Step
. SEProf then associates the power table of A()and refers to the
ower table of A(). If the OS detects the CPU is underutilized in
tep 4, the OS changes the CPU power configuration from 3 to 1 to
educe energy consumption. SEProf detects this event, and changes
he referred power consumption value from PA(3) to PA(1) at this
tage. In Step 5, thread T finishes the system call, and returns to the
ser space. The power table of A() is disassociated so that the power
able of main()is used again. In Step 6, thread T enters a user-level
unction, say B(). As in Step 3, the power table of B() and the CPU
ower configuration 1, i.e. PB(1), is used. In Step 7 and Step 8, the

hread leaves the functions B() and main(), respectively. When
hread T is terminated, SEProf keeps its energy consumption pro-
le in the kernel space, and users can access the results through
EProf APIs.
and power configurations in SEProf.

2.2. Energy estimation

Fig. 3 presents a flowchart of the proposed SEProf in calculating
the energy consumption of a thread. When a thread, named T, is
created, SEProf initiates the energy profiling data structures for the
thread shown as Event 1 in Fig. 3 occurs. The initialization proce-
dure resets ET, the accumulated energy consumption of thread T.
The power configuration of the processor used by thread T, PCT, is
set to the current power configuration of the processor, PCcur. The
timer for measuring the execution time (which has not been used
to estimate the energy consumption of thread T), TimerT, is set to
zero and paused. The power table stack of thread T, PTStackT, which
holds all associated power tables of thread T, is copied from that of
thread T’s parent, and the latest associated power table of thread
T, PTT, is pushed to the stack PTStackT. When thread T is sched-
uled (Event 2), SEProf checks whether the CPU power configuration
has been modified or not by comparing the thread T’s associated
power configuration PCT with the current one PCcur. If the power
configuration is the same, SEProf resumes TimerT to measure the
execution time of thread T. However, if the OS or other threads
change the power configuration, SEProf accumulates the energy
consumption of thread T during the execution period measured by
TimerT using ET = ET + TimerT × PTT[PCT], where PTT[PCT] looks up the
average power consumption of the processor operating at power

configuration PCT in power table PTT. After accumulating the energy
consumption, SEProf updates the power configuration PCT to the
current one PCcur, and resets TimerT to accumulate the next execu-
tion period of thread T.
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Four other events also trigger SEProf to accumulate the energy
onsumption of thread T. The first one is when thread T changes the
PU power configuration, PCcur, indicated by Event 3. The second
ne is when thread T terminates (Event 4). The third one is when ET

s queried by thread T or other threads (Event 5), and the last one is
hen thread T associates or disassociates a power table (Event 6).

f thread T associates a new power table in Event 6, the new power
able becomes PTT, and it is pushed into PTStackT after performing
he energy estimation procedure. Conversely, if thread T disasso-
iates a power table in Event 6, the disassociating power table is
sed to estimate the energy consumption, and then popped up
rom PTStackT. The power table that appears on the top of the stack
fter removing the dissociating one becomes PTT. When thread T is
cheduled out, as shown in Event 7, SEProf pauses TimerT to stop
ounting the execution time of thread T.

In summary, SEProf accumulates the energy consumption of a
hread when one of the following four events occurs.

1) A thread associates or disassociates a power table. When a
thread associates or disassociates a power table, it implies a

change in the reference average power consumption of the
embedded processor. Therefore, SEProf must calculate the
energy consumption of the accumulated execution time and
update the power table.
flowchart of SEProf.

(2) The power configuration of the embedded processor is changed.
When the CPU power configuration of an embedded processor
changes, the power consumption of the processor also changes.
Hence, SEProf must calculate the energy consumption of the
accumulated execution time using the associated power con-
figuration of the thread.

(3) The total energy consumption of a thread is queried. If a user
queries the total energy consumption of a thread, the energy
consumption of the thread must be updated before returning
the energy profiling results to the user.

(4) A thread ends. When a thread terminates, the energy consump-
tion of the thread during the last execution period is added to
the total energy consumption of the thread. This is the last time
that SEProf accumulates the energy consumption of the thread.

Since the OS may  execute ISRs that are not a part of thread T
when thread T is scheduled, SEProf could separate the energy con-
sumption of the thread and that of ISRs by pausing TimerT when
an interrupt occurs (Event 7), and resuming the timer when CPU
returns from an ISR (Event 2). However, the experiments in this

study did not separate these events because the runtime of ISRs is
negligible.

Fig. 4 shows an example of energy estimation using SEProf.
When a thread, say T, is created, the data structures of the thread
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nergy profiling are initiated in Step 1. In Step 2, thread T is sched-
led and TimerT starts to accumulate the execution time of the
hread. In Step 3, thread T enters code block 1 and associates with
he power table PT1. Since the power table has changed, SEProf cal-
ulates the energy consumption of thread T during the period from
tep 2 to Step 3, resets TimerT, pushes PT1 into PTStackT, and sets PTT

o PT1. In Step 4, thread T enters code block 2, and associates with
he power table PT2. SEProf accumulates the energy consumption
uring the period from Step 3 to Step 4, pushes PT2 into PTStackT,
nd sets PTT to PT2. In Step 5, thread T changes the CPU power con-
guration from 2 to 1. SEProf accumulates the energy consumption
f thread T, and sets PCT to PC1. In Step 6, thread T leaves code
lock 2, and returns to code block 1. SEProf accumulates the energy
onsumption during the period from Step 5 to Step 6, pops PT2
rom PTStackT, and sets PTT to the power table of code block 1. In
tep 7, thread T is scheduled out so that the runtime measurement
s paused. In Step 8, thread T is scheduled again. SEProf resumes
imerT. In Step 9, thread T enters code block 3. SEProf accumulates
he energy consumption during the period from Step 6 to Step 7
nd Step 8 to Step 9. Afterward, SEProf pushes PT3 into PTStackT,
nd sets PTT to PT3. Because an interrupt occurs in Step 10, the exe-
ution time measurement is paused until returning from the ISR
n Step 11. Finally, in Step 12, thread T completes the execution of
ode block 3, and returns to code block 1. SEProf accumulates the
nergy consumption during the period from Step 9 to Step 10 and
tep 11 to Step 12.

.3. Data structures
SEProf maintains three primary data structures in kernel space
o support thread-based energy estimation of embedded proces-
ors enabling power management functions, as Fig. 5 shows. The
ollowing section describes these data structures:
stimation using SEProf.

(1) User-level program power table database. A user-level pro-
gram power table database consists of the power tables of the
program that are used by all threads running the same pro-
gram/library. All user-level power table databases are copied
into the kernel space when a thread starts running, and are
accessed through indexes.

(2) A kernel power table database. A kernel power table database
contains all kernel-level power tables. It is built in the OS kernel
and shared among all threads on the system.

(3) A per-thread SEProf data structure in the kernel space. This data
structure holds the latest associated power table, a timer vari-
able, a power table stack, an associated power configuration,
and an accumulated energy consumption of the thread.

Fig. 5 shows how SEProf maintains the power table stack. When
a thread enters a new code block where a power table is associated,
it pushes the associated power table into its power table stack. On
the other hand, when the thread leaves the code block where the
power table is disassociated, the power table is popped out from
the stack. Fig. 5 shows that when the thread enters code block i, j,
and k, the power tables of the three code blocks are linked in the
power table stack.

3. Experimental results and case study

To verify the design of SEPorf and evaluate its accuracy, SEProf
was implemented in Linux on an ARM11 MPCore processor (ARM,
2008). The kernel patches of Linux 2.6.19 for ARM11 MPCore plat-
form, the source code of SEProf, and the benchmark programs used

in this paper are all available on the SEProf website (SEProf, in
press). Sections 3.1 and 3.2 describe the experimental environment
and results, and Section 3.3 presents a cast study of using SEProf in
adjusting power management strategies.
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.1. Experimental environment

The experimental platform was a Core Tile, CT11MPCore (Core
ile, 2006), with an ARM11 MPCore test chip stacked on the top of

 RealView Emulation Baseboard (Real View, 2007). This platform
rovided both voltage and frequency scaling functions and hard-
are support for measuring the voltage and current consumed by

he processor. This platform made it possible to build a power table
atabase and verify the estimation error easily. The voltage level of
he ARM11 MPCore processor could be changed by writing values
o the registers of an on-board digital to analog converter (DAC).
RM11 MPCore also has an on-board analog-to-digital converter

ADC) to monitor the real-time voltage and current consumption of
he processor core with extremely high precision (micro volts and

icro amps). The ADC stores the voltage and current consump-
ion information on two on-board registers. The default voltage
upplied to the ARM11 MPCore processor was 1.2 V, with an adjust-
ent range of ±0.25 V. The clock rate of the processor could also

e changed by configuring the phase-locked loop (PLL) on the
T11MPCore. In these experiments, the DAC and PLL were used to

cale the voltage and the frequency of the ARM11 MPCore proces-
or, respectively, and the ADC was used to measure the processor’s
ower consumption. A 24 MHz  clock on the Emulation Baseboard
as used for time measurement. The time resolution is 41.7 ns.
intained by SEProf.

SEProf was  integrated into Linux kernel 2.6.19 with a mod-
ified OProfile (Levon, 2003) to build power table databases.
OProfile is a system-wide profiler for Linux system that uses
statistical sampling. OProfile originally samples the context and
program counter (PC) of the running task on each sampling inter-
rupt. We  modified OProfile to gather the information of the
on-board ADC registers, and can derive the power consump-
tion of a processor. The modified OProfile can be regarded as
a direct measurement tool and provides the exact power con-
sumption of the embedded processor. Therefore, we used the
OProfile results as the baseline and evaluated the accuracy of
SEProf. In the experiments, the sampling rate of OProfile was set to
1 kHz.

Four benchmark programs were used throughout the experi-
ment. The first three were CG, FT, and IS applications from the
OpenMP Implementation of NAS Parallel Benchmarks (NPB) (Ver-
sion 3.3) (Jin et al., 1999). CG computes an approximation to the
smallest eigenvalue of a matrix using a conjugate gradient method.
FT performs the time integration of a three-dimensional partial dif-
ferential equation using the Fast Fourier Transform. IS sorts integers

using the bucket sort. The last benchmark program, FileRW, is an I/O
intensive application written by the authors. It is a simple applica-
tion that writes and reads a 30 MB  file through a network file system
(NFS).
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Table  1
Power configurations of an ARM11 MPCore processor used in the VFS experiment.

Power configuration Voltage (V) Frequency (MHz)

1 0.95 140
2 1.01 168
3 1.08 196
4  1.14 224
5  1.2 252

Table 2
Runtime breakdown and the average power of the benchmark programs.

Benchmark program Runtime breakdown (%) Average power (mW)

User space Kernel space User space Kernel space

cg.W 99.98% 0.02% 432 425
ft.W 99.95% 0.05% 452 426
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is.W 99.94% 0.06% 433 428
FileRW 0.34% 99.66% 424 409

.2. Experimental results

This study includes two separate experiments because the
RM11 MPCore cannot dynamically change the frequency of the
rocessor. The first one is a voltage and frequency scaling (VFS)
xperiment, and the second one is a dynamic voltage scaling
DVS) experiment. In the VFS experiment, both the voltage and
he frequency of the ARM11 MPCore processor were scaled at the
eginning of the experiment and remained the same throughout
he experiment. In the DVS experiment, the voltage of the ARM11

PCore processor was scaled dynamically and periodically.

.2.1. VFS experiment
The VFS experiment selected five power configurations for the

RM11 MPCore processor, and configured the processor to oper-
te under one of five power configurations during the experiment.
s Table 1 shows, each power configuration represents a combina-

ion of voltage and frequency levels for the processor. Throughout
he experiment, only one ARM11 CPU was active to map  the mea-
ured power consumption back to the embedded software. The
emaining three CPUs were not initialized. Tables 2 and 3 pro-
ide information regarding the structure and characteristics of the
enchmark programs. Table 2 shows the runtime breakdown and

he average power dissipation for the execution of each benchmark
rogram under power configuration 3. Programs cg.W, ft.W, and

s.W consumed over 99% of runtime in the user space, while Fil-
RW consumed 99% of the runtime in the kernel space. Table 3

able 3
untime breakdown and the average power of the major functions (more than 2%
f runtime).

Benchmark
program

Function name % of runtime Average power
(mW)

cg.W conj grad 95.34% 431
sparse 3.04% 459

ft.W  fftz2 43.88% 452
cffts1 9.57% 455
cffts2 9.46% 455
cffts3 9.37% 451

is.W rank 73.52% 433
randlc 17.13% 434

FileRW smsc911x poll 56.89% 408
copy to user 10.70% 410
copy from user 6.01% 418
memzero 3.51% 409

csum partial copy nocheck 3.43% 406
smsc911x hard start xmit 2.40% 408
 and Software 85 (2012) 1757– 1769

further provides the runtime breakdown of the major functions for
the four programs. The major functions involved in FileRW are all
kernel internal functions.

The results in Tables 2 and 3 indicate that the major functions of
a benchmark program may  consume similar power, but the power
consumption of different programs is quite different. Therefore, in
the VFS experiment, seven power tables were built for the four
benchmark applications, busybox, the modified OProfile, and the
Linux kernel, as shown in Table 4. Each power table consisted of
five entries under five different CPU power configurations. The
power tables were built by executing each benchmark program for
more than ten seconds under a specific power configuration on
Linux kernel. The modified OProfile ran simultaneously to measure
and collect the power consumption of the embedded processor.
Once the benchmark program was executed under the five different
power configurations of the embedded processor, the power tables
of the benchmark program were constructed. The power table of
each application was associated with SEProf at the beginning of the
application, and disassociated at the end. All applications shared the
same kernel power table, vmlinux. The kernel power table is asso-
ciated when a thread calls a system call, and disassociated when
the thread returns from the system call. It is also associated with
threads that have no dedicated power tables.

Table 5 depicts the energy estimation results of the benchmark
programs by using SEProf. The energy and time spent on exe-
cuting application itself and calling system calls were separated
to better examine the accuracy of the power estimation results.
Table 5 shows that, in many cases, the average power consump-
tion of the application was  slightly lower than that of the average
power consumption in Table 4. This is because the parent threads of
the benchmark programs have no dedicated power tables, so they
associate with the kernel power table, vmlinux, which has the low-
est average power. When the benchmark programs were executed,
they used the kernel power table copied from the parent threads
until they associated with their own power tables.

Table 6 verifies the accuracy of the power estimation results for
VFS experiments. OProfile was modified to sample the measured
power of the ARM11 MPCore and compare it with the estimated
power provided by SEProf. Table 6 shows the mean absolute power
estimation error of the four benchmark programs and an overall
period. The overall period began when the init process executed
command scripts for system startup, and ended when all bench-
mark programs terminated. It represents the execution of Linux
kernel and applications including the benchmark programs and the
other programs without dedicated power databases. These results
show that the power estimation error using SEProf was  quite low.
In most cases, the average estimation error was  less than 2% and
the standard deviation of the estimation error was less than 2%.

In Table 7, we compared the execution time of benchmark pro-
grams on a non-instrumented system and an instrumented system
with SEProf. Each benchmark program was executed for 10 times.
To eliminate cache miss effects in the first several runs, we cal-
culated the execution time of a benchmark program based on the
last seven runs. The execution timer started when a benchmark
program was launched and stopped once the program terminated.
During the entire period of a benchmark program execution, no
other program was running. The performance overhead intro-
duced by using SEProf was  derived by comparing the execution
time when a benchmark program ran on an instrumented and
a non-instrumented system. The average performance overhead
introduced by SEProf in the VFS experiment is less than 5%.

Table 8 further illustrates the profiling accuracy and overhead

when system designers specify different granularities in SEProf
to profile embedded software. The number of power table oper-
ations in Table 8 counts the number that a benchmark program
associates or disassociates a power table. In the experiment, a
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Table  4
Power tables used in the VFS experiment.

Power configuration Average power (mW)

busybox cg.W ft.W is.W FileRW OProfiled vmlinux

1 260 249 258 246 246 264 236
2  352 335 349 334 330 359 320
3  460 438 458 438 431 470 419
4 589 559 586 560 565 602 537
5 738 696 731 701 692 753 668

Table 5
Energy estimation results of the benchmark programs generated by SEProf.

Power configuration Benchmark program Average power (mW)  Energy breakdown

Application System call/kernel
Average power (mW)  Average power (mW)

1 cg.W 249 249 236
ft.W 258 258 236
is.W 246 246 236
FileRW 236 237 236

2  cg.W 335 335 320
ft.W 349 349 320
is.W 334 334 320
FileRW 320 321 320

3  cg.W 438 438 419
ft.W 458 458 419
is.W 438 438 419
FileRW 419 421 419

4 cg.W 559 559 537
ft.W 586 586 537
is.W 560 560 537
FileRW 537 540 537

5 cg.W 696 696 668
ft.W 731 731 668
is.W 701 701 668
FileRW 668 672 668

Table 6
Power estimation error in the VFS experiment.

Power configuration Benchmark program/overall Number of samples (1 ms/sample) Average absolute estimation error Standard deviation

1 cg.W 227,437 0.05% 1.16%
ft.W  70,929 0.05% 1.39%
is.W 34,767 0.14% 0.76%
FileRW 16,935 0.97% 1.52%
Overall 392,000 0.04% 1.42%

2  cg.W 203,952 0.30% 1.20%
ft.W  61,413 0.16% 1.49%
is.W 30,003 0.22% 0.74%
FileRW 15,836 0.97% 1.53%
Overall 346,787 0.20% 1.49%

3 cg.W 188,774 0.34% 1.16%
ft.W  54,521 0.20% 1.59%
is.W 26,756 0.36% 0.69%
FileRW 14,838 0.95% 1.48%
Overall 315,333 0.29% 1.52%

4  cg.W 176,394 0.18% 1.10%
ft.W  49,043 0.15% 1.70%
is.W 24,308 0.27% 0.61%
FileRW 14,004 1.05% 1.28%
Overall 291,048 0.10% 1.54%

5  cg.W 167,235 0.12% 0.99%
ft.W 43,609 0.15% 1.62%
is.W 22,380 0.27% 0.67%
FileRW 13,467 0.71% 1.19%
Overall 272,056 0.13% 1.50%
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Table  7
Performance overhead of using SEProf in the VFS experiment.

Power configuration Benchmark program % of SEProf overhead

1 cg.W 0.56%
ft.W 3.73%
is.W 0.88%
FileRW 2.55%

2  cg.W 0.99%
ft.W 4.30%
is.W 0.24%
FileRW 1.25%

3 cg.W 0.19%
ft.W 4.66%
is.W 0.27%
FileRW 2.71%

4  cg.W 0.10%
ft.W 4.29%
is.W 0.74%
FileRW 1.67%

5  cg.W 0.09%
ft.W 0.38%

s
e
p
o
i
n
c
r
i
a
t

3

p
v
p
i
p
r

o

Table 9
Power configurations of an ARM11 MPCore processor used in the DVS experiment.

Power configuration Voltage (V) Frequency (MHz)

1 0.95 140
2  1.01 140
3 1.08 140

immediately after a new value is written to the DAC, and the power
consumption of the processor after changing voltages is unable
to be read from the ADC immediately. Fig. 7 illustrates this using

Table 10
Power tables used in the DVS experiment.

Power configuration Average power (uW)

busybox cg.W ft.W is.W FileRW OProfiled vmlinux

1 260 249 258 246 246 264 236

T
P

is.W 1.21%
FileRW 0.79%

ingle per-system power table was used for all processes on the
mbedded system. The profiling accuracy was calculated by com-
aring the estimated results and the real power consumption
f the system. The profiling overhead was measured by check-
ng the performance differences between an instrumented and
on-instrumented system. For a fair comparison, the extra power
onsumption introduced by the measurement tool and SEProf was
emoved from the measurement and estimation results. The exper-
mental results indicate that fine-grain power tables generally
chieve better accuracy, but introduce more profiling overhead
han coarse-grain power tables.

.2.2. DVS experiment
As in the VFS experiment, the DVS experiment selected five

ower configurations for the ARM11 MPCore processor, and acti-
ated only one ARM11 CPU. However, the clock frequency of the
rocessor operating at each power configuration was the same as

n Table 9, and the voltage of the processor varied at runtime. Seven

ower tables were built for the applications and the Linux kernel,
espectively, as Table 10 shows.

In the DVS experiment, the voltage of the processor was  peri-
dically scaled at three different time intervals: 100 ms,  1 s, and

able 8
rofiling accuracy and overhead when using different number of power tables.

Number of power
tables

Benchmark
program

% of SEProf
overhead

N
ta

U
(s

One per-system power table cg.W 0.22% 

ft.W 0.56% 

is.W 0.19% 

FileRW 4.36% 

7  per-process power tables cg.W 0.19% 

ft.W 4.66% 

is.W 0.27% 

FileRW 2.71% 

24  power tables for major
functions of processes

cg.W 0.32% 

ft.W 7.75% 

is.W 517.20% 8
FileRW 4.86% 
4  1.14 140
5 1.2 140

10 s. The power configuration of the processor was increased by
one at each time interval. If the power configuration of the pro-
cessor reached five, it was  set to one in the next time interval.
Fig. 6 shows an example of DVS and its power consumption. In this
example, two lines show the measured and the estimated power
consumption during the execution of the IS application. Because
the DVS interval was  set to 100 ms  in this example, the power con-
sumption of the processor varied every 100 ms. Fig. 6 shows that
the estimated power consumption was  very close to the measured
one. The estimated power consumption occasionally drops, but the
measured one does not. This is because that the thread that exe-
cuted the IS application was  scheduled out during that period, and
another thread which associated with a different power table was
scheduled in. If the newly scheduled thread had a lower average
power consumption, then a drop appears in the figure. Since the
measured power consumption read from the ADC is updated every
5 ms,  the drop of the real power consumption cannot be detected if
the newly scheduled thread is scheduled out within the ADC update
period.

Table 11 presents the power estimation error in the DVS exper-
iment. The average absolute estimation error and the standard
deviation of the error increased as the DVS interval decreased. This
is because the power consumption of the processor does not change
2  298 284 295 282 282 302 271
3  339 322 336 321 330 344 309
4  382 362 378 363 370 388 349
5  427 403 422 406 408 432 389

umber of power
ble operations

Average absolute
estimation error

Standard deviation

ser space
ystem call)

Kernel space

0 256 0.95% 1.07%
0 252 3.24% 1.79%
0 206 0.91% 0.81%
0 136 6.70% 1.56%

2 256 0.04% 1.39%
2 252 0.09% 1.60%
2 206 0.09% 1.02%
2 136 0.00% 1.62%

36 4447 0.06% 0.97%

36 4447 0.07% 1.57%
,388,632 4209 0.07% 0.98%

2 218,483 0.00% 1.62%
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Fig. 6. The measured and the estimated power c
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Fig. 7. Power samples during DVS.

even power samples taken from the ADC during the period that

he voltage level of the processor is scaling. The arrow in Fig. 7
ndicates the time that the new voltage level is written to the DAC.
EProf updates the power configuration of the processor at this
oint, but the power consumption of the processor does not change

able 11
ower estimation error in DVS experiment.

DVS interval Benchmark program/overall Number of samples (1 ms/

100 ms cg.W 227,888 

ft.W  71,085 

is.W  34,674 

FileRW 16,743 

Overall 394,869 

1  s cg.W 228,028 

ft.W  70,887 

is.W  34,688 

FileRW 17,027 

Overall 393,616 

10  s cg.W 228,118 

ft.W 70,943 

is.W  34,986 

FileRW 16,767 

Overall 393,227 
onsumption during the execution of is.W.

immediately. Instead, it becomes stable, and can be read form
ADC 10 ms  later. Consequently, the power consumption difference
between the measured values and the estimated values during this
period increases the average estimation error and the standard
deviation of the error.

In Table 12,  we compared the execution time of benchmark pro-
grams on a non-instrumented system and an instrumented system
with SEProf and seven power tables. Each benchmark program was
executed for ten times, and the average execution time was cal-
culated based on the last seven runs to avoid cache miss effects
in the first several runs. Furthermore, the instrumented system
altered the voltage periodically. The average performance overhead
introduced by SEProf in the DVS experiment is also less than 5%.

3.3. A case study of using SEProf in adjusting power management
strategies
With the aid of SEProf, system designers are able to obtain fast
evaluation of the power consumption of an embedded system,
and adjust dynamic power management strategies efficiently. For

sample) Average absolute estimation error Standard deviation

1.18% 4.65%
0.88% 4.96%
0.78% 5.03%
1.65% 4.88%
1.08% 4.85%

0.08% 1.94%
0.06% 2.08%
0.00% 1.69%
0.69% 2.20%
0.09% 2.10%

0.26% 1.23%
0.10% 1.60%
0.30% 1.01%
0.90% 1.20%
0.21% 1.49%
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Table  12
Performance overhead of using SEProf in the DVS experiment.

DVS interval Benchmark program % of SEProf overhead

100 ms  cg.W 0.28%
ft.W 3.74%
is.W 0.73%
ExeFileRW 4.50%

1  s cg.W 0.16%
ft.W 3.93%
is.W 0.01%
ExeFileRW 3.36%

10  s cg.W 0.25%
ft.W 3.84%
is.W 0.77%
ExeFileRW 1.68%

Table 13
Average frame rate of the MPEG-4 decoder under different power configurations.

Power configuration User space

1 2 3 4 5

Kernel space 1 24.13 27.68 31.01 34.08 36.75
2 24.80 28.57 32.13 35.44 38.34
3  25.19 29.08 32.78 36.23 39.27
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4 25.56 29.59 33.43 37.02 40.20
5  25.89 30.02 33.98 37.70 41.00

xample, we implemented a networked media player based on an
pen-source MPEG-4 decoder on the experimental platform. The
etworked media player periodically downloaded a video from a
etwork node and decoded the video. Like Step 1 in Fig. 1, we first
sed the modified OProfile tool to established the power tables
or the networked media player. In this case study, we built both
rocess-level and function-level power tables of the networked
edia player. After Step 2 and Step 3 in Fig. 1, we can start to evalu-

te the power consumption of the embedded system. First, we  used
rocess-level power tables and performed the evaluation like Step

 in Fig. 1. The report revealed that the power consumption of the
mbedded system is dominated by the networked media player.
hen, we applied function-level power tables of the networked
edia player and performed the evaluation again. We  found that

he frame decoding function consumes a significant power, but the
rame rate is more than 40 frames/s which is higher than our tar-
et performance. We  then considered a simple power management
trategy which determines the speed and power mode of CPU so
hat 30 frames/s performance requirement can be achieved with
he minimized power consumption. We  implemented the power

anagement strategy in the networked media player, re-compiled
he program, and re-ran the energy estimation again under dif-

erent CPU power configurations. Based the reports generated by
EProf, we can obtain Tables 13 and 14 which show the perfor-
ance in terms of the average frame rate of the MPEG-4 decoder,

nd the average power consumption of the embedded system

able 14
verage energy consumption (�J) for decoding a video frame under different power
onfigurations.

Power configuration User space

1 2 3 4 5

Kernel space 1 10,553 11,757 13,114 14,567 16,199
2 10,893 12,097 13,454 14,906 16,539
3 11,383 12,586 13,943 15,396 17,028
4 11,858 13,062 14,419 15,871 17,504
5 12,365 13,568 14,925 16,378 18,010
 and Software 85 (2012) 1757– 1769

under different combinations of CPU power configurations, respec-
tively. The five CPU power configurations are the same as these
shown in Table 1. As we  can see from the tables, if our target perfor-
mance, i.e. the average frame rate of the networked media player,
is set to 30 frames/s, the best dynamic power management strat-
egy which can minimize the power consumption of the system is
to set the CPU into power configuration 1 when it runs kernel and
changes the CPU to power configuration 3 when it runs the MPEG-4
decoder. The reason behind this strategy is because that the pro-
cessor needs sufficient processing speeds (power configuration 3
and above) to handle video decoding and achieve the target frame
rate. However, when the processor runs kernel, it usually handles
I/O operations and it does not require a high processing power.
Therefore, if the processor can handle sufficient I/O operations, to
slow down the processor speed when the processor runs kernel
is beneficial to reduce overall power consumption of the embed-
ded system. The case study demonstrated how this tool can benefit
developers to identify the energy consumption problems, speed up
the evaluation process, and help developers in adjusting the power
management strategies.

The energy consumption may  not be the only criteria in devel-
oping embedded systems. Developers may  have to use different
profiling tools such as performance and energy tools, examine
the system from different aspects, and explore solution spaces
during the design phase. For example, in the case study shown
in Section 3.3,  the frame rate of an MPEG-4 decoder is a criti-
cal performance factor. Therefore, besides the energy estimation
conducted by SEProf, we also evaluated the performance of an
MPEG-4 decoder in terms of frame rate per second. By evaluat-
ing the performance of the MPEG-4 decoder, developers know
that there are 16 CPU power configurations which can meet the
performance requirement, i.e. decoding 30 frames/s. Without the
assistance of an energy profiling tool, developers may consider the
solution which can just meet the performance requirement, i.e. the
30.02 frames/s solution, to save energy. However, according to the
energy profiling results shown in Table 14,  the 30.02 frames/s solu-
tion consumes more energy than the 31.01 frames/s solution and
the 32.13 frames/s solution. The case study reveals that to com-
bine the performance and energy profiling analyses can facilitate
developers to explore alternative solutions for efficient software
designs.

4. Conclusions

In this paper, we proposed a high-level energy profiling tool
called SEProf. SEProf provides fast run-time power estimation of
a complex embedded system so that system designers can adjust
dynamic power management strategies for the embedded software
efficiently. Moreover, SEProf supports energy profiling at differ-
ent granularities and enables system designers to make a tradeoff
between profiling accuracy and overhead. We  implemented SEProf
in Linux kernel 2.6.19, and conducted a number of experiments
on an ARM11 MPCore processor. The experimental results show
that the average power estimation error using SEProf is within 2%,
and the performance overhead introduced by SEProf is less than
5%.
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