
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 140.113.38.11

This content was downloaded on 28/04/2014 at 18:16

Please note that terms and conditions apply.

Effect of electron–vibration interactions on the thermoelectric efficiency of molecular junctions

View the table of contents for this issue, or go to the journal homepage for more

2012 Nanotechnology 23 275401

(http://iopscience.iop.org/0957-4484/23/27/275401)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0957-4484/23/27
http://iopscience.iop.org/0957-4484
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING NANOTECHNOLOGY

Nanotechnology 23 (2012) 275401 (9pp) doi:10.1088/0957-4484/23/27/275401

Effect of electron–vibration interactions
on the thermoelectric efficiency of
molecular junctions

Bailey C Hsu, Chi-Wei Chiang and Yu-Chang Chen

Department of Electrophysics, National Chiao Tung University, 1001 University Road, Hsinchu 30010,
Taiwan

E-mail: yuchangchen@mail.nctu.edu.tw

Received 10 January 2012, in final form 7 April 2012
Published 18 June 2012
Online at stacks.iop.org/Nano/23/275401

Abstract
From first-principles approaches, we investigate the thermoelectric efficiency of a molecular
junction where a benzene molecule is connected directly to the platinum electrodes. We
calculate the thermoelectric figure of merit ZT in the presence of electron–vibration
interactions with and without local heating under two scenarios: linear response and finite bias
regimes. In the linear response regime, ZT saturates around the electrode temperature
Te = 25 K in the elastic case, while in the inelastic case we observe a non-saturated and a
much larger ZT beyond Te = 25 K attributed to the tail of the Fermi–Dirac distribution. In the
finite bias regime, the inelastic effects reveal the signatures of the molecular vibrations in the
low-temperature regime. The normal modes exhibiting structures in the inelastic profile are
characterized by large components of atomic vibrations along the current density direction on
top of each individual atom. In all cases, the inclusion of local heating leads to a higher wire
temperature Tw and thus magnifies further the influence of the electron–vibration interactions
due to the increased number of local phonons.

(Some figures may appear in colour only in the online journal)

1. Introduction

The path to extreme device miniaturization has resulted
in the rapid development of molecular electronics, where
molecules are used as building blocks to form nanodevices [1,
2]. To ensure the functionality of such devices under finite
biases, understanding the nonequilibrium electron quantum
transport theory at the molecular level is crucial [3, 4]. The
current-induced effects with nuclear degrees of freedom of
molecule are important as they reveal information regarding
the vibration of the molecule sandwiched between the
electrodes. A number of current-induced effects, including
those obtained by inelastic electron tunneling spectroscopy
(IETS) and local heating, have been studied with an
emphasis on the interplay between electrons and molecular
vibrations [5–15].

Recent experiments have demonstrated energy conver-
sion between thermal and electrical energy in single-molecule

junctions [16–21]. The potential benefits of nanoscale
engineering have generated interest in developing novel
thermoelectric nanodevices such as nanorefrigerators, power
generators, and self-powered atomic-scale transistors [22–25].
The thermoelectric efficiency of a single-molecule junction
can be judged by the thermoelectric figure of merit ZT .
In designing a low-temperature operated thermoelectric
nanodevice, it is important to predict ZT from first-principles.
It has been predicted that ZT increases as the length of a
metallic atomic junction increases, while ZT decreases as the
length of an insulating molecular junction increases [26].

Although considerable effort has been exerted to
understand the inelastic effects on single-molecule junctions,
only a few attempts have been made to study the inelastic
effects on the thermoelectric properties of single-molecule
junctions [27–33]. Previous studies have been primarily
based on models or focused on a single vibrational mode
coupling. In this work, we include all vibrational modes
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in our calculations. In a recent study, Sergueev et al
investigated the inelastic ZT in the linear response regime
(VB → 0) within density functional theory, along with
the nonequilibrium Green’s function, and showed that the
effect of electron–phonon interactions strongly depends on
the junction configuration [34]. This approach improves
over model calculations, which typically account for only
a single mode, thereby missing the selection rule for
important participant modes. Inelastic effects calculated from
first-principles can provide complete information from all
normal modes. In addition to the linear response regime,
we also consider the thermoelectric efficiency in the finite
bias regime. The Seebeck effect in the finite bias regime
highlights the new possibility of engineering systems where a
nonequilibrium current would enhance the thermopower [35,
36]. This finding is the motivation behind the investigation of
the effects of electron–vibration interactions on the efficiency
of thermoelectric effects in the finite bias (VB 6= 0) regime.
In this work, the Seebeck coefficients, the electron thermal
conductance, and ZT are compared in the linear response and
finite bias regimes with electron–vibration interactions, where
all possible intrinsic vibrational modes of the junction are
considered by excluding a few contact modes that strongly
depend on the specific contact geometry between the molecule
and the electrodes. The calculations show that the effect of
electron–phonon interactions on the Seebeck coefficients is
salient at high temperatures in the linear response regime
because a significant fraction of electrons is thermally excited
due to the tail of the Fermi–Dirac distribution. In the finite bias
regime, we observe further the signatures of normal modes in
the inelastic thermoelectric profiles at low temperatures.

The Seebeck coefficient is defined as S = dV/dT , where
dV is the voltage difference caused by the temperature
difference dT through the Seebeck effect [37]. The Seebeck
coefficient is an intriguing transport quantity used to gauge
thermoelectric efficiency, related not only to the magnitude
but also to the slope of the density of states (DOS). As
reported in [35], the Seebeck effect in a 4-Al atomic
junction in the presence of electron–vibration scattering is
enhanced at bias voltages corresponding to the longitudinal
vibrational mode in the low-temperature regime, and further
magnified through local heating. This demonstrates the
advantage of a device based on molecular junctions because
a larger Seebeck effect implies a better energy conversion
capability. The thermoelectric figure of merit ZT depends
on several physical factors: the Seebeck coefficient (S),
the electrical conductance (σ ), the electronic thermal
conductance (κel), and the phononic thermal conductance
(κph). The thermoelectric efficiency can thus be generally
described by the dimensionless thermoelectric figure of merit
ZT = S2σT/(κel+κph) where T is the average temperature in
the source–drain electrodes [38].

Inspired by a recent experiment carried out by
Kiguchi et al who measured a large conductance across a
benzene molecular junction connected directly to platinum
electrodes (Pt/benzene junction) [39], we explore the effects
of electron–vibration interactions on the thermoelectric
properties of a Pt/benzene junction. Due to the relatively

small size of the Pt/benzene junction, our method which is
suitable for coherent transport serves as an appropriate tool.
The relaxed Pt/benzene junction configuration, as will be
shown later, loses mirror symmetry. The highly tilted benzene
molecule causes the streamline flow of the current to curve
considerably to one side of the benzene ring, resulting in a
nontrivial selection rule highly relevant to the details of the
current density. Specifically, the investigation is performed
through a comparison of the elastic and inelastic cases for
the Seebeck coefficients, electron thermal conductance, and
ZT , with and without local heating in the finite bias (VB =

(µR−µL)/e 6= 0) and linear response regimes (VB→ 0) from
first-principles.

2. Theoretical methods

The many-body Hamiltonian of the system under considera-
tion is H = Hel+Hvib+Hel−vib [5], where Hel is the electronic
part of the Hamiltonian under the adiabatic approximation
and Hvib is the ionic part of the Hamiltonian, which can be
cast into a set of independent simple harmonic oscillators
via a canonical transformation. Hel−vib is the part of the
Hamiltonian for electron–vibration interactions which has the
form of

Hel−vib =
∑

α,β,E1,E2,j

(∑
i,µ

√
h̄

2Miωj
Aiµ,jJ

iµ,αβ
E1,E2

)

× aα†
E1

aβE2
(bj + b†

j ), (1)

where α, β = {L,R}, Mi is the mass of the ith atom,
Aiµ,j is a canonical transformation between normal and
Cartesian coordinates satisfying

∑
i,µAiµ,jAiµ,j′ = δj,j′ , bj is

the annihilation operator corresponding to the jth normal
mode ωj, and aL(R) is the annihilation operator for electrons.

The coupling constant Jiµ,αβ
E1,E2

between electrons and the
vibration of the ith atom in µ (=x, y, z) component can be
calculated as

Jiµ,αβ
E1,E2

=

∫
dr
∫

dK‖[9αE1K‖(r)]
∗
[∂µVps(r,Ri)9

β
E2K‖

(r)],

(2)

where Vps(r,Ri) is the pseudopotential representing the
interaction between electrons and the ith ion, 9α(=L,R)

EK‖
(r)

stands for the effective single-particle wavefunction of the
entire system corresponding to incident electrons propagated
from the left (right) electrode. These wavefunctions are
calculated iteratively until convergence and self-consistency
are achieved in the framework of DFT combined with the
Lippmann–Schwinger equation [40]

9αEK‖(r) = 9
α
0,EK‖(r)

+

∫
dr1

∫
dr2G(r, r1)V(r1, r2)9

α
EK‖(r2),

(3)

where G is the Green’s function of the biased bimetallic
electrodes with VB = (µR − µL)/e, where µR(L) is the
chemical potential deep in the right (left) electrode. We treat
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the molecule as a scattering center. The potential V(r1, r2)

corresponds to the scattering potential represented by the
following equation:

V(r1, r2) = Vps(r1, r2)+

{
(Vxc[n(r1)] − Vxc[n0(r1)])

+

∫
dr3

δn(r3)

|r1 − r3|

}
δ(r1 − r2), (4)

where Vps(r1, r2) is the electron–ion interaction poten-
tial [41], Vxc is the exchange–correlation potential in the
local-density approximation, n0(r) is the electron density
for the pair of biased bare electrodes, n(r) is the electron
density for the total system, and δn(r) is their difference.
To obtain a more accurate quantitative description of the
electronic structures of molecular junctions, a more elaborate
approximation of the exchange–correlation potential may be
required [21]. 9α0,EK‖

(r) is the wavefunction of the biased
bimetallic junction before the inclusion of the molecule,
which has the form9α0,EK(r) = (2π)

−1eiK·R
·uL(R)

EK (z), where

uL(R)
EK (z) is the wavefunction of the bare electrodes along

the z-direction before the inclusion of a nano-structured
object. The wavefunction uL(R)

EK (z) is calculated by solving
the coupled Shrödinger and Poisson equations iteratively until
self-consistency is reached. Deep inside the electrodes (z→
±∞), the right- and left-moving waves satisfy the scattering
boundary conditions

uL
EK(z) =

√
m

2π h̄2kL

×

{
eikLz
+ RLe−ikLz z→−∞

TLeikRz z→∞
, (5)

and

uR
EK(z) =

√
m

2π h̄2kR

×

{
TRe−ikLz z→−∞

e−ikRz
+ RReikRz z→∞

, (6)

where K is the electron momentum in the plane parallel to
the electrode surfaces, and z is the coordinate parallel to
the direction of the current. Chemical potentials deep in the
electrodes are maintained by the external bias. A basis of 3920
plane waves is chosen in the current calculations. Localized
states are obtained by a direct diagonalization of the full
Hamiltonian.

The electronic and phononic parts were first considered as
the unperturbed Hamiltonian, and the electronic and nuclear
degrees of freedom were assumed to be separable in the
adiabatic approximation. The effects of electron–phonon in-
teractions were considered using perturbation theory, thereby
enabling the calculation of the inelastic thermal conductance.
The right- and left-moving wavefunctions, weighted with
the Fermi–Dirac distribution function according to their
energies and temperatures, are applied to calculate the electric
current and electron thermal current in the presence of

Figure 1. Feynman diagrams of the first-order electron–vibration
scattering processes considered in this study.

the electron–vibration interactions through the respective
equations

Iel+vib(µL,TL;µR,TR;Tw)

=
2e

h

∫
dE[(f R

E − f L
E )− (B̃

R
− B̃L)]τ(E), (7)

and

JL(R)
el,el+vib(µL,TL;µR,TR;Tw)

=
2
h

∫
dE[(f R

E − f L
E )− (B̃

R
− B̃L)]τ(E)(E − µL(R)), (8)

where f L(R)
E = 1/{exp[(E − µL(R))/(kBTL(R))] + 1} is the

Fermi–Dirac distribution function describing the statistics of
electrons deep in the left (right) electrode with temperature
TL(R) and chemical potentialµL(R). The transmission function

τ(E) = π h̄2

mi

∫
dr‖

∫
dK‖(9R∗

EK‖
∇9R

EK‖
− ∇9R∗

EK‖
9R

EK‖
) is

calculated from the electronic part of the wavefunctions9R
EK‖

.

The terms B̃L(R) represent the corrections to the elastic current
considering the eight first-order scattering processes depicted
in figure 1 [35],

B̃α =
∑

j

[〈|Bβ,αj,k |
2
〉f αE (1− f βE±h̄ωj

)

− 〈|Bααj,k |
2
〉f αE (1− f αE±h̄ωj

)], (9)

where α, β = {L,R} and α 6= β. The BRR
j,1(2) and BLR

j,1(2)
denoted in equation (9) are

BαR
j,1(2) = iπ

∑
iµ

√
h̄

2Miωj
Aiµ,jJ

iµ,αR
E±h̄ωj,E

DαE±h̄ωj

√
δ + 〈nj〉,

(10)

where α = {L,R}, and δ = 0 (1) represents the process
of phonon emission (absorption). The other two terms in
equation (9) can be obtained by the relations BLL

j,1(2) =−BRR
j,1(2)

and BRL
j,1(2) = −BLR

j,1(2). Two major processes lead to the
equilibrium local temperature in a nanojunction. One is due
to the electron–vibration interaction that occurs in the atomic
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region of the junction; the other is due to the dissipation
of heat energy to the bulk electrodes via thermal transport.
We assume that the energy generated in the atomic region
via inelastic electron–vibration scattering and the energy
dissipated to the electrodes via thermal current finally reach
equilibrium such that a well-defined local temperature can
be calculated and measured in the atomic region [10]. The
reason for the single temperature for multiple vibrational
modes is exactly the same as for that in the bulk system. When
the bulk crystal reaches the equilibrium temperature T , the
temperature T determines the distributions of the occupations
of all phonon branches. In our system, the local temperature
in the atomic region determines the number of phonons
occupying each phonon mode. The statistical behavior of
the multiple vibrational modes and their probabilities in
the overall distributions are described by the Bose–Einstein
distributions 〈nj〉 = 1/{exp[h̄ωj/(kBTw)] − 1}, where Tw is
the effective wire temperature due to local heating and 〈nj〉

is the statistical average of the occupation number of the jth
normal mode. This effective local temperature is informative
regarding the stability and performance of electronic devices
and is thus useful to both theorists and experimentalists. The
local temperature Tw is obtained when the power generated
in the central region via the electron–vibration interactions
balances the rate of thermal energy dissipated to the electrodes
calculated using the weak-link model [35]. Note that our
inelastic current in equation (7) is similar to the expression
in [34] where the correction due to electron–vibration
couplings is included in the transmission function.

We calculate the inelastic Seebeck coefficient based
on the inelastic current described in equation (7), which
is a function of TL, TR, Tw, and VB = (µR − µL)/e.
We consider an extra current induced by an infinitesimal
temperature difference (1T) across the junction. This current
is counterbalanced by an extra current driven by a voltage
(1V), which is induced by 1T via the Seebeck effect, i.e.,

Iel+vib(µL,TL;µR,TR)

=

[
Iel+vib

(
µL,TL −

1T

2
;µR,TR +

1T

2

)
+ Iel+vib

(
µL −

e1V

2
,TL;µR+

e1V

2
,TR

)]/
2.

(11)

After expanding the above equation to the first order in 1T
and 1V , we obtain the inelastic Seebeck coefficient (defined
as Sel+vib = 1V/1T)

Sel+vib = −
1
e

∫
dE(
˜∂f R
E

∂TR
+
˜∂f L
E

∂TL
)τ (E)∫

dE(
˜∂f R
E
∂E +

˜∂f L
E
∂E )τ (E)

, (12)

where
˜∂f αE
∂E =

∂f αE
∂E −

∑
j∈vib;k=1,2(C

Rα
µ,j,k + CLα

µ,j,k),
˜∂f αE
∂TR
=

∂f αE
∂TR
−
∑

j∈vib;k=1,2(C
Rα
T,j,k + CLα

T,j,k), α = {L,R} and the

terms CαR
µ,j,1(2) and CαR

T,j,1(2) are due to the electron–vibration
interactions

CαR
µ,j,1(2) =

[
f R
E

∂f αE±h̄ωjν

∂E
− (1− f αE±h̄ωj

)
∂f R

E

∂E

]
〈|BRR

j,1(2)|
2
〉,

(13)

CαR
T,j,1(2) =

[
E ± h̄ωj − µα

TR
f R
E

∂f αE±h̄ωj

∂E

−
E − µR

TR
(1− f αE±h̄ωj

)
∂f R

E

∂E

]
〈|BαR

j,1(2)|
2
〉, (14)

where α = {L,R} and Bαβj,1(2) are given by equation (10). The
other two terms in equation (12) can be calculated with the

following relations: ∂ f̃ L
E
∂T =

∂ f̃ R
E
∂T (L 
 R) and ∂ f̃ L

E
∂E =

∂ f̃ R
E
∂E (L 


R), where L 
 R represents the interchange between R and
L. We see that, in the absence of electron–phonon scattering,
equation (12) recovers the elastic Seebeck coefficient
described in [42].

As shown in equation (8), when a bias is applied
to the junction, the inelastic electron thermal currents
that flow from the right and into the left electrode are
JR

el,el+vib and JL
el,el+vib, respectively. At finite bias, note

that there is no conservation of thermal current between
two interfaces since the thermal current can be converted
into electric current. Therefore, we define the inelastic
electron thermal conductance in the junction by taking the
average of the inelastic thermal conductance at two inter-
faces, κel+vib

el = (1JR
el,el+vib/1T +1JL

el,el+vib/1T)/2, where

1JR
el,el+vib = Jel(µL,TL;µR,TR + 1T) + Jel(µL,TL;µR +

e1V,TR)− 2Jel(µL,TL;µR,TR),1JL
el,el+vib = Jel(µL,TL+

1T;µR,TR)+Jel(µL+e1V,TL;µR,TR)−2Jel(µL,TL;µR,

TR), and 1V is the voltage induced by 1T via the
Seebeck effect. The inelastic electron thermal conductance
after expanding the Fermi–Dirac distribution function in
equation (7) to the first order in 1T and 1V is given by

κel+vib
el =

∑
α,β={L,R}

1
2h

[
eS(Kαβ1 − ξ1)+

Kαβ2

Tα
− ξ2

]
, (15)

where Kαβn = −
∫

dE(E − µα)(E − µβ)n−1 ∂f βE
∂E τ(E), ξ1 =∑

α={L,R}
∑

j∈vib;k=1,2

∫
dE(E − µα)(CRα

µ,j,k + CLα
µ,j,k)τ (E),

ξ2 =
∑
α={L,R}

∑
j∈vib;k=1,2

∫
dE(E−µα)(CRα

T,j,k+CLα
T,j,k)τ (E),

and CL(R)α
µ(T),j,k are given in equations (13) and (14). Clearly,

in the absence of electron–phonon scattering with TL =

TR, equation (15) recovers the electron thermal conductance
described in [26].

We estimate the phonon thermal conductance using
the weak-link model [43]. The phonon Hamiltonian of the
molecular junction is modeled by Hep = HL+HR+δH where

HL(R) =
∑

nω
L(R)
n (bL(R)

n )†bL(R)
n is the Hamiltonian of the

left (right) electrode, where ωL(R)
n and bL(R)

n are the phonon
spectrum and phonon annihilation operator in the left and right
electrodes, respectively. The molecule sandwiched between
the electrodes is modeled by a harmonic spring with stiffness
K described by δH = 1

2 K(uz
L−uz

R)
2, where uz

L(R) is the normal
component of the displacement field u(r) at the surface of the
left (right) electrode [43]. The phonon thermal conductance,
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Figure 2. (a) Schematics of the three most important normal modes (modes (I)–(III) with energies of 42, 80, and 93 meV, respectively) in
the inelastic profiles. The big (small) red balls represent carbon (hydrogen) atoms, and the purple balls represent Pt atoms. The blue arrow
lines describe the vibrational pattern of the molecule. The black arrow lines represent the 3D current density vector plot at VB = 0.1 V. The
graph is plotted in log scale to aid visualization of the smaller current density. (b) The local wire temperature Tw versus VB with the
electrode temperature Te set as 4, 12, 20, and 50 K. The vertical dotted lines refer to the biases corresponding to modes (I)–(III).

approximated by the weak-link model, can be obtained by
κph =

πK2C2

h̄

∫
∞

0 dE E3∑
i=L,R

dni(E)
dTi

, where the left (right)
electrode is modeled as a phonon reservoir described by the
Bose–Einstein distribution function nL(R); NL(R)(E) ≈ CE,
where C is a constant, refers to the spectral density of surface
phonon states at the left (right) electrode. The stiffness in the
Pt/benzene junction has been estimated to be K = 6.673 02×
10−4 eV/a2

0 by total energy calculations.
The thermoelectric figure of merit ZT depends on several

physical factors: the Seebeck coefficient (S), the electrical
conductance (σ ), the electronic thermal conductance (κel),
and the phononic thermal conductance (κph). We calculate the
inelastic ZT by ZT = S2

el+vibσel+vibT/(κel+vib
el + κph) where

T is the average temperature in the source–drain electrodes.
The inelastic electrical conductance σel+vib is obtained by
differentiating the inelastic current given by equation (7) with
respect to the bias VB, Sel+vib is obtained using equation (12),
κel+vib

el is obtained using equation (15), and κph is obtained
using the weak-link model.

3. Results and discussion

The vibration frequencies represented by ωj in the jth mode
and the canonical transformation Aiµ,j are obtained in the
Pt/benzene single-molecule junction using the Gaussian03
quantum chemistry code. We display the relaxed geometry in
figure 2(a). The junction length is set to 9.6 au, and the closest
distance between the benzene molecule and the electrodes is
4.1 au (left) and 4.1 au (right), respectively. The angle of
the tilted benzene ring with respect to the z-axis is 37.9◦.
The inelastic effects are calculated from perturbation theory

considering the scattering processes described in figure 1.
It should be noted that the outermost layer of the platinum
has to be included in the vibrational analysis to obtain an
IETS with a mode identification in good agreement with
the experimental data [39], where the first notable structure
occurs at 42 mV corresponding to the longitudinal vibration
of the molecule. To further justify the junction geometry,
we also perform an isotope substitution of the carbon atoms
and again obtain an IETS consistent with the experimental
data, where the first important mode is shifted to 40 mV.
The calculated conductance for the Pt/benzene system was
high at approximately 0.58 G0 in the linear response regime.
The system, therefore, belongs to the strong coupling system
(G > 0.5 G0), and the conductance may be expected to
show step-down features at bias voltages corresponding to the
frequencies of the normal modes, implying that the effective
transmission function with the electron–vibration interactions
also shows the step-down features. These features agree well
with the results of our current calculations.

As noted in equation (2), the coupling constants Jiµ,αβ
E1,E2

(µ = x, y, and z) are calculated from the current-carrying
wavefunctions by first-principles. Thus, the coupling con-
stants along the x-, y-, and z-directions are positively
correlated with the current densities along the corresponding
directions. Along with the canonical transformation matrix
Aiµ,j (equation (1)), which provides information on the direc-
tion of the normal mode vibrations of the molecule, the mode
selection rule is determined by the factor |6iµAiµ,jJ

iµ,αβ
E1,E2
|.

The strength of the impact of electron–vibration interactions
on the inelastic effects is positively correlated with this
factor. Figure 3 shows the factors |6iµAiµ,jJ

iµ,αβ
E1,E2
| for α =

β = R with the energies E1 and E2 around the chemical

5
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Figure 3. The factor |6iµAiµ,jJ
iµ,RR
EF ,EF
| for the normal modes with

energies smaller than 200 meV.

potential for the normal modes with energies smaller than
200 meV. The magnitudes of these factors indicate that
the contributions of normal modes to the inelastic effects
significantly vary from mode to mode. To understand the
rule of mode selection, we explore how the detailed current
density flows through the nanojunction. We observe that the
mode selection rule can be visualized by the current density
and the normal mode vibrations. The important modes in the
inelastic thermoelectric profile in the finite bias regime, where
the modes are characterized by large components of atomic
vibrations along the direction of the current density on atoms,
are identified as discussed below.

Figure 2(a) shows that the current takes on a non-linear
path and there is an uneven distribution of the current going
through the top part of the benzene ring compared with the
bottom part of the ring. More notably, the current tends
to go around the carbon ring. We schematically show the
three most significant normal modes (modes (I)–(III)) out
of 42 possible modes in the inelastic profiles for VB <

100 mV. Mode (I), with an energy of 42 meV, has been
experimentally observed in IETS [39]. This mode corresponds
to a vibration of the benzene molecule as a whole, with a
large component of motion along the z-direction (direction
of the current). Mode (II), with an energy of 80 meV, shows
that the left-side of the carbon ring vibrates downwards
while the right-side vibrates upwards with a motion that is
perpendicular to the z-direction. This mode has also been
observed in the experimental IETS [39]. Mode (III), with
an energy of 93 meV, shows that only the second-nearest
neighbor vibrates in the same direction.

Figure 2(b) shows the effective local temperature Tw
in the central region of the junction as a function of the
bias for four different electrode temperatures Te = 4, 12,
20, and 50 K. The local temperature is reached when the
rate of heat generated in the molecule due to the current
balances the rate of energy dissipated to the electrodes. The
rate of heat generated in the molecule due to the current
via the electron–vibration interactions is calculated from
the Fermi golden rule. The rate of heat generated in the
molecule is relatively insensitive to the temperature of the

electrodes if tunneling is the primary conduction mechanism.
An immediate sharp increase in the local temperature is
observed around VB = 42 mV, with which electrons gain
enough energy eVB to excite mode (I). The higher the
electrode temperature is, the less prominent the temperature
rise beyond 42 mV is. We take Te = 50 K as an example
where the signature of molecular vibrations is washed out.
This finding may have resulted from the more efficient
heat dissipation to electrodes because of a larger population
of high energetic states facilitated by the higher electrode
temperature, while the rate of heat generated in the central
region was relatively unchanged. We also observe signals
of vibrations of the molecule connected to contacts at the
local temperature at biases of around 80 mV and 96 mV due
to modes (II) and (III), respectively. For mode (II), where
the motion of atoms is mostly transverse to the z-direction,
the contribution to inelastic effects is still pronounced. This
result is different from the case of the 4-Al linear atomic
chain, where the observable jump in the profile of effective
local temperatures appears only at biases corresponding to
modes with motion along the z-direction. To illustrate the
significance of mode (II), we draw a detailed comparison
between the motion of normal modes and the current density.
We observe that mode (II) has significant components of atom
vibrations along the curved current-streamline flows around
the tiled benzene molecule, as shown in figure 2(a). By careful
inspection of all modes, we conclude that significant modes in
the inelastic profiles require substantial components of atomic
vibrations along the current-streamline flows of the top of
each individual atom.

Figure 4(a) displays the Seebeck coefficients in the
finite bias regime in three cases: ‘elastic’ (absence of
electron–vibration interactions), ‘inelastic’ (in the presence
of electron–vibration interactions and Tw = Te), and
‘inelastic + local heating’ at different electrode temperatures.
Inelastic+ local heating means that the local wire temperature
is included. The Seebeck coefficients at finite biases can
reveal the signatures of vibrations of the molecule connected
to the electrodes. The Pt/benzene system reveals n-type
(S < 0) thermoelectric performance, implying that the slope
of the transmission function is negative. The step-down
feature of the effective transmission function attributable to
the electron–vibration interactions results in the step-down
feature of the inelastic Seebeck coefficients, as shown in
figure 4(a). The first jump in the inelastic Seebeck coefficients
occurs at 42 mV, corresponding to mode (I). Mode (I) is
the most important mode, with the direction of the current
density mostly in line with the vibrations of the atoms. In
the low-temperature regime, electrons begin to excite the
vibrations of the molecule as the bias exceeds the energy of
mode (I). These effects increase the inelastic transmission
functions resulting from the electron–vibration interactions,
thus enhancing the magnitudes of the Seebeck coefficients
around the biases, with eVB being equal to the energies
of mode (I). The jump increases with increasing electrode
temperature because of the presence of a greater number
of high-energy electrons that are capable of participating
in the electron–vibration interactions resulting from the tail
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Figure 4. (a) Seebeck coefficients as a function of the applied bias in three cases: elastic (black solid line), inelastic without local heating
(red dashed line), and inelastic with local heating (blue dotted line) for three different electrode temperatures Te = 8, 12, and 15 K. (b)
Seebeck coefficients with and without electron–vibration interactions as a function of the electrode temperature at zero applied bias.

Figure 5. (a) Electron thermal conductance versus electrode temperature at zero applied bias. (b) Phonon thermal conductance versus
electrode temperature. (c), (d) Electron thermal conductance as a function of the bias at (c) 8 K and (d) 15 K.

of the Fermi–Dirac distribution. The inclusion of local
heating also enhances the inelastic Seebeck effect further
because of the enhanced electron–vibration interactions of
the increased population of local phonons attributable to the
higher local temperature in the central region. The second

drop in the inelastic Seebeck coefficients occurs at around
VB = 80 mV, corresponding to mode (II). As mentioned
above, mode (II) becomes important in the inelastic Seebeck
profiles because the curved current-streamline flows in line
with the transverse vibrations. The differences between
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Figure 6. Thermoelectric figure of merit ZT (a) without κph and (b) with κph as a function of the temperature at zero bias for the elastic
(black solid line) and inelastic (red dashed line) cases. Thermoelectric figure of merit ZT as a function of the source–drain bias VB at Te = 8
and 15 K (c) without κph and (d) with κph.

inelastic Seebeck coefficients with and without local heating
are invisible in the high-temperature regime. Figure 4(b)
compares the elastic and inelastic Seebeck coefficients in
the linear response regime. We observe that the increased
electrode temperature leads to larger Seebeck coefficients.
The magnitude of inelastic Seebeck coefficients increases
more rapidly beyond 50 K than the elastic one. This makes
sense because more electrons are thermally excited at higher
temperatures due to the tail of the Fermi–Dirac distribution.
Consequently, more electrons possess enough energy to
enhance the inelastic effects on the Seebeck coefficients.

Figure 5(a) presents comparisons between the elastic
and inelastic electron thermal conductances as a function of
temperature in the linear response regime. The onset of the
larger inelastic electron thermal conductance appears around
Te = 100 K due to the tail of the Fermi–Dirac distribution.
Figure 5(b) shows the phonon thermal conductance κph as a
function of the electrode temperature Te. In the finite bias
regime, the comparison of the elastic and inelastic electron
thermal conductances again reveals the signature of molecular
vibrations, which displays a drop in the electron thermal
conductance at around VB = 42 mV for Te = 8 and 15 K,
respectively, as shown in figures 5(c) and (d). In contrast to
the Seebeck coefficients and electron thermal conductance

which both show strong dependence on the temperature, the
electrical conductance is insensitive to the temperature when
tunneling is the major transport mechanism.

Based on the foregoing discussion, we now arrive at
the elastic and inelastic thermoelectric efficiency ZT in the
linear response and finite bias regimes. In the linear response
regime, we present elastic and inelastic ZT values with
and without κph in figures 6(a) and (b), respectively. The
comparison of inelastic and elastic ZT values without κph
in figure 6(a) shows that the electron–vibration interactions
lead to a larger ZT when Te > 50 K. Figure 6(b) shows
that the inclusion of the phonon thermal conductance leads
to an overall reduction of ZT in both the inelastic and
the elastic cases. ZT saturates around Te = 25 K in the
elastic case. This result is in agreement with [26] that ZT
saturates when T is larger than a characteristic temperature,
defined as the temperature at which the electron thermal
current equals the phonon thermal current. In the inelastic
case, we no longer observe a saturated ZT value [26].
The thermoelectric figure of merit ZT continues to grow
beyond Te = 50 K attributed to the tail of the Fermi–Dirac
distribution. In the finite bias regime, we compare ZT
values as a function of the source–drain bias in three
cases: ‘elastic’, ‘inelastic’, and ‘inelastic + local heating’
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for different electrode temperatures, without (figure 6(c))
and with (figure 6(d)) κph. Figures 6(c) and (d) show that
in the finite bias regime, ZT can still be enhanced by the
electron–vibration interactions. Moreover, ZT also reveals the
signature of vibrations: ZT values start to increase at VB =

42 mV corresponding to mode (I). We also observe that local
heating further increases ZT . When κph is included, the ZT
value is suppressed substantially as shown in figure 6(d).

4. Conclusion

In conclusion, we have investigated the impact of
electron–vibration interactions on thermoelectric efficiency in
the linear response regime and the finite bias regime in the
Pt/benzene junction, specifically via comparison among cases
of elastic and inelastic, with and without local heating, for the
Seebeck coefficients, the electronic thermal conductance, and
ZT . This extends the case in which only a single vibrational
mode or only the zero bias is considered. In contrast to the
electrical conductance which is insensitive to the temperature,
the Seebeck coefficients, the electron thermal conductance,
and ZT all strongly depend on the temperature. In the linear
response regime, the ZT value saturates around Te = 25 K in
the elastic case, whereas ZT no longer saturates in the inelastic
case. The inelastic ZT increases beyond Te = 25 K as the
temperature increases. In the finite bias regime, these inelastic
effects reveal the signature of the molecular vibrations in the
low-temperature regime. We have identified normal modes
that lead to significant structures in the inelastic profile.
These modes are characterized by large components of atomic
vibrations along the current density direction on top of each
individual atom. In all cases, the inclusion of local heating
leads to a higher wire temperature Tw and thus magnifies
the influence of the electron–vibration interactions due to
the increased number of local phonons. Based on these
findings, we conclude that the electron–vibration interactions
are advantageous to the thermoelectric efficiency in the
Pt/benzene molecular junction.
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