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ABSTRACT: Cellular processes are intrinsically complex and
dynamic, in which a myriad of cellular components including
nucleic acids, proteins, membranes, and organelles are involved
and undergo spatiotemporal changes. Label-free Raman
imaging has proven powerful for studying such dynamic
behaviors in vivo and at the molecular level. To construct
Raman images, univariate data analysis has been commonly
employed, but it cannot be free from uncertainties due to
severely overlapped spectral information. Here, we demon-
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strate multivariate curve resolution analysis for time-lapse Raman imaging of a single dividing yeast cell. A four-dimensional
(spectral variable, spatial positions in the two-dimensional image plane, and time sequence) Raman data “hypercube” is unfolded
to a two-way array and then analyzed globally using multivariate curve resolution. The multivariate Raman imaging thus
accomplished successfully disentangles dynamic changes of both concentrations and distributions of major cellular components
(lipids, proteins, and polysaccharides) during the cell cycle of the yeast cell. The results show a drastic decrease in the amount of
lipids by ~50% after cell division and uncover a protein-associated component that has not been detected with previous

univariate approaches.

he cell cycle plays a pivotal role in reproduction of all
living organisms. The molecular mechanisms of the cell
cycle have been intensively studied over the last 40 years by
genetic and molecular biological approaches using fission yeast
and budding yeast as model organisms."” The cell cycle, like
any other cellular processes, is highly dynamic in nature and its
mechanistic study requires time and space specificity as well as
chemical specificity. Among various microspectroscopic
methods developed to date, Raman spectroscopy has emerged
as a potential bioimaging tool to meet these requirements with
nondestructive, less invasive, and label-free characteristics.>™®
We have very recently achieved the first multimode time-
lapse Raman imaging of a single dividing Schizosaccharomyces
pombe cell, in which Raman images for nine vibrational modes
in the fingerprint region (800—1800 cm™') were obtained
simultaneously at different cell-cycle stages of the S. pombe cell.”
We showed that the concentrations and distributions of lipids
and proteins varied in a concerted manner as the cell cycle
proceeded. In that work, we used a univariate data analysis to
construct Raman images. The univariate Raman image based
on a single Raman band is readily obtained by integrating the
Raman intensity under the band contour at each position in the
image plane, followed by assembling these Raman intensities
calculated at all positions to generate a two-dimensional (2D)
map of the intensity distribution.>*'* Because Raman intensity
is proportional to the concentration of a molecular species that
gives rise to the Raman band, the Raman image so obtained
displays a relative concentration map of the molecular species.
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Despite the simplicity of the principle, univariate Raman
imaging often suffers from a limitation inherent to cellular
vibrational spectra. The limitation arises from severely
overlapped spectral information. An enormous variety of
biomolecules can contribute to a cellular Raman spectrum
and each of the biomolecules in turn exhibits many (broad)
Raman bands, thus lowering chemical specificity. For example,
the amide I band of proteins completely overlaps with the cis-
C=C stretch band of unsaturated lipids, with both peaking at
around 1655 cm™.'! Therefore, the Raman image at 1655 cm™!
(see below) contains contributions from both lipids and
proteins. This limitation indeed prevented us from fully
utilizing the nine Raman images; only four of them that can
be assigned unambiguously were discussed in detail.” Without
careful consideration on band assignments, univariate Raman
images could lead to erroneous interpretations of the
underlying biochemistry.

Multivariate data analysis, such as principal component
analysis'*™'® (PCA), cluster analysis,®">'*'*7>° and multi-
variate curve resolution'>'*'”2?%> (MCR, also known as non-
negative matrix factorization”>**), is a more preferred
approach, because it is capable of extracting maximum chemical
information from complicated Raman spectra without a priori
knowledge about spectral characteristics. In a multivariate data

Received: March 27, 2012
Accepted: May 31, 2012
Published: May 31, 2012

dx.doi.org/10.1021/ac300834f | Anal. Chem. 2012, 84, 5661—-5668


pubs.acs.org/ac
http://pubs.acs.org/action/showImage?doi=10.1021/ac300834f&iName=master.img-000.jpg&w=238&h=87

Analytical Chemistry

Time 0 Time 1 Time n
b § Y EEEEEE Y
X A A
) o )
X X X
L "
Unfold
Spatial x spatial x temporal dimensions
E
=
Two-way array

Figure 1. Diagrammatic representation of the unfolding of overall four-dimensional spectral data into a two-way array that facilitates multivariate
data analysis. X and Y denote positions in the image plane, and v denotes the spectral dimension. The three dimensions (two spatial and one
temporal dimensions) are combined to be a single dimension. In the present study, the resulting matrix consisted of 790 rows and 6885 columns.

analysis, instead of mapping the intensity of an individual band,
a whole set of spectral data are analyzed globally. As a result,
the data are reduced to the intrinsic spectra of components
present in the sample and their concentration profiles, which
lend themselves to provide a holistic view of the original data.
Applications of multivariate data analysis to Raman micro-
spectroscopy and imaging are rapidly growing and include
characterization of pharmaceutical samples,'*'*'” living cell
studies,”®'>'° and so forth. However, the high potential of the
multivariate approaches has not been fully exploited for
understanding dynamic aspects of cellular processes including
the cell cycle, at the single-cell level.

In this paper, we demonstrate the power of multivariate time-
lapse Raman imaging of a single dividing S. pombe cell using
MCR. This paper extends our previous work® through
substantial advances in experimental conditions and through
the use of multivariate data analysis. A laboratory-built high-
sensitivity confocal Raman microspectrometer™ is used to
measure space-resolved Raman spectra at characteristic time
points before, in the middle of, and after the cell division of the
target S. pombe cell. MCR with a laboratory-developed software
yields the intrinsic spectra and relative concentration
distributions of three major constituents of the cell, namely,
lipids, proteins, and polysaccharides. The total amount of lipids
within the cell decreases drastically by ~50% after the cell
division. Intriguingly, two protein-associated components are
found. One is the dominant contribution that accounts for most
of the characteristic protein Raman bands and shows quite a
similar time evolution to lipids, whereas the other, which has
been detected for the first time by using MCR, shows a
continuous increase with time. Biological implications of these
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resolved components and their dynamics as well as comparison
with the univariate analysis are discussed.

B EXPERIMENTAL SECTION

Cell Culture and Sample Preparation. Schizosacchar-
omyces pombe, a haploid yeast, was cultured in PMLU medium
according to ref 25. S. pombe cells grew in the PMLU medium
as well as in nutrient-rich YES medium (Figure S1, Supporting
Information). The sample was housed in a laboratory-built
chamber that enabled us to control the surrounding temper-
ature and to keep humidity (Figure S2, Supporting
Information). The use of this chamber prevented the medium
from drying and provided better growing environments than in
the previous work® with fresh air flow at 30 °C during the 22 h
Raman imaging experiment.

Confocal Raman Microspectroscopy and Imaging.
Time-lapse Raman imaging experiments were performed with a
laboratory-built confocal Raman microspectrometer (Figure S3,
Supporting Information), as described previously.*” The 632.8
nm line of a He—Ne laser (1 mW at the sample point) was used
as the Raman excitation light. The low excitation laser power
was important to reduce photodamage as much as possible.
Imaging experiments were performed at nine different times (1,
2, 4, 6, 6.5, 10, 14, 18, and 22 h after inoculation of yeast cells
into PMLU medium) in the cell cycle. The sample housed in
the chamber was translated in a raster manner by a piezoelectric
nanopositioner with a 0.5 um step in both the X and Y
directions so that the laser spot scanned across the selected cell.
At each position, the Raman spectrum was recorded with a 1.5 s
exposure time, resulting in a time resolution of 15—20 min (1.5
s/pixel for 600—800 pixels depending on the image size).
Lateral (XY) resolution was 0.5 ym, which was determined by
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the step used in imaging experiments rather than by the
estimated optical resolution (0.3 ym). Axial (Z) resolution was
2.4 pum. Because the typical thickness of an S. pombe cell is ~2
um, the effective focal volume contained the whole cell along
the Z direction.

Data Analysis. Initially, Raman spectra recorded at Nyy
positions in a 2D scan at a given measurement time constituted
a three-dimensional (spectral X spatial X spatial dimensions)
data cube. The value of Ny, was 609 (=21 X 29) at 1 h, 690 (=
23X 30) at2h, 713 (=23 X 31) at 4 and 6 h, and 832 (= 26 X
32) at 6.5—22 h. The spectral window covering the fingerprint
region was always set to be 790 pixels. The data was unfolded
into a matrix with 790 rows and Nyy columns. Cosmic rays
were manually removed if necessary, followed by a singular
value decomposition (SVD) of the matrix to reduce
noise.*”?%?” After the data preprocessing, two approaches
were employed to construct Raman images, namely, the
univariate analysis and MCR.

In the univariate analysis, the intensity of the Raman band of
interest was first obtained by calculating the area intensity
between the band contour and a baseline connecting the two
ends of an interval chosen to include the whole band. Curve
fitting was not used for this purpose due to the low signal-to-
noise ratio (S/N). The Raman intensities evaluated at each
point were then combined to construct a Raman image. The
same procedure was repeated for all measurement times.

In MCR, given an m X n non-negative data matrix A, a low-
rank approximation of the matrix A is sought for by solving the
problem?®**

(1)

with non-negativity constraints W > 0 and H > 0. In the
present case, W is an m X k matrix whose columns represent
spectra and H is a k X n matrix whose rows represent
spatiotemporal concentration profiles. k is a parameter that
must be set a priori by the user. In physical terms, k denotes the
number of underlying constituents. Neither a too small nor too
large value of k gives successful MCR results. Unlike other
factorization methods such as SVD, MCR does not require
column/row vectors of the factors W and H to be orthogonal
to each other but only requires their non-negativity.”® This
results in the major advantage of MCR over SVD and PCA that
it is prone to yield sparse, physically interpretable solutions.
The optimal solutions of W and H are obtained by solving
alternating least-squares™® (ALS) problems of eq 1 so that the
Frobenius norm ||A — WH]||* is minimized.

The MCR procedure adopted in this work encompassed the
following steps: (i) Generate the data matrix A by merging all
the variables into a single dimension except for the spectral
variable. By doing so, the originally four-dimensional Raman
data hypercube was unfolded into a 790 X 6885 matrix (Figure
1). (ii) Initialization: SVD-based initialization®® was used to
obtain initial guesses for W and H. The number of components
was set to be k = 6, which yielded the best resolution of
polysaccharide, lipid, and protein components. (iii) ALS
optimization of W and H with L1-norm regularization (lasso
regression®'). An L1 penalty term of @* = 0.0095 was added to
obtain sparser solutions as

A~ WH

(W'W + o’E)H = WA (2)

(HH" + o*E)W = HA" (3)
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where E is a k X k matrix all of whose elements are unity. (iv)
Repeat step iii until convergence was achieved. The number of
iteration was set to be 4000, ensuring that [|[A — WH]||;
eventually converged to a sufficiently small, constant value.
Note that because of the iterative nature of the MCR
algorithms, the initialization of W and H is a key step for
successful MCR. In addition to the SVD-based initialization
used in this work, several methods have been proposed,29 such
as random initialization and a spherical k-means clustering
approach.” To test the dependence of the results on
initialization methods, random initialization was also attempted
but in vain. A plausible reason for the failure would be that the
likelihood of falling into a local minimum is higher with random
initialization methods.®® The MCR was performed on a
software (nmf-11, Pylone) developed at Tokyo specifically for
spectral imaging applications.

B RESULTS AND DISCUSSION

Cell Cycle of S. pombe. The S. pombe cell cycle consists of
four different phases called the M (mitosis) phase, G; (gap-1)
phase, S (synthesis) phase, and G, (gap-2) phase (Figure 2).

i
M

e

Figure 2. Schematic illustration of the S. pombe cell cycle. The oval
bodies along the circle represent the morphology of cells in different
phases. Dark spots represent the nuclei. Because S. pombe has a very
brief G, phase, the notation G,/S is used.

We randomly selected an S. pombe cell as the target that was in
the G, phase. The morphological changes of the target cell
captured by optical images (first column of Figure 3) tell us the
cell-cycle stage at which each Raman imaging experiment was
done. In the first four hours (1—4 h), the cell stays in the G,
and M phases and prepares for a coming cell division, as
evidenced by elongation of the cell by a factor of ~1.2 on going
from 1 to 4 h. At 6 h, a septum is already formed to segregate
the cell into two compartments, indicating that the cell is in the
G,/S phase. By 6.5 h, the cell division completes and the cell
splits into two daughter cells. Subsequently, the daughter cells
should enter a new cell cycle (G, phase again), but little
morphological change is seen from 10 h up to 22 h. Although
the cells apparently remain unchanged over the 10 h in terms of
their morphology, molecular distributions within the cells
probed by Raman imaging do vary with time as shown and
discussed below.

Univariate Raman Images. The univariate data analysis
yielded time-lapse Raman images of the dividing S. pombe cell
for 10 Raman bands (Figure 3). The time dependence of the
total relative concentrations of selected bands is shown in
Figure 4. Previously we reported nine univariate Raman images
at six different stages in the cell cycle.” The univariate Raman
images and their temporal changes obtained in the present
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Figure 3. Time-lapse univariate Raman images of a single dividing S. pombe cell at the Raman shift of 1655, 1602, 1440, 1340, 1301, 1260, 1154,
1003, 852, and 348 cm™" (from left to right), together with its optical images (first column). The Raman shift of each band is indicated at the top of
the corresponding column of images. All images presented here have been cropped to the same size, i.e, 21 X 27 pixels (10.5 X 13.5 um?), for

consistency. Scale bar = 2 ym.
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Figure 4. Time dependence of the Raman intensities at 1440 (a), 1301
(b), 1003 (c), and 852 (d) cm™, integrated over the whole cell. The
1440 and 1301 cm™" bands are assigned to lipids and the 1003 and 852
cm™ bands to proteins.

study agree well with those already reported by us. It is worth
mentioning that improved S/N and sample conditions (see the
Experimental Section) have allowed us to add the images of
one more Raman band at 348 cm™' (assigned to
polysaccharides®**) and three more measurement times,
thereby providing more detailed information on the cell cycle
dynamics.

With few exceptions, it is difficult to unambiguously assign
the observed Raman bands to known biomolecules due to
considerable spectral overlap. In addition to the amide I and
C=C stretch region discussed above, the 1100—1400 cm™"
region is so crowded that the Raman images at 1340, 1260, and
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1154 cm™" more or less contain multiple contributions. The
Raman band at 1602 cm ™" is relatively isolated from the others,
but it has not yet been given a conclusive assignment.>*~*” To
cope with this problem, we classified in the previous paper’ the
nine Raman images into three groups: Raman images of lipids,
proteins, and admixtures of both and other molecular species.
The same classification also works in the present case.
However, it leaves only four Raman images (1440 and 1301
cm™! for lipids and 1003 and 852 cm™" for proteins), out of the
10, for discussion of their specific dynamic behaviors (Figure
4). To take full advantage of the rich information content
contained in our Raman spectral data, we need to go beyond
the univariate approach.

Multivariate Raman Images. The MCR analysis of the
same data set as used for the univariate analysis derived time-
lapse Raman images and component spectra of six chemical
species (Figure S). The six components are denoted 1—6. The
vectors representing the spectra are normalized so that the sum
of their components is equal to unity. To our knowledge, this is
the first successful application of MCR analysis to Raman
imaging of the cell cycle dynamics.

Before discussing each component in detail, we check the
validity of the MCR analysis. To see how well the six
components reproduce the original data, we plot the
normalized residual matrix R (Figure 6a) calculated using the
following equation:

R [Aij - (WH)ij]/Aij 4)

.
Besides vertical stripes indicating the locations of intense
Raman bands, the 2D plot shows no particular distribution
patterns and residues seem to be randomly distributed. As
compared in Figure 6b, a typical preprocessed spectrum (after
SVD denoising) and the corresponding MCR fitted spectrum
look nearly identical; their difference spectrum shows fitting
residue of less than 10%. Taken together, we confirm that the
original image data is well reproduced by the six components
through the present MCR analysis.
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Figure S. Time-lapse multivariate Raman imaging of the single dividing S. pombe cell. () Raman images of six components (1—6) derived from the
MCR, together with the optical images (leftmost column). Scale bar = 2 ym. (b) Normalized Raman spectra of components 1—6. The spectra are
displaced vertically for clarity with the zero line of each spectrum indicated by a dashed line.

Component 1 is associated with the background, because it
exclusively shows red (high-intensity) distribution patterns
outside the cell(s) (Figure Sa-1) and a featureless spectrum
(Figure Sb-1). Component 2 can also be undoubtedly
attributed to polysaccharides such as f-1,3-glucan, the major
constituent of the yeast cell wall®® The Raman images of
component 2 (Figure Sa-2) clearly visualize the cell wall at all
measurement times and the septum at 6 h. Furthermore, the
spectrum of component 2 (Figure 5b-2) is in good agreement
with the reported Raman spectrum of f-1,3-glucan.* According
to the normal-mode analysis of model disaccharides,**** the
low-frequency bands at 348 and 423 cm™" are predominantly
attributed to the skeltal deformations (C—C—C, C—C—0, and
0—C—0), the 890 cm ™! band to the C—O stretch mode of the
glycosidic linkage, and the 1463 cm™ band to the CH bending
mode of the CH,OH group.

Component 3 is assigned to lipids. Although somewhat
noisy, the spectrum of component 3 (Figure Sb-3) reproduces
most of the bands found in the lipid-rich Raman spectrum,
including those at 716, 1301, 1440, 1602, and 1658 cm™L. In
particular, the 716 cm™ band is a characteristic spectral
signature of the phospholipid headgroup.*** Another support
for the assignment comes from the time-lapse Raman images
(Figure Sa-3). Close inspection of the distribution pattern of
these images shows a blue (low-intensity) region around the
center of the cell that corresponds to the nucleus. This result is
consistent with a low concentration of lipids in nuclei.
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Furthermore, the time dependence of the Raman images of
component 3 closely resembles that of the univariate Raman
image at 1301 cm™" (Figure 3), which is assigned to lipids.

Now that components 2 and 3 have been identified,
respectively, as polysaccharides and lipids, it would be natural
to attribute the remaining components 4 and 5 to spectra
associated with proteins. We can justify our interpretation by
their dynamics and spectral patterns. Concerning the dynamics,
the multivariate Raman images of components 4 and S (Figure
5a-4,5) show a behavior similar to the univariate Raman images
of protein bands at 1003 and 852 cm™" (Figure 3), respectively.
With regard to the spectral pattern, we synthesized the spectra
of components 4 and S (Figure 5Sb-4,5) and found that the
synthesized spectrum coincides well with the protein-rich
Raman spectrum of the S. pombe cell.

First, let us look into the spectrum of component 4, the
major protein component (Figure Sb-4). The ring breathing
mode of phenylalanine residues at 1003 cm™', which is the
most direct Raman indicator of proteins, is clearly observed. In
addition to the 1003 cm™" band, we see three prominent bands
at 1658, 1606, and 854 cm™'. The 1606 cm™' band is also
assigned to phenylalanine residues.*’ The 854 cm™ band is one
of the tyrosine doublet, which arises from a Fermi resonance
between the ring breathing fundamental and the overtone of an
out-of-plane ring bending vibration of tyrosine residues.** The
counterpart of the doublet should appear around 830 cm™, but

dx.doi.org/10.1021/ac300834f | Anal. Chem. 2012, 84, 5661—-5668
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Figure 6. (a) 2D plot of the residual matrix A — WH (see eq 4 for
definition). (b) Comparison of a typical SVD-treated Raman spectrum
(red curve) and the corresponding MCR fitted spectrum (blue curve).
Also shown is their difference spectrum (black curve; red curve minus
blue curve).

it is probably too weak to be seen in the spectra of component
4 (Figure Sb-4) and component S (Figure Sb-5).

What then is component 52 We noticed the band at 845
cm™" (Figure 5b-S). Previous Raman studies™** show that the
tyrosine doublet at about 854 and 830 cm™' collapses to a
single band appearing in between the doublet peaks upon
phosphorylation of tyrosine residues. It is therefore plausible
that the 845 cm™ band observed in Figure Sb-5 is due to the
collapsed band of the tyrosine doublet. It is also shown for
some test peptides that a band emerges at ~920 cm™' upon
tyrosine phosphorylation,** which is also observed in Figure Sb-
S. The band at 522 cm™ is likely attributable to the S—S stretch
of disulfide bonds.*" Both phosphorylation and formation of
disulfide bridges are indicative of structural changes of proteins
during the cell cycle of the S. pombe cell. It is tempting to think
of component 5 alone as representing a specific class of
proteins. However, spectral features characteristic of proteins
such as the amide I band and the phenylalanine band at 1003
cm™' are almost completely missing in the spectrum of
component 5 (Figure Sb-5). The absence of these protein
markers may result from a flaw in the present MCR analysis.
The true spectrum of proteins that are associated with
phosphorylation would be given by a linear combination of
the spectra of components 4 and S. Further insight into
component S is provided by the time dependence of the
relative concentration (see below).

The origin of component 6 is unclear. As seen from Figure
Sa-6, its time-lapse Raman images look like those of lipids
(component 3, Figure 5a-3), but its intrinsic spectrum (Figure
5b-6) shows no noticeable Raman features. In contrast with the
other components, component 6 is not reproducible; the
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appearance of this component seems to depend on the data set.
Therefore, we leave this component for further investigations
and will not discuss it in the rest of this paper.

Time Dependence of Lipid and Protein Concentra-
tions. We have assigned above the five components derived
from the MCR according to their spectra and qualitative
temporal changes of their Raman images. More quantitative
insight should be gained from the time dependence of the
relative concentration of each component. Figure 7 plots the
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Figure 7. Time dependence of the Raman intensities integrated over
the whole cell for components 3 (a, lipids), 4 (b, major protein
component), and 5 (c). Error bars were obtained by taking into
account uncertainties in the location of the cell wall. In parts a and b,
error bars are smaller than symbols.

time dependence of the Raman intensities for lipids
(component 3) and proteins (4 and $) integrated over the
whole cell (for 6.5—22 h, the left cell). We use the
polysaccharide images (Figure S5a-2) to accurately know on
the molecular basis the pixels giving the cell wall and sum up all
the Raman intensities inside those pixels. Therefore, the
integrated Raman intensity can be viewed as representing the
total relative concentration of each component.

The total concentration of lipids (Figure 7a) does not change
much before the cell divides. However, it suddenly drops by
~50% at 6.5 h, when the cell splits into two daughter cells and
remains constant for more than 15 h afterward. Such a drastic
decrease of lipids soon after the formation of a septum has not
so far been observed by any methods other than Raman
spectroscopy. The total relative concentration of lipids
estimated with our method has important biological
implications, because it allows us to quantitatively discuss
how much energy is stored*’ and used in the form of lipids
before and after cell division. The result shown in Figure 7a
may indicate that a lot of energy is consumed when the S.
pombe cell divides. Similar dynamics are observed for the major
protein component (Figure 7b).

Component 5 exhibits markedly different time dependence
(Figure 7c) from the lipid and major protein components. This
component increases very rapidly before the cell division; the
intensity at 6 h is about 4 times as large as that at 1 h. The
integrated intensity then decreases by ~60%, analogous to the
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other two components. After the cell division, it again increases
monotonically but with a slower rate.

The 522, 845, and 920 cm ™" bands observed in the spectrum
of component 5 (Figure Sb-5) may look questionable because
they are smaller in intensity than a broad feature in the low-
frequency region of the same spectrum. However, we can also
see those Raman bands in averaged raw Raman spectra without
performing MCR. Figure 8 shows a time lapse of space-resolved

920!

853! 1845 529!

Raman intensity

| ) l’ll 1 I 1 ]
840 800 600 560 520 480

Raman shift (cm™)

1 1
920 880

Figure 8. Time-lapse raw Raman spectra of the S. pombe cell. Each
spectrum is an average of eight spectra that were recorded around the
center of the cell, where the intensity of component S is strong (see
Figure Sa-S).

Raman spectra, each of which is an average of eight spectra that
were obtained around the center of the S. pombe cell.
Consistent with Figure 7c, the three bands at ~529, 845, and
920 cm™" in Figure 8 do increase with time, confirming the
validity of the MCR analysis.

On the basis of primarily the spectrum (Figure Sb-S), we
have conjectured that component 5 is attributed at least
partially to protein molecules that undergo chemical
modifications such as phosphorylation during the cell cycle.
Given that protein phosphorylation plays an important role in
numerous cellular processes including the cell cycle*® and DNA
repair,47’48 this interpretation sounds plausible. The continuous
increase of component S (Figure 7c), however, also suggests
another important possibility that component S is somehow
related to the effects of laser irradiation. It is known that the
expression of a class of proteins known as heat shock proteins is
significantly increased when cells are exposed to external stress
such as elevated temperature. Although our excitation wave-
length (632.8 nm) lies very close to a biological window (660—
850 nm), the temperature of a laser-irradiated cell could be
locally high and put certain stress on it. The unusually slow cell
cycle observed in our experiment may be a consequence of the
stress. Biochemical studies together with Raman microspectro-
scopy are needed to clarify this issue. Nevertheless we underline
here that although the MCR presents limitations in separating
proteins as discussed above, it was not until we performed the
MCR that such a characteristic protein-associated component
was extracted from complicated Raman images.
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Comparison between the Univariate and Multivariate
Approaches. In this section, we compare the two approaches
in terms of their merits and drawbacks and discuss possible
improvements in the MCR algorithm. The greatest advantage
of the univariate approach lies in its simplicity.'® It is
straightforward to perform, and yet it gives results that are in
reasonable agreement with those obtained with the MCR.
However, univariate Raman images often overestimate the band
intensity of a molecular species due to overlapping bands of
other species. To see this, compare, for example, the univariate
Raman images at 1440 cm™' (Figure 3) and the multivariate
Raman images of lipids (Figure 5a-3). Compared with the
multivariate images, the univariate images display green
(moderate-intensity) patterns that spread over the entire cell.

In contrast to the univariate method, we are able to choose
the optimal multivariate method among various options.
Miljkovié et al.'® have made a detailed comparison of the
contrast of Raman images obtained with five established
multivariate methods and illustrated which method provides
the best contrast hinges on the variance in the data set. If the
data set contains large spectral differences, such as those
manifested by isotope-substituted component spectra, the
component can be readily resolved even in the presence of a
large noise. Likewise, incorporation of temporal information in
multivariate analysis is of great help with this regard. In the
present study, component S has been differentiated from the
others partly because of its unique time evolution (see Figure
7a—c).

A few dips and many zero-filled regions are found in the
component spectra we obtained with the MCR (Figure Sb).
These are physically unreasonable and need to be removed by,
e.g, introducing additional penalty term to eqs 2 and 3 on the
basis of the second derivatives of the spectra. The regularization
terms can also be extended to take into account spatial
correlation between nearby positions in the image data and/or
spectral correlation. All these penalizations will improve results
of MCR analysis in terms of their physical interpretability, but
the calculations are computationally highly demanding and are
not practically feasible when the data is very large.

B CONCLUSIONS

We have demonstrated a thorough analysis of time-lapse
Raman images of a single dividing S. pombe cell with the use of
the MCR method. Our approach with MCR requires minimum
user interaction and offers a robust platform for molecular-level
analysis of cellular dynamics. Only a few steps of preprocessing
and data reorganization are required. Owing to non-negativity
constrains imposed in MCR, there is in general no need to take
linear combinations of the decomposed vectors. The method
does not demand detailed spectral characterization, so it can be
deployed in other types of cells that have not been as well
understood as yeast cells. Therefore, we believe that label-free
Raman imaging combined with MCR should be added to the
toolbox for single-cell analysis with high chemical specificity.
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