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Geometric Integration of Heterogeneous Models
for Multisatellite Image Positioning

Liang-Chien Chen, Wen-Chi Chang, and Tee-Ann Teo

Abstract—With the wider availability of more and more images
acquired from various satellites, the integration of different ori-
entation models for different sensors has become an important
task in order to maintain geometrical consistency. This study
combines two heterogeneous geometric correction models, namely,
direct georeferencing and the rational function model for multi-
satellite image positioning. Two types of adjustment models,
collocation-based block adjustment (CBBA) and collocation-aided
block adjustment (CABA), are proposed to reach the goal. The
former is based on the concept that the adjustment is first per-
formed on individual images, and then, all images are integrated.
Discrepancies are compensated for by least squares collocation
(LSC). The latter method entails simultaneous adjustment of the
two heterogeneous models followed by LSC. Experimental results
indicate that the proposed method can significantly improve the
geometric accuracy as well as reduce geometric discrepancies
between images. We also demonstrate that CABA is slightly better
than CBBA.

Index Terms—Direct georeferencing (DG), least squares collo-
cation (LSC), rational function model (RFM).

I. INTRODUCTION

W ITH the improvement of satellite technology, satellite
imagery has become a common and important data

source for GIS applications. Such data sets, however, usually
contain multitemporal or multisensor images, which need regis-
tration and mosaicking. To insure the quality of the registration
and mosaicking, a block adjustment that can take into account
different candidate images produced with different mathemati-
cal models is needed.

Block adjustment strategies for satellite images include the
rigorous sensor model (RSM) [1] and rational function model
(RFM) [2]–[6]. RSM describes the relationship of a ground
point with respect to its image counterpart and exterior orien-
tation parameters (EOPs). RFM uses the rational polynomial
coefficients (RPCs) to transform object coordinates into the
image space. Thus, parameters treated during the process of
block adjustment for these two models are different. In fact,
the availability of these parameters is satellite dependent. Some
satellite companies provide RPCs instead of EOPs, others the
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opposite. Thus, for heterogeneous models between RSM and
RFM, one needs to combine and integrate these two types of
images for block adjustment.

There are two methods for RSM, namely, bundle adjustment
[7]–[10] and direct georeferencing (DG) [11]–[13]. Bundle
adjustment simultaneously builds up the collinearity condition
for all image points with respect to the object points; coher-
ent ground control points (GCPs) are to some degree fixed.
DG employs the recorded dynamic orientation parameters to
establish an observation vector for each image point followed
by a fitting procedure using GCPs. The treated orientation
parameters are obtained from GPS, IMU, and star trackers. Pop-
ularly used in photogrammetry, the bundle adjustment method
takes advantage of favorable convergence geometry. Thus, the
suitability of the initial values for the orientation parameters
might not be so important. On the other hand, if the orientation
observations, including orbital and attitude data, are accurate,
the DG is a good alternative. Taking advantage of good EOPs,
the DG approach derives favorable results for satellite images
with fewer GCPs than are needed for bundle adjustment. We
thus combine the DG of RSM with RFM in this investigation.

During block adjustment, it is necessary to combine all
images so as to maintain consistency of the geometrical reg-
istration [14], [15]. The simultaneous approach for combined
adjustment is to build a mathematical model that contains
two heterogeneous geometric models. The treated parameters
for satellites, including the EOPs and RPCs, have recently
become precise enough so that adjustment on a single-image
basis might also reach high enough accuracy for geometric
correction.

It is known that the attitude of a satellite image may include
high-frequency variations that are not easy to account for when
smooth functions, for instance, polynomials, are selected in
the DG approach for RFM generation. Thus, local system-
atic errors may remain. In this investigation, the traditional
approach, i.e., geometrical fitting, followed by a fine-tuning
procedure is used. Nonlinear components in the fine-tuning
procedure are indicative of possible local systematic errors.
Least squares collocation (LSC) is a geostatistical method [16],
which can extract local signals after regression. Thus, LSC is
selected as the approach for compensation for local systematic
errors. There are two possible ways to include LSC in the
adjustment for orientation modeling. The first one is based
on the spatial resection of individual images, after which the
residuals of the reference points, which includes the GCPs and
the tie points (TPs), are employed for the LSC. The second
approach typically includes the LSC for simultaneous block
adjustment of images with heterogeneous orbit parameters.
Since the first method relies on LSC to connect images, it is
called collocation-based block adjustment (CBBA). The role of
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Fig. 1. Work flow of CBBA.

LSC in the second approach is simply to fine-tune the results
for simultaneous adjustment; thus, we call it collocation-aided
block adjustment (CABA).

It is observed that the major applications for remotely sensed
images are for the detection of natural resources and land cover
monitoring. In order to acquire the largest possible coverage,
the area of image overlap should be small. However, satellite
imaging systems usually have a small field of view. Thus,
the convergence geometry is generally not favorable. Weak
geometry at the intersection may cause large elevation errors
that could affect the adjustment [17]. To avoid such problems,
this study will employ digital elevation models (DEMs) for
elevation control. Thus, both the proposed methods, namely,
the CBBA and CABA adjustment models, will be tested using
DEMs as the elevation control for multisatellite image position-
ing in this investigation.

After the motives of this study, CBBA and CABA models
are introduced in detail in the second section. Next, we report
experiments with multisatellite images. The final section is the
conclusions.

II. PROPOSED SCHEME

The proposed scheme is composed of two adjustment mod-
els, i.e., CBBA and CABA. The details of each model are given
next.

A. CBBA

CBBA includes three major parts. First, the DG mathematics
related to orbital fitting and ray tracing are built. Second, the
RFM is set up by refining RFM and RFM ray tracing. Both
of these parts are about single-image adjustment. Treatment
by LSC of discrepancies between images is still needed to
compensate for the object coordinates. A flowchart of the
CBBA work process is shown in Fig. 1.

The DG mathematical equation is shown in (1) in the
geocentric coordinate system. The x(ti), y(ti), z(ti), and
uXi, uY i, uZi are derived from the EOPs. Systematic errors that
exist in the EOPs must be compensated for using GCPs through
orbital fitting. The DG equation for the orbital fitting process
is shown in (2). Considering the extremely high correlation
between the orbital parameters and attitude data, only the
orbital position is corrected during fitting. Furthermore, the

Fig. 2. Illustration of ray tracing.

slight residues are corrected by LSC. The remaining errors,
which are small, are taken care of by the LSC.

Xi =x(ti) + SiuXi

Yi = y(ti) + SiuY i

Zi = z(ti) + SiuZi (1)
Xi =x0 + a0 + a1t+ SiuXi

Yi = y0 + b0 + b1t+ SiuY i

Zi = z0 + c0 + c1t+ SiuZi (2)

where
Xi, Yi, Zi ground points;
x(ti), y(ti), z(ti) satellite positions;
uXi, uY i, uZi satellite line-of-sight vectors;
Si scaling factor;
ti time;
x0, y0, z0 satellite positions obtained from EOPs;
a0, a1, b0, b1, c0, c1 orbital correction parameters.

After orbital fitting, the line-of-sight vector of the image
coordinates can be calculated by ray tracing [7]. The tracing
procedure is used to locate the object position for an image
point, provided that the EOPs and the DEMs are available.
The purposes of ray tracing are twofold: to obtain the object
coordinates for all points and to calculate the residues for
LSC. In addition, the elevation control may be integrated by
employing DEMs to cope with the weak convergent geometry
of the images. The planimetric coordinates of the object space
for the GCPs can be obtained through the intersection of the
line-of-sight vectors and the known elevation. For a tie point,
an initial elevation is needed for ray tracing. The planimetric
coordinates of the object space can be obtained from the line-
of-sight vectors and initial elevation. The new elevation, which
is generated by interpolating the DEMs, is derived to replace the
initial elevation. The new elevation is used as an initial value
in the next iteration. This step is repeated until the difference
between the new elevation and the initial value is small enough.
An illustration of the ray tracing method is shown in Fig. 2.

RFM uses the ratio of two polynomials to build the re-
lationship between the object space and the image space,
formulated as in

s =

m1∑
i=0

m2∑
j=0

m3∑
k=0

cijkϕ
iλjhk

n1∑
i=0

n2∑
j=0

n3∑
k=0

dijkϕiλjhk

l =

m1∑
i=0

m2∑
j=0

m3∑
k=0

eijkϕ
iλjhk

n1∑
i=0

n2∑
j=0

n3∑
k=0

fijkϕiλjhk

(3)
where
s, l image coordinates;
ϕ, λ, h object coordinates in the geographic co-

ordinate system;
cijk, dijk, eijk, fijk RPCs.
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Fig. 3. Illustration of relative discrepancy.

As suggested by previous studies [18], the third degree poly-
nomial is selected in the RFM. In this case, it contains 80 RPCs.

Since the RPCs are derived from ephemeris data that include
errors in orbital parameters and attitude data, we need to refine
the RFM. RFM refinement starts from the object space. The
object coordinates are mapped to the RFM image space via
RPCs. The affine transformation parameters are then calculated
from the GCP image coordinates and the GCP RFM image
coordinates. The systematic bias of the RPCs is compensated
for by affine transformation [19]. The equation for RFM
refinement is

SGCP =A0 +A1 · SRFM +A2 · LRFM

LGCP =B0 +B1 · SRFM +B2 · LRFM (4)

where

SGCP, LGCP image coordinates of the GCP;
SRFM, LRFM image coordinates determined by RFM;
A0 ∼ B2 affine coefficients.

Similar to DG, the next step is to calculate the 3-D object
coordinates and the residuals after RFM refinement. RFM ray
tracing is employed for this purpose. The procedure is concep-
tually identical to ray tracing, except that the mathematics used
are RFM functions. Given the image coordinates of a point, an
initial elevation h0 is employed to calculate the corresponding
ϕ0 and λ0. Then, the new elevation is replaced according to the
position in the DEMs. This step is repeated until the difference
is small enough.

Once the correct parameters have been obtained for each
image, including the DG orbital correction parameters and the
RFM affine coefficients, discrepancies among those images can
be estimated through the bias of object coordinates determined
by the DG or the RFM. The bias of the GCPs is obtained
by differencing the object coordinates obtained from ray trac-
ing (RFM ray tracing) and the reference coordinates. The
TP residues are defined using the relative discrepancy. Fig. 3
shows an example of determining the relative discrepancy. A
set of TPs exists for four images. Four object coordinates
can be obtained from ray tracing or RFM ray tracing. Then,
the weighted average position is calculated with these object
coordinates. Since we assume that the positioning error is
proportional to image resolution, it might be reasonable to
estimate the positioning variance to be the square of ground
sampling distance (GSD). Thus, we select the weight for each

image point inversely proportional to its GSD. The equations
for the weighted average position are shown in

X =

n=m∑
n=1

Xn

GSD2
n

/
n=m∑
n=1

1

GSD2
n

Y =
n=m∑
n=1

Yn

GSD2
n

/
n=m∑
n=1

1

GSD2
n

Z =

n=m∑
n=1

Zn

GSD2
n

/
n=m∑
n=1

1

GSD2
n

(5)

where
X,Y, Z weighted average positions;
Xn, Yn, Zn object coordinates obtained from ray tracing or

RFM ray tracing;
m number of images.

The relative discrepancy is thus the distance between the
corresponding object coordinate and the weighted average po-
sition.

In (6), the LSC method is employed to compensate for
the relative discrepancy among these images. The covariance
matrices σk and Σk used in this study include the geostatis-
tical characteristics among a group of points in terms of self-
correlation and cross-correlation. To determine each element of
the covariance matrix in σk and Σk, a Gaussian function C is
selected for the covariance function [20] as shown in (7). In this
paper, the reference points include GCPs and TPs.

ρk = σk · [Σk]
−1 · vk (6)

where
k x-, y-, and z-axes;
ρk correction of the interpolated point;
σk row covariance matrix for the interpolated point with

respect to the reference points;
Σk covariance matrix for the reference points;
vk residual vectors for the reference points.

C =

{
(1− rn)μk exp

−(2.146 d
dmax

)
2

, if d �= 0

μk, if d = 0

}
(7)

where
C element in the covariance matrices of σk and Σk;
d 3-D distance between the interpolation point and the

reference points;
dmax maximum 3-D distance in the collocation;
μk variance of the reference points’ residuals;
rn filtering ratio (we use 0.1 in the experiment);
2.146 selected so that the covariance limit is 1% ∗ (1− rn)μk

when d = dmax.

B. CABA

The CABA method is composed of two major parts. The first
part considers the global geometry, including elevation control,
absolute accuracy, and the discrepancy among all employed
images, through the process of block adjustment, which is
built using DG and RFM mathematical equations. LSC aids in
compensating for any local systematic errors that may still exist
after block adjustment. Fig. 4 shows the work flow of CABA.
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Fig. 4. Work flow of CABA.

Three types of observation equations are contained in the
block adjustment process: the DG observation equations, the
RFM observation equations, and the pseudoequations for
ground coordinates.

The DG equation with orbital fitting is shown in (2). The
unknown values in this equation include the ground points, the
scaling factor, and the orbital correction parameters. In order
to reduce the unknown values, the DG observation equation
is arranged as in (8). Therefore, the scaling factor can be
removed. After linearization, the least squares form of the DG
observation equation is represented in a matrix form as in (9).
It should be noted that the DG is in the geocentric coordinate
system. However, the RFM is in the geographic coordinate
system. In order to integrate the two models, the working
coordinate system should be unified. The geographic coordinate
system (ϕ, λ, h) is selected as the working coordinate system in
this study.

D1 = vxi = (x0+a0+a1 ·t−Xi)/(z0+c0+c1 ·t−Zi)

−uXi/uZi

D2 = vyi = (y0+b0+b1 ·t−Yi)/(z0+c0+c1 ·t−Zi)

−uY i/uZi (8)

[
vxi
vyi

]
=

[ ∂D1

∂a0

∂D1

∂a1
0 0 ∂D1

∂c0
∂D1

∂c1

0 0 ∂D2

∂b0
∂D2

∂b1
∂D2

∂c0
∂D2

∂c1

]
⎡
⎢⎢⎢⎢⎢⎣

da0
da1
db0
db1
dc0
dc1

⎤
⎥⎥⎥⎥⎥⎦

+

[ ∂D1

∂ϕi

∂D1

∂λi

∂D2

∂ϕi
∂D2

∂λi

∂D1

∂hi

∂D2

∂hi

]⎡⎣ dϕi

dλi

dhi

⎤
⎦−[

−D0
1

−D0
2

]
(9)

where
D1, D2 DG observation equations;
vxi, vyi residual values for the DG obser-

vation equations;
Xi, Yi, Zi ground coordinates in the geocen-

tric coordinate system;
(∂Di/∂a0) ∼ (∂Di/∂hi) partial derivatives in the

linearization.
The treated parameters in the RFM are the affine coefficients.

The RFM observation equation is shown in (10). The least
squares form of the RFM observation equation can be repre-
sented in a matrix form as in (11).

R1 = vsi = A0 +A1 · srfm +A2 · lrfm − sgcp
R2 = vli = B0 +B1 · srfm +B2 · lrfm − lgcp (10)

[
vsi
vli

]
=

[ ∂R1

∂A0

∂R1

∂A1

∂R1

∂A2
0 0 0

0 0 0 ∂R2

∂B0

∂R2

∂B1

∂R2

∂B2

]
⎡
⎢⎢⎢⎢⎢⎣

dA0

dA1

dA2

dB0

dB1

dB2

⎤
⎥⎥⎥⎥⎥⎦

+

[ ∂R1

∂ϕi

∂R1

∂λi

∂R2

∂ϕi
∂R2

∂λi

∂R1

∂hi

∂R2

∂hi

]⎡⎣ dϕi

dλi

dhi

⎤
⎦−

[
−R0

1

−R0
2

]
(11)

where

R1, R2 RFM observation equations;
vsi, vli residual values for the RFM obser-

vation equations;
(∂Ri/∂A0) ∼ (∂Ri/∂hi) partial derivatives in the

linearization.

The pseudoequation for ground coordinates is formulated
as shown in (12). It contains GCP ground coordinates and
TP ground coordinates. The approximation values for TPs are
determined from ray tracing or RFM ray tracing. In this paper,
the measured ground coordinate value for a set of TPs is defined
by the weighted average position, as shown in Fig. 3.⎡

⎣ vϕi

vλi

vhi

⎤
⎦−

⎡
⎣ dϕi

dλi

dhi

⎤
⎦ =

⎡
⎣ϕ0

i − ϕ00
i

λ0
i − λ00

i

h0
i − h00

i

⎤
⎦ (12)

where

vϕi
, vλi

, vhi
residual values for the pseudoequations for
ground coordinates;

ϕ0, λ0, h0 approximation values of ground coordinates;
ϕ00, λ00, h00 measured values of ground coordinates.

Following the common notation in block adjustment for
aerial images [21], (9), (11), and (12) are combined to obtain

VD = ḂDΔ̇D + B̈DΔ̈G − εD
VR = ḂRΔ̇R + B̈RΔ̈G − εR
VG =(−1)Δ̈G − εG (13)

where

VD residual matrix for the DG equation;
ḂD, B̈D observation matrices for the DG equations;
Δ̇D matrix of unknown corrections of orbital correc-

tion parameters;
VR residual matrix for the RFM equation;
ḂR, B̈R observation matrices for the RFM equations;
Δ̇R matrix of unknown corrections of affine

coefficients;
VG residual matrix for the pseudoequation for the

ground coordinate equation;
Δ̈G matrix of unknown corrections of the ground

coordinates;
εD, εR, εG approximation matrices of measurements.

A simpler form of the whole observation equations is shown
in (14). The weighting matrix is shown in (15). The weight
is composed of the DG equation, the RFM equation and the
ground coordinates. The orbital correction parameters for DG,
the affine coefficients for RFM, and the ground coordinates for



2806 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 50, NO. 7, JULY 2012

GCPs and TPs can be determined with the least squares method
after the observation equations have been completed.

V =BΔ− C (14)

W =

⎡
⎣WD 0 0

0 WR 0
0 0 WG

⎤
⎦ (15)

where
V residual matrix;
B observation matrix for the equations;
Δ matrix of unknown parameters;
C approximation matrix of measurements;
WD weight of the DG observation equations;
WR weight of the RFM observation equations;
WG weight of the ground coordinates.

The orbital correction parameters for DG, the affine coef-
ficients for RFM, and the ground coordinates for GCPs and
TPs can be determined with the least squares method after the
observation equations have been completed. The next step is
LSC in order to compensate for the local systematic error. The
details of LSC have been given in the previous section.

C. Accuracy Analysis

The analyzed items include the absolute accuracy and the
geometrical consistency between images. We use independent
check points (ICPs) and independent check tie points (ICTPs)
with the proposed model to evaluate the absolute accuracy and
the geometrical consistency between images, respectively. The
bias between the determined object coordinates and the true
coordinates is calculated so as to find the root-mean-squared
error (rmse) for the ICPs. The ICTPs’ rmse is obtained from
the relative discrepancy for each image.

III. EXPERIMENTAL RESULTS

The experiments include three cases. Case I tests images with
a 2-m/2.5-m resolution. Case II tests images with submeter
resolution. Case III is for multiresolution images. The perfor-
mance of the single-image adjustment, CBBA, and CABA is
compared. The validation takes into consideration the absolute
accuracy and geometric consistency between images.

The data set for Case I contains SPOT-5, Formosat-2, and
ALOS satellite images. DG is used for the geometric cor-
rection of SPOT-5 and Formosat-2 satellite images. RFM is
used for ALOS satellite image. GCPs and ICPs are obtained
from 1:5000 scaled topographic maps. The GCP accuracy is
estimated to be better than 3 m. The TPs and ICTPs are acquired
by manual measurements. Information related to the test images
is given in Table I. Fig. 5 shows the test images and the
overlapping area between those images.

For Case II, the high-resolution images include
WorldView-1, QuickBird, and Geoeye-1 images. The GSDs are
submeter for these images. The GCPs and ICPS for Case II and
Case III were obtained from the GCP database of the Ministry
of the Interior, Taiwan, through manual measurements. The
measurement accuracy is estimated to be better than 0.5 m. The
related information is shown in Table II. Fig. 6 shows the test
images and the overlapping area of those images.

TABLE I
INFORMATION RELATED TO TEST DATA FOR CASE I

Fig. 5. Test images for Case I and the overlapping area. (a) SPOT-5 CNES,
2008. (b) Formosat-2 NSPO, 2008. (c) ALOS JAXA, 2008.

TABLE II
INFORMATION RELATED TO TEST DATA FOR CASE II AND CASE III

Case III tests the multiresolution images. The test data inte-
grate WorldView-1, QuickBird, Geoeye-1, Kompsat-2, and two
Formosat-2 satellite images. The first three images are the same
as those used in Case II. Information related to the Kompsat-2
and two Formosat-2 satellite images is given in Table III. Fig. 7
shows the three images and the overlapping area between the
six images.
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Fig. 6. Test images in Case II and Case III and the overlapping area.
(a) WorldView-1 DigitalGlobe, 2007. (b) QuickBird DigitalGlobe, 2005.
(c) Geoeye-1 Geoeye, 2009. (d) Overlapping area.

TABLE III
INFORMATION RELATED TO TEST DATA FOR CASE III

The experiment compares the results of CBBA, CABA,
and single-image adjustment. To reveal the contributions of
LSC, the results of single-image adjustment without colloca-
tion, herein named single, are also given. The Formosat-2,
WorldView-1, Quickbird, Geoeye-1, and Kompsat-2 satellites
images are labeled FS, WV, QB, GE, and KP, respectively, in
those results.

A. Case I—Similar Resolution Images (Lower Resolution)

1) Absolute Accuracy: The absolute accuracy is evaluated
through ICPs. The histogram of the rmse for ICPs is shown
in Fig. 8. For SPOT-5 and FS images, the CBBA and CABA
provided better results in the North and South directions than
did the single-image adjustment process. The improvement
was about 1 and 0.25 m for SPOT-5 and FS, respectively.
However, the accuracy decreased by about 0.5 m for the ALOS
image. The poor performance of the ALOS case in terms of the
absolute accuracy might be due to the unfavorable distribution
of GCPs. According to Fig. 8, there are insignificant differences
between the CBBA and CABA methods in this case. The

Fig. 7. Test images for Case III and the overlapping area. (a) Kompsat-2
KARI, 2007. (b) Formosat-2_1 NSPO, 2006. (c) Formosat-2_2 NSPO, 2007.
(d) Overlapping area.

Fig. 8. RMSE of ICPs for Case I.

absolute accuracy is nearly 2 m for SPOT. The FS and ALOS
are 3.5 and 4 m, respectively.

2) Geometrical Consistency Between Images: The geomet-
rical consistency between images is examined by looking at
discrepancies in the ICTPs. The results are shown in Fig. 9.
The discrepancies are better than one pixel for all images. The
FS is about 2 m. The errors in SPOT-5 and ALOS are less than
2 m. The results also indicate that the CBBA and CABA meth-
ods can improve the geometrical consistency between images.
The improvement is more than 0.5 m for ALOS in the North and
South directions. The differences between CBBA and CABA
are also small.

B. Case II—Similar Resolution Images (Higher Resolution)

1) Absolute Accuracy: This case test is for higher resolution
images, including WV, QB, and GE images. Fig. 10 shows the
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Fig. 9. RMSE of ICTPs for Case I.

Fig. 10. RMSE of ICPs for Case II.

results of absolute accuracy for Case II. From Fig. 10, it can
be seen that the differences obtained with the three methods
are insignificant. However, the CBBA and CABA methods are
slightly better than the single-image adjustment method. The
accuracy for WV in the East and West directions is the worst,
about 0.9 m. The accuracy for other images is better than
0.6 m.

2) Geometrical Consistency Between Images: The rmse for
discrepancies is shown in Fig. 11. It can be seen that the CBBA
and CABA methods offer improved geometrical consistency
between images. The accuracy for WV and QB in the North and
South directions has increased to more than 0.1 m. The relative
discrepancy is less than one pixel for all images. Similarly, the
differences between CBBA and CABA are small.

C. Case III—Multiresolution Images

1) Absolute Accuracy: Six images are employed in this
case: WV, QB, GE, KP, and two FS images. A histogram of
the rmse for the ICPs is shown in Fig. 12. Although CBBA and
CABA are insignificantly different in Case I and Case II, the
advantage of CABA is obvious in Case III.

The absolute accuracy for WV is about 0.9 m and is better
than 0.5 m for the QB and GE images. The absolute accuracy
of KP is approximately 2 m. There is still a small difference
between the three methods for higher resolution images. The
improvements for the two FS images obtained through CBBA
are about 2 m in the East and West directions; moreover, the

Fig. 11. RMSE of ICTPs for Case II.

Fig. 12. RMSE of ICPs for Case III.

Fig. 13. RMSE of ICTPs for Case III.

accuracy can be improved to about 3.5 m when CABA is
employed.

2) Geometrical Consistency Between Images: Fig. 13
shows the geometrical consistency results between images for
case III. The CBBA and CABA methods perform slightly better
than the single-image adjustment process for the WV, QB, and
GE images. The errors are approximately 0.5 m. The relative
discrepancy can be improved from about 3 m to less than 2 m.
The improvement is significant for the two FS images. The
relative discrepancy for the former is about 9 m, with single-
image adjustment. This decreases to approximately 3 m using
CBBA, and even more through CABA. The results are the same
for the second one. The errors obtained are from 7 m to about 4
and 3 m using CBBA and CABA, respectively.
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D. Summary of the Experimental Results

The experimental results are summarized as follows.
1) The proposed methods, including CBBA and CABA, im-

prove geometric consistency between images with respect
to single-image adjustment. The improvements are more
obvious in multiresolution case than in similar resolution
cases.

2) The geometrical performances of the CBBA and the
CABA are similar when similar resolution images are
employed. It is conjectured that, since the treated pa-
rameters of satellites are precise enough, and similar in
resolution, the differences between CBBA and CABA are
insignificant.

3) The CBBA and the CABA offer significant improvement
in absolute accuracy and geometric consistency with
lower resolution images during the process of single-
image adjustment when multiresolution images are used.

CBBA is more straightforward than CABA in terms of
the adjustment model. However, the CABA is more generally
applicable.

IV. CONCLUSION

In this paper, we have proposed two approaches to block
adjustment for multisensor satellite images, namely, CBBA and
CABA. The experimental results indicate that the proposed
methods can significantly improve the geometrical accuracy
as well as reduce discrepancies when multiresolution images
are used. Tests indicate that the proposed methods should be
feasible for real applications. Although the differences between
CBBA and CABA are insignificant when the resolutions of the
images are similar, CABA performs better in multiresolution
tests.
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