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Radial collector wells are often constructed near a stream to obtain more water and produce smaller
drawdown in comparison with traditional vertical wells. This paper aims at developing a mathematical
model for describing head distributions induced by pumping in a radial collector well near a stream in an
unconfined aquifer. A low permeable streambed between the stream and the aquifer is considered. The
first-order free surface equation is used to describe the movement of water table. A point-sink solution of
the model is developed first by a general transform combining Fourier sine and cosine transforms and
then by Fourier transform and Laplace transform. The transient solution of head distributions for different
well types such as the horizontal well or radial collector well can be obtained by integrating the point-
sink solution along the well. Based on Darcy’s law and the developed solution, an equation for temporal
stream depletion rate describing filtration from the stream is then obtained. The steady-state solutions
for filtration can be obtained from the transient solution when neglecting the exponential term associ-
ated with time. It is found that steady-state filtration depends only on the ratio of streambed permeabil-
ity over aquifer permeability. Steady-state filtration equals water extraction from a well when the ratio is
larger than 10�2. The streambed is regarded as completely impermeable when the ratio is less than 10�7.
Additionally, the lowest water table happens near the well before occurrence of filtration. The lowest
water table moves landward and away from the well after filtration occurs.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Radial collector wells have been commonly designed and used
to collect water from a nearby stream. The radial collector well de-
signed by Ranney Leo was developed from horizontal wells in
1930s (Hunt, 2006). A radial collector well generally comprises a
central reinforced concrete caisson and several laterals under the
ground surface. The central caisson is drilled downward with an
inside diameter ranging from 3 to 6 m or larger, and the laterals
horizontally extend from the central caisson at a proper depth in
an aquifer. The groundwater flows through the laterals to the
caisson if the radial collector well starts pumping.

Some researchers built a model or executed an experiment to
simulate groundwater flow due to pumping in a collector well.
Mikels and Klaer (1956) mentioned that a radial collector well
can be approximated as one vertical well with a radius of
75–80% of its lateral length. McWhorter and Sunada (1977) also
mentioned that one vertical well with a radius of 61% of lateral
length could approximate a radial collector well. Bischoff (1981)
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used a boundary element method to simulate groundwater move-
ment due to pumping in a radial collector well with three laterals
in a confined aquifer near a stream. Bakker et al. (2005) presented a
multilayer analytic element method for approximating groundwa-
ter flow to radial collector wells. They indicated that groundwater
flow can be simulated accurately by using such a method. Patel
et al. (2010) used an analytic element method to simulate stea-
dy-state discharge due to a radial collector well in an unconfined
aquifer. The pumping rate along the lateral is considered to vary
in space rather than keep a constant. Based on this method, they
provided an empirical equation to describe discharge from a radial
collector well. Dugat (2009) constructed a numerical model to
investigate groundwater flow to a radial collector well near a
stream in an unconfined aquifer. He indicated that the pumping
rate is an important factor to determine the quantity of pumped
water from background aquifer. Su et al. (2007) used a numerical
model to simulate an unsaturated region occurring between the
bottom of a partially-penetrating stream and the water table due
to pumping in two radial collector wells beneath the stream. They
found that the unsaturated region increases with the ratio of
hydraulic conductivity of the aquifer to that of streambed. Kim
et al. (2008) carried out sand-tank experiments of a collector well
consisting of one caisson and one lateral. Their results showed that
the water pumped from the caisson increases if the lateral length
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or diameter increases or if the water level in the caisson decreases.
Mohamed and Rushton (2006) developed a two dimensional (2D)
numerical model to calculate groundwater head due to a single
horizontal well. In their model, the effects of well diameter and
screen permeability were considered, and Hazen–Williams expres-
sion was employed to account for the flow within the well. In addi-
tion, they also carried out a field experiment to confirm their
model.

Some semi-analytical and analytical solutions had been pro-
posed to describe the groundwater flow and stream depletion rate
(SDR) to collector wells. The SDR is defined as the ratio of filtration
from a stream to water extraction from a pumping well. The SDR is
zero initially before a drawdown cone touches a stream and then
increases gradually with time. Finally, the SDR approaches one,
indicating that the SDR reaches steady state and filtration from a
stream is equal to water extraction from a well. Hantush and
Papadopoulos (1962) presented analytical solutions in terms of
well function to describe drawdown distribution due to pumping
in a radial collector well in an unconfined aquifer. The aquifer is
homogeneous, isotropic and of infinite extent in the horizontal
direction. Their drawdown solution for the presence of a stream
is obtained by the use of the method of images and therefore not
capable of considering a streambed effect on SDR or hydraulic
head. They reported that more laterals of the collector well result
in smaller drawdown. Javandel and Zaghi (1975) developed a
semi-analytical solution for describing head distributions induced
from a fully-penetrating well of a finite radius in a confined aqui-
fer. The bottom of the well has a finite-thickness disk with a larger
radius than the well. Sun and Zhan (2006) proposed a semi-analyt-
ical solution to describe water filtration from a reservoir to a single
horizontal well. The well was installed under the reservoir and ex-
tended infinitely in the horizontal direction. A finite-thickness
aquitard between the aquifer and reservoir was considered to have
vertical flow and specific storage. Tsou et al. (2010) derived analyt-
ical solutions to investigate head distributions and SDR induced
from pumping in a slanted well in a confined aquifer near a
fully-penetrating stream. Similarly, Huang et al. (2011) developed
analytical solutions for head distributions and SDR in unconfined
aquifer cases and investigated the behaviors of the SDR. However,
both articles neglect the effect of a low permeable streambed in the
development of the solutions for the hydraulic head and SDR.

The objective of this paper is to develop a mathematical model
for describing head distributions due to pumping in a radial collec-
tor well near a fully-penetrating stream in an unconfined aquifer. A
low permeable streambed is considered along the edge of the
stream; the stream is, therefore, treated as a third-type boundary
condition in the model. A first-order free surface equation is em-
ployed to describe the vertical movement of the phreatic surface.
The head solution of the model is obtained by applying Fourier
Fig. 1. Schematic diagram of a radial collector well in an unconfined aquife
transform, Laplace transform and R-transform which includes
the kernel functions of Fourier sine and cosine transforms. The
SDR is then derived based on the head solution and Darcy’s law.
The head distributions due to pumping in a radial collector well
predicted by the present solution are compared with those of
Hantush and Papadopulos’ solution (1962) and Hantush’s solution
(1965). In addition, the water levels predicted by the present solu-
tion are compared with observed field data of Schafer (2006) and
Jasperse (2009) to demonstrate the applicability of the present
solution to real-world problems. With the aid of the present solu-
tion, the effects of the configuration of laterals on the SDR and head
distributions at phreatic surface are investigated. Moreover, the
effects of the streambed permeability on the SDR and water table
distributions are also examined.
2. Methodology

2.1. Conceptual model

Fig. 1 shows the schematic representation for a three dimen-
sional (3D) conceptual model of a radial collector well in an aniso-
tropic unconfined aquifer near a stream. According to Jacob (1950)
as well as Todd and Mays (2005), a shallow stream or a partially-
penetrating stream can approximate a fully-penetrating one if
the distance between a stream and well is greater than 1.5 times
aquifer thickness. A fully-penetrating stream is therefore consid-
ered in the conceptual model. A semi-pervious material along the
stream edge is treated as the streambed which connects the stream
and aquifer. The origin of the coordinate system is located at the
interface between the aquifer and streambed. The top of the
stream is considered as a reference datum. The collector well con-
sists of a central vertical caisson with a large diameter and several
horizontal lateral pipes, each of which may have different length L.
The h represents an angle between the positive x-direction and the
lateral adjacent to the horizontal axis. The distance between the
center of the collector well and the stream edge is x0, and the depth
measured form the stream surface to horizontal laterals is z0. The
aquifer is of a depth H, and the thickness of the streambed is b0.

Three assumptions made in the model are as follows: 1. The
aquifer is homogenous. 2. The discharge intensity is assumed to
be uniformly distributed along all of laterals. 3. The stream stage
does not change during the pumping period, indicating that the
stream water is much more than the pumped water. For the prob-
lem with a variable stream, readers can refer to Intaraprasong and
Zhan (2009).

The point-sink solution for the model described above is devel-
oped herein. The governing equation describing 3D transient
hydraulic head distributions with a point sink can be expressed
r near a stream with a streambed (a) top view (b) cross section view.



50 C.-S. Huang et al. / Journal of Hydrology 446–447 (2012) 48–58
as (Tsou et al., 2010)

Kx
@2h
@x2 þ Ky

@2h
@y2 þ Kz

@2h
@z2 ¼ Ss

@h
@t
þ Qdðx� x0Þdðy� y0Þdðz� z0Þ ð1Þ

where Kx, Ky and Kz are hydraulic conductivities in x-, y- and z-direc-
tion, respectively; Ss is specific storage; Q is a positive constant
pumping rate; d() represents Dirac delta function and (x0, y0, z0) is
the coordinate of the point sink.

The permeability K0 of the streambed may be equal to or lower
than that of the aquifer. The edge of the streambed is therefore
considered as a third-type boundary condition for the model and
expressed as

Kx
@h
@x
� K 0

b0
h ¼ 0 at x ¼ 0 ð2Þ

Note that Eq. (2) reduces to a constant-head condition if the thick-
ness of streambed equals zero. The remote boundary conditions in
x- and y-direction are, respectively, denoted as

lim
x!1

h ¼ 0 ð3Þ

and

lim
y!�1

h ¼ 0 ð4Þ

The bottom of the unconfined aquifer is under a no-flow condition
and thus expressed as

@h
@z
¼ 0 at z ¼ �H ð5Þ

The top boundary describing the movement of the water table with-
out surface recharge is approximately expressed as (Yeh et al.,
2010)

Sy
@h
@t
¼ �Kz

@h
@z

at z ¼ 0 ð6Þ

which neglects second-order terms since the stream provides a part
of pumped water and the change of the water table may not be
large.

The initial condition is expressed as

h ¼ 0 at t ¼ 0 ð7Þ

which indicates no groundwater flow before pumping.
The dimensionless variables are introduced as follows:

xD ¼
x
H
; yD ¼

y
H
; zD ¼

z
H
; x0D ¼

x0

H
; y0D ¼

y0

H
; z0D ¼

z0

H

x0D ¼
x0

H
; y0D ¼

y0

H
; z0D ¼

z0

H
; LD ¼

L
H

tD ¼
Kx

H2Ss

t; hD ¼
p2KxH

Q
h

ð8Þ

According to Eq. (8), the governing Eq. (1) leads to

@2hD

@x2
D

þ jy
@2hD

@y2
D

þ jz
@2hD

@z2
D

¼ @hD

@tD
þ p2dðxD � x0DÞdðyD � y0DÞdðzD � z0DÞ

ð9Þ

where jy = Ky/Kx and jz = Kz/Kx.
Similarly, the boundary conditions and initial condition can be

rewritten as

@hD

@xD
þ ahD ¼ 0 at xD ¼ 0 ð10Þ

lim
x!1

hD ¼ 0 ð11Þ
lim
y!�1

hD ¼ 0 ð12Þ

@hD

@zD
¼ 0 at zD ¼ �1 ð13Þ

c
@hD

@tD
¼ �jz

@hD

@zD
at zD ¼ 0 ð14Þ

hD ¼ 0 at tD ¼ 0 ð15Þ

where a = �K0H/(Kxb0) and c = Sy/(SsH).

2.2. Head distribution solutions

Applying R-transform, Fourier transform and Laplace transform
to Eqs. (9)–(15) and inverting the result yield the point-sink solu-
tion shown below. For the detailed derivation, readers can refer to
Appendix A.

hDaðxD; yD; zD; tDÞ ¼ 2
Z 1

0

Z 1

0
ðUsðzDÞ þU0ðzD; tDÞ

þ
X1
n¼1

UnðzD; tDÞÞRðxDÞFðyDÞdndx

for z0D 6 zD 6 0 ð16Þ

hDbðxD; yD; zD; tDÞ ¼ 2
Z 1

0

Z 1

0
ðWsðzDÞ þW0ðzD; tDÞ

þ
X1
n¼1

WnðzD; tDÞÞRðxDÞFðyDÞdndx

for � 1 6 zD 6 z0D ð17Þ

with

UsðzDÞ ¼ �
coshðzDksÞ cosh½ð1þ z0DÞks�

jzks sinhðksÞ
ð18Þ

U0ðzD;tDÞ¼
2cosh½ð1þz0DÞb0�ð�b0jz coshðzDb0Þþck0 sinhðzDb0Þ

k0½ð1þ2cÞb0jz coshðb0Þþðjzþck0Þsinhðb0Þ�
ek0tD

ð19Þ

UnðzD; tDÞ ¼
2 cos½ð1þ z0DÞbn�ðbnjz cosðzDbnÞ þ ckn sinðzDbnÞ

kn½ð1þ 2cÞbnjz cosðbnÞ � ðjz þ cknÞ sinðbnÞ�
e�kntD

ð20Þ

WsðzDÞ ¼ �
coshðz0DksÞ cosh½ð1þ zDÞks�

jzks sinhðksÞ
ð21Þ

W0ðzD;tDÞ¼
2cosh½ð1þzDÞb0�ð�b0jz coshðz0Db0Þþck0 sinhðz0Db0Þ

k0½ð1þ2cÞb0jz coshðb0Þþðjzþck0Þsinhðb0Þ�
ek0tD

ð22Þ

WnðzD; tDÞ ¼
2 cos½ð1þ zDÞbn�ðbnjz cosðz0DbnÞ þ ckn sinðz0DbnÞ

kn½ð1þ 2cÞbnjz cosðbnÞ � ðjz þ cknÞ sinðbnÞ�
e�kntD

ð23Þ

RðxDÞ¼
a2 sinðxx0DÞsinðxxDÞ�axsin½ðxDþx0DÞx�þx2 cosðxx0DÞcosðxxDÞ

a2þx2

ð24Þ

FðyDÞ ¼ cos½ðyD � y0DÞn� ð25Þ

ks ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
jz
ðx2 þ jyn

2Þ

s
ð26Þ



Table 1
The default values of dimensional parameters.

Parameter Value

Kx (m/day) 1
Ky (m/day) 1
Kz (m/day) 0.1
K0 (m/day) 0.1
b0 (m) 1
Ss (1/m) 10�4

Sy 0.3
H (m) 10
N (lateral number) 3
L1 = L2 = L3 (m) 10
Q (m3/day) 10
x0 (m) 20
y0 (m) 0
z0 (m) �8
h1 0
h2 2p/3
h3 4p/3
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k0 ¼ b2
0jz � jyn

2 �x2 ð27Þ

kn ¼ b2
njz þ jyn

2 þx2 ð28Þ

where x and n are the variables of R-transform and Fourier trans-
form, respectively; b0 and bn are respectively the roots of the fol-
lowing equations:

e2b0 ¼ b0jz � cðb2
0jz � jyn

2 �x2Þ
b0jz þ cðb2

0jz � jyn
2 �x2Þ

ð29Þ

tanðbnÞ ¼ �
cðb2

njz þ jyn
2 þx2Þ

bnjz
ð30Þ

Note that Eq. (30) has infinite roots because of the function
tan (bn), and the positive roots of Eqs. (29) and (30) are chosen
for evaluating the integration of Eqs. (16) and (17). The roots of
Eqs. (29) and (30) are close to the location of vertical asymptotes.
The asymptote for Eq. (29) can be derived from letting its denom-
inators be zero. The asymptote for Eq. (30) results from the func-
tion tan (bn). Therefore, the roots of Eqs. (29) and (30) can be
obtained by Newton’s method with the initial guesses ½�jzþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2
z þ 4jzc2ðjyn

2 þx2Þ
q

�=ð2jzcÞ þ 10�9 and (2n � 1)p/2 + 10�9,

respectively, where n is an integer from 1, 2, 3, . . . ,1 and 10�9

represents a small shift to avoid initial guesses being located at
the vertical asymptotes.

The solution for describing head distributions induced by a ra-
dial collector well with several laterals is obtained by dividing
the sum of all lateral length and by integrating the point-sink solu-
tion, Eqs. (16) and (17), along all laterals. Such integration is based
on the assumption that the discharge intensity, defined as Q/
(Li + � � � + LN), is a constant over all of laterals. The result is
expressed as

haRðxD; yD; zD; tDÞ ¼
XN

i¼1

1
LDi þ � � � þ LDN

Z LDi

0
hDadl for z0D 6 zD 6 0

ð31Þ

hbRðxD; yD; zD; tDÞ ¼
XN

i¼1

1
LDi þ � � � þ LDN

Z LDi

0
hDbdl for � 1

6 zD 6 z0D ð32Þ

with

x0D ¼ l cosðhiÞ þ x0D ð33Þ

y0D ¼ l sinðhiÞ þ y0D ð34Þ

z0D ¼ z0D ð35Þ

where l is a dummy variable, N is the number of the laterals, and
subscript i represents the ith lateral. The steady-state head solu-
tions for Eqs. (31) and (32) can be obtained by neglecting U0, Un,
W0, and Wn where the exponential terms become small when time
goes very large.

2.3. Stream depletion rate

Based on Darcy’s law, filtration from a stream can be written as

q ¼ �
Z

X
K 0

h
b0
;dA at xD ¼ 0 ð36Þ

where X represents the whole domain of the streambed and h rep-
resents dimensional hydraulic head for the aquifer at xD = 0. Accord-
ing to dimensionless variables and Eqs. (31) and (32), the SDR can
be written as
SDR ¼ q
Q
¼ a

p2

Z 1

�1

Z 0

z0D

haRdzD þ
Z z0D

�1
hbRdzD

� �
dyD at xD ¼ 0

ð37Þ
2.4. Numerical evaluations

The integrals of Eqs. 31, 32, and 37 can be calculated by using
Gaussian quadrature (e.g., Gerald and Wheatley, 2004). The inte-
grands in these three equations exhibit oscillatory behaviors be-
cause of trigonometric functions. Each of these integrals can be
expressed as a sum of infinite series and each term of the series
can be determined by calculating the area between two consecu-
tive roots of the integrand along n or x axis. In addition, each area
is evaluated by 3-term Gaussian quadrature formula. The series
converges quickly and generally takes about 20 terms to achieve
an accuracy of centimeter.

3. Results and discussion

Table 1 shows the default dimensional parameters for the stud-
ies in following sections. The aquifer is of anisotropy with vertical
hydraulic conductivity smaller than horizontal one. A radial collec-
tor well is considered to have three laterals with equal length, and
the configuration of the lateral is symmetric to center of the well as
demonstrated in Fig. 2 for the top view.

3.1. Comparison with Hantush and Papadopoulos’ long-time solution
(1962)

Hantush and Papadopoulos (1962) presented short-time and
long-time solutions describing drawdown distributions induced
by pumping at a radial collector well in an isotropic unconfined
aquifer extending infinitely. In other words, their solutions can
give good accuracy in predicting head only using the short-time
solution for small pumping time and the long-time solution for
large pumping time.

The present solution can be used to predict head over the whole
time domain and can simulate head distributions in an aquifer
extending infinitely. The well is located at x = 150 m which is far
away from the stream, and the drawdown cone does not reach
the stream. Fig. 2 shows spatial head distributions at the elevation
of installing the well predicted by their large-time solution and the
present solution. The radius of the caisson is considered as 0.1 m in
their solution for the comparison with the present solution. The
aquifer is isotropic with the conductivities Kx = Ky = Kz = 1 m/day.
The time is set as 210 days for their large-time solution. The thick



Fig. 2. Spatial head distributions predicted from Hantush and Papadopulos’
long-time solution (1962) and the present solution at z = z0 when t = 210 days.
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solid lines represent the laterals of the collector well. The contours
of head predicted from the present solution are denoted by the
dotted lines, and those from their solution are represented by the
dashed lines. The figure shows that, the contours of the predicted
heads from both solutions match very well, especially near the lat-
erals. These results indicate that the present solution has a good
performance in simulating head distributions in an aquifer of infi-
nite extent.

3.2. Comparison with Hantush’s solution (1965)

Hantush (1965) presented an analytical solution for describing
head distributions induced by pumping at a fully-penetrating
Fig. 3. Steady-state head distributions at water table predicted from Hantush’s
solution (1965) and the present solution at z = 0 for various y.
vertical well in an aquifer near a stream. The vertical flow is ne-
glected based on the Dupuit assumption. The aquifer is of semi-
infinite extent in the horizontal direction. The stream fully pene-
trating the aquifer is treated as a third-type boundary.

The steady-state water table predicted from Hantush’s solution
(1965) for pumping at a vertical well and from the present solution
for a radial collector well with three laterals are compared for y = 0
and 200 m as shown in Fig. 3. For the case of y = 0, the head from
the present solution is larger than that from Hantush’s solution
(1965) between x = 0 m and x = 50 m. The collector well produces
significantly smaller drawdown than the vertical well as shown
in the figure. This is because the collector well has three laterals
extending with L1 = L2 = L3 = 10 m. The area where groundwater is
pumped by the collector well distributes much wider than that
of the vertical well. The difference between the present solution
and Hantush’s solution (1965) is however very small in the case
of y = 200 m for �1 6 x 61 and in the case of y = 0 for
x P 100 m. This reflects that the effect of well type on the head dis-
tributions is insignificant for those locations far away from the
well.

3.3. Effect of streambed on SDR and head

Steady-state SDR depends only on the ratio of streambed per-
meability K0 over aquifer permeability Kx. Substituting the first
terms of Eqs. (31) and (32) into Eq. (37) yields steady-state SDR
which is independent of time. The type curve of steady-state SDR
versus the ratio of K0/Kx is shown in Fig. 4. When K0/Kx P 10�2,
the value of the steady-state SDR is one, indicating that the filtra-
tion rate from a stream to an aquifer is equal to the discharge ex-
tracted from a well. The large drawdown therefore happens in a
small area in the range of 0 6 x 6 200 m as shown in Fig. 5 for
the cases of K0/Kx P 10�2. Note that no discontinuity in water table
between the aquifer and stream happens as shown in Fig. 5 for the
case of K0/Kx = 1, and the streambed can be regarded as a part of the
aquifer. Under such a condition, Eq. (2) can be replaced by a con-
stant-head boundary, h = 0. When K0/Kx < 10�2, the value of the
steady-state SDR is less than one. The filtration rate is less than
the well extraction rate. Such a problem produces deep and wide
drawdown cones as shown in Fig. 5 for K0/Kx < 10�2. When
K0/Kx < 10�7, the value of the steady-state SDR is zero. The filtration
does not happen for the entire period of pumping time, and the
Fig. 4. Type curve of steady-state SDR versus K0/Kx.



Fig. 5. Steady-state head distributions at water table due to pumping in a radial
collector well with three symmetrical laterals at y = 0 for various K0/Kx.

Fig. 6. Temporal distribution curves of SDR for various K0/Kx.

Fig. 7. Temporal distribution curves of SDR due to pumping in a radial collector
well with three symmetrical laterals for various Kz/Kx.
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streambed is indeed a no-flow boundary. Under such a circum-
stance, Eq. (2) can be replaced by oh/ox = 0.

The permeability of the streambed affects the value of SDR.
Fig. 6 shows the curves of temporal SDR for various K0/Kx based
on Kx = 1 m/day. The curve with a smaller K0/Kx has a smaller value
of SDR than those with a larger one. The low permeability of a
streambed therefore results in a small filtration rate at a fixed time.
For each of curves, the SDR increases with time and then reaches
steady state at different values as expected in Fig. 4. It is worth
noting that the difference between the curves with K0/Kx = 1 and
K0/Kx = 10�1 is very small. This is because the permeability of the
streambed is close to that of the aquifer.
3.4. Effect of vertical hydraulic conductivity on SDR

The vertical hydraulic conductivity of an aquifer is generally
smaller than the horizontal one. The temporal distribution curves
of SDR for various Kz are shown in Fig. 7 which exhibits two differ-
ent patterns of the curves. One has five stages for the cases of
Kz 6 0.05; this has a period of zero SDR at beginning, a rapid in-
crease at early time, a flat period at middle time, a marked increase
again at late time, and an equilibrium state finally. During the first
stage, water extracted by a well comes entirely from elastic release
due to the compression of the aquifer and the expansion of water.
The hydraulic gradient at the stream boundary maintains zero, and
thus the SDR is zero. In the second stage, the elastic release slows
or stops, and a drawdown cone reaches the stream boundary. The
SDR therefore increases with time. During the third stage, gravity
drainage from a decline of water table starts to supply the well
extraction. The SDR curve therefore becomes flat. During the fourth
stage, the gravity drainage diminishes and the SDR increases again.
Finally, the groundwater flow reaches steady state and all the
water extracted from the well is from the stream in the equilib-
rium state. For the cases of Kz > 0.05, there are three stages as
shown in Fig. 7 including a period of zero SDR at early time, a con-
junctive water supply from the stream to the aquifer in the inter-
mediate period, and finally the equilibrium state. In addition,
Fig. 7 also shows that the aquifer with a smaller Kz has larger
SDR than that with a larger one, indicating that a smaller Kz results
in less water from the gravity drainage and more water from the
stream for a fixed pumping rate.
3.5. Location of lowest water table

The location of the lowest water table depends on the period of
filtration from a stream to an aquifer. Fig. 8 displays the contours of
temporal water table distributions for pumping times at 0.001,
0.01, 1, and 100 days. The contours distribute over 10 6 x 6 30
and �10 6 y 6 10 at t = 0.001 day shown in Fig. 8a, indicating that
the drawdown cone has not yet touched the stream, and thus fil-
tration has not started. The lowest water table appears exactly at
the center of the well (i.e., x = 20 m and y = 0), and the contours re-
flects the lateral configuration. The drawdown cone has touched
the stream at t = 0.01 day indicated in Fig. 8b and the lowest head
is still near the center of the well. As the time elapses, the filtration
from the stream recharges the adjacent aquifer and consequently
the lowest head moves away from the stream. The profile of the
contours moves landward and turns into a circle as displayed in
Fig. 8c at t = 1 day and in Fig. 8d at t = 100 day.



Fig. 8. The contours of transient water table due to pumping in a radial collector well with three symmetrical laterals for various times. (a) t = 0.001 day. (b) t = 0.01 day. (c)
t = 1 day. (d) t = 100 day.
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Those figures indicate that the water pumped by the laterals A
and B comes mainly from filtration for the aquifer near the stream
(i.e., 0 6 x 6 20) and the drawdown in this area is therefore small.
On the other hand, the water pumped by the lateral C comes
mainly from groundwater in the inland area for x P 20 and the
drawdown in this region is therefore large.
3.6. Effect of different lateral configuration on water table and SDR

Fig. 9 shows the contours of water table due to pumping from a
radial collector well in four cases with different lateral configura-
tions. Case (a) is designed for the scenario with symmetrical later-
als to the center of the well, case (b) for non-symmetrical laterals,
case (c) for the laterals toward a stream, and case (d) for the later-
als landward. Among these four cases, case (c) has the least draw-
down contour because its laterals are closer to the stream and
obtain more water from the stream. Therefore, the highest SDR
in case (c) can be expected as demonstrated in Fig. 10. On the other
hand, case (d) has the lowest SDR because its laterals are landward.
In addition, case (b) has a smaller drawdown contour and larger
SDR in comparison with case (a) because the laterals A and B in
case (b) are slightly closer to the stream than those in case (a) as
shown in Fig. 9.

The number of symmetrical laterals has insignificant effects on
SDR. Fig. 11 illustrates temporal SDR for collector wells with differ-
ent number N of a symmetrical lateral configuration. There is no
difference between those three curves of L = 10 m since the short-
est distance between the stream and well is almost the same. The
curve of L = 20 m however has a slightly larger SDR than those of
L = 10 m when the number of lateral is the same, i.e., N = 5. This
is because the long lateral has a shorter distance to the stream
and results in more water from the stream.
3.7. Comparison with field data from Schafer (2006)

Schafer (2006) carried out a constant-rate pumping test for a
collector well with seven laterals near Ohio River in Louisville,
Kentucky. The data of the well configuration is listed in Table 2
and the data of aquifer parameters is given in Table 3. During the
pumping period of 70 days, the pumping rate Q1 was maintained



Fig. 9. The contours of steady-state water table due to pumping in a radial collector well with four different configurations. (a) Symmetry, (b) non-symmetry, (c) laterals
toward stream, and (d) laterals landward.

Fig. 10. Temporal distribution curves of SDR for four different lateral
configurations. Fig. 11. Temporal distribution curves of SDR for various lateral number and length.
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Table 2
The data for the configuration of the radial
collector well installed near Ohio River in Lou-
isville, Kentucky.

Lateral data Value

L1 (m) 61
L2 (m) 61
L3 (m) 61
L4 (m) 73
L5 (m) 73
L6 (m) 73
L7 (m) 73
h1 0
h2 p/2
h3 3p/2
h4 7p/10
h5 9p/10
h6 11p/10
h7 13p/10

Table 3
The parameter values for the aquifer near Ohio River in
Louisville, Kentucky.

Parameter Value

Kx (m/day) 119
Ky (m/day) 119
Kz (m/day) 40
K0/b0 (1/day) 2.35
Ss (1/m) 3.64 � 10�5

Sy 0.3
H (m) 27
x0 (m) 45
y0 (m) 0
z0 (m) �22.5

Fig. 12. Water levels predicted by the present solution and the observed field data
from Schafer (2006).

Fig. 13. Water levels predicted by the present solution and the observed field data
from Jasperse (2009).

Table 4
The data for the configuration of the radial
collector well near Russian River in California.

Lateral data Value

L1 (m) 21.3
L2 (m) 48.8
L3 (m) 51.8
L4 (m) 30.5
L5 (m) 27.4
L6 (m) 24.4
L7 (m) 39.6
L8 (m) 33.5
L9 (m) 48.8
L10 (m) 42.7
h1 5p/36
h2 5p/18
h3 11p/18
h4 38p/45
h5 41p/36
h6 23p/18
h7 3p/2
h8 29p/18
h9 83p/45
h10 35p/18

Table 5
The parameter values for the aquifer near Russian
River in California.

Parameter Value

Kx (m/day) 650
Ky (m/day) 650
Kz (m/day) 216.7
K0/b0 (1/day) 0.2
Ss (1/m) 4 � 10�5

Sy 0.3
H (m) 25
x0 (m) 107
y0 (m) 0
z0 (m) �16.8
(x, y) of TW3 (224.2, �40.3)
(x, y) of TW11 (119, �16.5)
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about 73,440 m3/day except in the middle period from 26 to
31 days during which the pumping rate Q2 was increased to about
81,010 m3/day as shown in Fig. 12. This figure shows that the
water level predicted by the present solution based on the pump-
ing rate 73,440 m3/day has a good agreement with the water level
observed in the caisson over the whole pumping period except in
the middle period. The discrepancy reflects the increase of the
pumping rate in that period. The slight difference at early pumping
period may result from a larger hydraulic conductivity of the aqui-
fer near Ohio River than that away from the river.
3.8. Comparison with field data from Jasperse (2009)

Jasperse (2009) also executed a constant-rate pumping test for a
collector well with 10 laterals near Russian River in California.
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Fig. 13 reveals the water level predicted by the present solution
with a pumping rate of 67,390 m3/day and the observed water le-
vel measured from the caisson and two monitoring wells: TW3 and
TW11. The data of the well configuration are given in Table 4 and
the values of aquifer parameters are listed in Table 5. The distances
measured from the caisson to TW3 and TW11 are 124 and 20 m,
respectively. The well water level predicted by the present solution
fairly agrees with the observed water level for the cases of Caisson
and TW11. However, the predicted water level by the present solu-
tion slightly differs from the observed one for the case of TW3.
Such a difference may be caused by aquifer heterogeneity since
the distance between the caisson and TW3 is large.
4. Concluding remarks

An analytical solution is developed for describing transient
hydraulic head for pumping from a radial collector well in an
unconfined aquifer near a stream. The aquifer is considered to be
homogenous and anisotropic. The streambed connecting the
stream and aquifer is treated as a third-type boundary. The first-
order free surface equation is used to describe the hydraulic head
at water table. The head solution is derived by R-transform,
Fourier transform and Laplace transform. The temporal SDR is
derived according to Darcy’s law and the head solution. The
steady-state head or SDR solution can be obtained by neglecting
the exponential terms involved in time. The present solution gives
very good predicted head distributions when compared with those
from Hantush and Papadopoulos’ long-time solution (1962) under
the condition that the collector well is installed far away from the
steam. According to the comparison of head distributions from the
present solution with those from Hantush’s solution (1965), a col-
lector well results in smaller drawdown than a vertical well if
adopting several long laterals. The solution is also used to predict
hydraulic head near the caisson of the collector well for the
real-world cases given in Schafer (2006) and Jasperse (2009). The
predicted results seem to be reasonable when compared with
observed field data. Some behaviors of groundwater flow caused
by pumping in a collector well are investigated and the conclusions
can be made below:

1. The steady-state SDR depends only on the ratio of K0/Kx. If
K0/Kx P 10�2, steady-state SDR is one. If K0/Kx < 10�7, steady-
state SDR is zero. If 10�7 < K0/Kx 6 10�2, steady-state SDR
increases from 0 to 1 with K0/Kx.

2. If K0/Kx 6 10�2, a deep and wide drawdown cone is eventually
produced for a long period of pumping time.

3. A streambed with a lower permeability than an aquifer results
in a smaller SDR for a fixed time.

4. The curve of temporal SDR for an unconfined aquifer has a mid-
dle flat period due to gravity drainage from water table. How-
ever, this flat period vanishes gradually with increasing Kz.

5. Before the occurrence of filtration, the largest drawdown occurs
right at the center of a collector well. Once the filtration starts
to recharge the aquifer, the largest drawdown begins to move
landward and away from the center of a collector well.

6. The collector well obtains more SDR and produces less draw-
down if the laterals are installed toward the stream.

7. The effect of the lateral number on SDR is insignificant if the lat-
erals are symmetric to the center of a collector well.
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Appendix A. Derivation of Eqs. (16) and (17)

A general transform called R-transform (Sneddon, 1972, pp.
70–76; Sun and Zhan, 2007), combining Fourier sine and Fourier
cosine transforms, is applied to Eq. (9) along with the third-type
boundary condition, Eq. (10). The transform is defined by following
relations

FðxÞ ¼ Rff ðxÞg ¼
ffiffiffiffi
2
p

r Z 1

0
f ðxÞx cosðxxÞ � a sinðxxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p dx ðA:1Þ

f ðxÞ ¼ R�1fFðxÞg

¼
ffiffiffiffi
2
p

r Z 1

0
FðxÞx cosðxxÞ � a sinðxxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p dx ðA:2Þ

and has a property that

R
@2f
@x2

( )
¼ �x2FðxÞ �

ffiffiffiffi
2
p

r
x

@f
@x
þ af

� �
ðA:3Þ

where x is the variable of R-transform and a is a constant arisen
from the third-type boundary condition. Note that a necessary
requirement for satisfying Eq. (A.3) is lim

x!1
f ðxÞ ¼ 0. Applying

R-transform, Fourier transform and Laplace transform sequentially
to Eqs. (9)–(15) to remove the variables of xD, yD and tD results in an
ordinary differential equation (ODE) and boundary conditions in
terms of zD as

jz
@2�hD

@z2
D

� ðpþx2 þ jyn
2Þ�hD ¼

A
p

dðzD � z0DÞ ðA:4Þ

jz
@�hD

@zD
¼ �cp�hD at zD ¼ 0 ðA:5Þ

@�hD

@zD
¼ 0 at zD ¼ �1 ðA:6Þ

with

A ¼ peiny0D
x cosðxx0DÞ � a sinðxx0DÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p ðA:7Þ

where i is an imaginary unit; x and n are the variables of R-trans-
form and Fourier transform, respectively.

Due to the property of Dirac delta function, Eq. (A.4) turns into
two homogeneous equations as

jz
@2�hDa

@z2
D

� ðpþx2 þ jyn
2Þ�hDa ¼ 0 for z0D 6 zD 6 0 ðA:8Þ

jz
@2�hDb

@z2
D

� ðpþx2 þ jyn
2Þ�hDb ¼ 0 for � 1 6 zD 6 z0D ðA:9Þ

where �hDa and �hDb represent hydraulic head in Laplace and Fourier
domains above and below z0D, respectively. The hydraulic head is
continuous at z ¼ z0D; therefore, a continuity requirement at
zD ¼ z0D can be expressed as

�hDa ¼ �hDb at zD ¼ z0D ðA:10Þ

In contrast, the hydraulic gradient is discontinuous at zD ¼ z0D due to
Dirac delta function. Integrating Eq. (A.4) from zD ¼ z0�D to zD ¼ z0þD
yields another continuity requirement at zD ¼ z0D as
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@�hDa

@zD
� @

�hDb

@zD
¼ A

jzp
at zD ¼ z0D ðA:11Þ

Solve Eqs. (A.8) and (A.9) simultaneously with boundary conditions,
Eqs. (A.5), (A.6), and continuity requirements, Eqs. (A.10) and (A.11).
One can obtain the solution in Fourier and Laplace domains as

�hDa ¼
A cosh½ð1þ z0DÞk�½�jzk coshðzDkÞ þ pc sinhðzDkÞ�

pjzk½jzk sinhðkÞ þ pc coshðkÞ�
for z0D 6 zD 6 0 ðA:12Þ

�hDb ¼
A cosh½ð1þ zDÞk�½�jzk coshðz0DkÞ þ pc sinhðz0DkÞ�

pjzk½jzk sinhðkÞ þ pc coshðkÞ�
for � 1 6 zD 6 z0D ðA:13Þ

where

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþx2 þ jyn

2Þ
jz

s
ðA:14Þ

Multiplying the term of ep tD to the right-hand sides of Eqs. (A.12)
and (A.13) because of the definition of inverse Laplace transform re-
sults in two single-value functions to the variable p. Accordingly,
the inverse Laplace transform to Eqs. (A.12) and (A.13) can be ob-
tained by summing the residues of poles in complex plane based
on Bromwich integral (Yeh and Yang, 2006).

The poles are the roots of equations derived by letting the
denominator of Eqs. (A.12) and (A.13) to be zero. Note that
the denominator of Eq. (A.12) is the same as that of Eq. (A.13).
One pole obviously occurs at p = 0 while the other poles at
negative position of the real axis in which one pole p0 exists be-

tween p = 0 and p = �(x2 + jyn
2) and infinite poles pn happen be-

hind p = �(x2 + jyn
2). For the expression without i, substituting

p = p0 into Eq. (A.14) and then letting k = b0 lead to
p0 ¼ jzb

2
0 �x2 � jyn

2. Note that b0 is a positive value because p0

is located between p = 0 and p = �(x2 + jyn
2). Similarly, substitut-

ing p = pn into Eq. (A.14) and then letting k = ibn result in
pn ¼ �jzb

2
n �x2 � jyn

2 where bn is also positive values since pn

is smaller than �(x2 + jyn
2). Eventually, substituting p = p0 and

p0 ¼ jzb
2
0 �x2 � jyn

2 into the denominator of Eq. (A.12) and then
letting the result to be zero yield Eq. (29). In a similar matter,
substituting p = pn and pn ¼ �jzb

2
n �x2 � jyn

2 into the same
denominator and then letting the result to be zero yield Eq. (30).

With known locations of the poles in the complex plane, the
residues of the poles for Eqs. (A.12) and (A.13) can be estimated by

Resjp¼pN
¼ lim

p!pN

f ðpÞeptD ðp� pNÞ ðA:15Þ

where Resjp¼pN
represents the residue of the pole pN for f(p), and f(p)

represents �hD a in Eq. (A.12) or �hD b in Eq. (A.13). The residues for
Eq. (A.12) are first estimated and thus f ðpÞ ¼ �hD a. The residue at
p = 0 can be determined by substituting pN = 0 into Eq. (A.15). The
result is

Resjp¼0 ¼ �
A cosh½ð1þ z0DÞk� coshðzDkÞ

jzk sinhðkÞ ðA:16Þ

Substituting k = b0 and pN ¼ p0 ¼ jzb
2
0 �x2 � jyn

2 into Eq. (A.15)
and then applying L’Hopital’s rule result in the residue at p = p0 as

Resjp¼p0

¼ �2A cosh½ð1þ z0DÞb0�ðb0jz coshðzDb0Þ � ck0 sinhðzDb0Þ
k0½ð1þ 2cÞb0jz coshðb0Þ þ ðjz þ ck0Þ sinhðb0Þ�

ek0tD

ðA:17Þ

Similarly, the residue at p = pn can be obtained by substituting
k = ibn and pN ¼ pn ¼ �jzb

2
n �x2 � jyn

2 into Eq. (A.15) and apply-
ing L’Hopital’s rule as
Resjp¼pn
¼ 2A cos½ð1þ z0DÞbn�ðbnjz cosðzDbnÞ þ ckn sinðzDbnÞ

kn½ð1þ 2cÞbnjz cosðbnÞ � ðjz þ cknÞ sinðbnÞ�
e�kntD

ðA:18Þ

The sum of Eqs. (A.16)–(A.18) is the inverse Laplace transform of
Eq. (A.12). Eventually, taking the inverse Fourier transform and
R-transform yields head solution, Eq. (16). Similarly, based on the
derivation of Eq. (16) shown above, Eq. (17) can also be obtained
from Eqs. (A.13) and (A.15) in a similar manner.
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