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Calculation of the heavy-hadron axial couplings g,, g,, and g5 using lattice QCD
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In a recent letter [Phys. Rev. Lett. 108, 172003 (2012)] we have reported on a lattice QCD calculation of
the heavy-hadron axial couplings g;, g,, and g;. These quantities are low-energy constants of heavy-
hadron chiral perturbation theory (HHxPT) and are related to the B*Br, 3} %, 7, and E(b*)Abn' couplings.
In the following, we discuss important details of the calculation and give further results. To determine the
axial couplings, we explicitly match the matrix elements of the axial current in QCD with the
corresponding matrix elements in HHYPT. We construct the ratios of correlation functions used to
calculate the matrix elements in lattice QCD, and study the contributions from excited states. We present
the complete numerical results and discuss the data analysis in depth. In particular, we demonstrate the
convergence of SU(4|2) HHyPT for the axial-current matrix elements at pion masses up to about
400 MeV and show the impact of the nonanalytic loop contributions. Finally, we present additional

predictions for strong and radiative decay widths of charm and bottom baryons.
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L. INTRODUCTION

Two important symmetries which allow many predic-
tions in nonperturbative QCD are chiral symmetry [1] and
heavy-quark symmetry [2]. Both symmetries are a conse-
quence of the large separation of scales in the quark
masses, relative to the intrinsic scale of QCD. In chiral
perturbation theory, an expansion is performed around the
limit where the light-quark masses vanish, and the dynam-
ics is determined by derivatively coupled pions, associated
with the spontaneous breaking of chiral symmetry. In
heavy-quark effective theory, an expansion is performed
around the static limit, where a quark mass is infinitely
heavy. In that limit, the heavy quark acts as a pointlike
color source with a fixed velocity, and the spin of the
heavy quark decouples. Corrections to the static limit
are suppressed by powers of Aqcp/mg, where my, is the
heavy-quark mass. Because Aqgcp/my, is particularly
small, the static limit is a good approximation to describe
the dynamics of hadrons containing a bottom quark. For
charmed hadrons, the static limit is still a reasonable first
approximation.

At the hadronic level, the combination of chiral symme-
try and heavy-quark symmetry into a single effective the-
ory leads to a framework known as heavy-hadron chiral
perturbation theory (HHyPT), which describes the inter-
actions of heavy-light hadrons with pions and kaons [3-8].
At leading order, the HHyPT Lagrangian contains three
axial couplings g, g, and g3. The coupling g, determines
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the strength of the interaction between heavy-light mesons
and pions, while g, and g5 similarly determine the inter-
action of heavy-light baryons with pions.

In the meson sector, the strong decay B* — B is kine-
matically forbidden. However, virtual pion loops contrib-
ute to much of the physics of B mesons, and the coupling
g appears in calculations of important observables such as
B meson masses, decay constants, bag parameters and
form factors within chiral perturbation theory [9-11].
Precise knowledge of these hadronic observables is needed
for flavor physics, both within and beyond the standard
model. In this context, chiral perturbation theory is needed,
in particular, to describe the quark-mass dependence of
lattice QCD results for such observables. Most current
lattice QCD calculations are performed at unphysically
large values of the up- and down-quark masses to reduce
the amount of computer time needed. The results from a
range of quark masses must then be extrapolated to the
physical values of the light-quark masses. Chiral perturba-
tion theory predicts the functional form needed for this
extrapolation, but the uncertainty in the final result is
influenced significantly by the uncertainty in the value of
the axial coupling g; [12].

While most of heavy-flavor physics has traditionally
focused on the B mesons, measurements at the LHC and
super-B factories will extend the knowledge of flavor
physics in the bottom-baryon sector, which provides com-
plementary constraints on new physics models because of
the different spin of the baryons. Therefore, lattice QCD
calculations of bottom-baryon observables such as form
factors are needed, and as in the meson sector, chiral
extrapolations of the data need to be performed. For bary-
ons, the accuracy of such extrapolations can be improved
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dramatically if the values of the couplings g, and g5 are
known. The coupling g5 is related to the strong decays

25,*) — A, 7, which are kinematically allowed. The widths
of these decays have recently been measured at Fermilab
[13], but the experimental uncertainty is still large.

The axial couplings g;, g,, and g5 are calculable from
the underlying theory, QCD. The only reliable approach for
these nonperturbative observables is lattice QCD. While
there are no previous lattice calculations of g, and g3, a
number of groups have performed lattice computations of
the coupling g, both in the quenched approximation (i.e.,
neglecting the vacuum-polarization effects of light quarks)
[14-16] and with n; = 2 dynamical flavors [17-19]. In
these lattice calculations, one computes matrix elements of
the axial current, and relates these matrix elements to the
coupling g;. To fit the data and extract g, theoretical
knowledge of the light-quark-mass dependence of the
axial-current matrix elements is required. The previous
lattice calculations used fits that were linear or quadratic
in the pion mass, or including logarithms, but the correct
chiral perturbation theory predictions were not known.

We have recently derived the expressions for the axial-
current matrix elements at next-to-leading order in par-
tially quenched heavy-hadron chiral perturbation theory,
both for the mesons and the baryons [20]. We have then
performed the first complete lattice QCD calculation of the
three axial couplings g1, g2, g3, controlling all systematic
uncertainties [21]. In the following, we discuss important
details of the analysis that were omitted for brevity in
Ref. [21], and present some additional results.

Our calculation includes ny = 2 + 1 flavors of dynami-
cal light quarks, and makes use of data at six different
values of the quark masses corresponding to (valence) pion
masses as low as 227 MeV. Two different lattice spacings
of a = 0.112 fm and a = 0.085 fm are used to perform a
continuum extrapolation. The spatial volume is (2.7 fm)?,
large enough so that finite-size effects are very small and
can be removed by using finite-volume heavy-hadron chi-
ral perturbation theory in the p regime. Because the axial
couplings g;, g5, g3 are defined in the static limit, we use
the static lattice action of Ref. [22], modified using
smeared gauge links to reduce noise [23], for the heavy
quark. We implement the light quarks with a domain-wall
action [24-26]. This is a five-dimensional formulation that
realizes a lattice chiral symmetry for the four-dimensional
theory, which becomes exact, even at finite lattice spacing,
when the extent of the auxiliary fifth dimension is taken to
infinity. As a result, the renormalization of operators is
simplified and discretization errors are small. Our calcu-
lations make use of gauge field ensembles generated by the
RBC and UKQCD collaborations [27].

This paper is organized as follows: We begin with an
introduction to HHYPT in Sec. Il A. We derive the matrix
elements of the axial Noether current at leading order in
HHYPT using canonical quantization in Sec. IIB. The
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ratios of correlation functions used to calculate the corre-
sponding matrix elements in lattice QCD are constructed in
Sec. I1 C, where we also show their spectral decomposition.
The details of the lattice actions and parameters are given
in Sec. III. We present the numerical results for the ratios of
correlation functions in Sec. IVA, and explain our method
for extracting the ground-state contributions to the matrix
elements in Sec. IV B. In Sec. IV C, we then describe the
chiral fits using SU(4|2) HHxPT, including the effects of
finite volume and nonzero lattice spacing. We compare our
lattice QCD results for the axial couplings to various
estimates reported in the literature in Sec. V. The calcu-
lations of heavy-baryon decay widths are presented in
Sec. VI, and we conclude in Sec. VII. Appendix A contains
further plots of numerical data, and Appendix B contains a
comparison of our ratio method with an alternative ap-
proach (the summation method).

II. AXTAL COUPLINGS FROM RATIOS OF
CORRELATION FUNCTIONS

A. Heavy-hadron chiral perturbation theory

For hadrons containing a heavy quark (or antiquark), in
the static limit m, — oo, the spin of the light degrees of
freedom, s;, becomes a conserved quantum number. The
lowest-lying static-light mesons have s; = 1/2, and are
therefore grouped into pseudoscalar mesons, described
by a field P', and vector mesons, described by a field P}/.
We work with heavy-light mesons containing a light quark
of flavor i = u, d and a heavy antiquark. The vector meson
field satisfies v“P;‘j = 0, where v is the four-velocity; this
is a parameter of the effective theory, subject to the con-
straint v> = 1. Because of heavy-quark spin symmetry, the
pseudoscalar and vector mesons are degenerate. To make
the heavy-quark symmetry manifest, the pseudoscalar and
vector meson fields can be combined into a single field H,
which is 4 X 4-matrix-valued and given by [3,9]

H = [~Plys + Piiyr]— "~ 5 4 M
This field satisfies the constraint H”%’” = H'. Next, we
consider static-light baryons containing two light quarks of
flavors i and j and a heavy quark. We include both the
states with s; = 0 and s; = 1. The states with s; = 1 form
two multiplets with J = 1/2 and J = 3/2, and are de-
scribed by a Dirac spinor field BY and a Rarita-
Schwinger spinor field B),’. These s, = 1 fields are sym-
metric in flavor: BY = B/ and B,;’ = B}/". For two quark
flavors one has (using the notation for bottom baryons)

2 + 1 20
B=(1b0 ﬁ_”), @)
NI IR
and similarly for Bj,. Again, because of heavy-quark spin
symmetry, the J = 1/2 and J = 3/2 baryons with s; = 1
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are degenerate, and the corresponding fields can be com-
bined into a single field [7,28],

ii ii ] .. *ij
Sl{ = S,]u, = \/;(7/1, + U/.L)’YSBU + BM]’ (3)

satisfying v“Si{ =0 and #S;{ = j{ The s, = 0 bary-
ons have J = 1 /2 and can be described by a Dirac spinor
field 7%, which is antisymmetric in i and j and satisfies the
constraint 13/ 7% = T, For two quark flavors, one has

1 0 A, )
T=— . 4
A5 @
In SU(2) chiral perturbation theory, the pions are described

by an SU(2)-valued field 3 = exp(2i®/f), which trans-
forms under global SU(2); X SU(2)g transformations as

S — L3RT. )
|
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For the purposes of heavy-hadron chiral perturbation the-
ory, it is convenient to also introduce the field & =
exp(i®/f), so that 3, = &2, The field & transforms as

§— LEUT = UERT, (6)

where the transformation matrix U(x) is a function of L, R
and ®(x), implicitly defined through the above equations.
Under the vector subgroup L = R =V, the field ¢ trans-
forms as & — VEVT. Therefore, the natural transformation
laws for the heavy-hadron fields also involve the matrix U:

H - U H,  Si— U U/SY, o
TV — U U/, TH.

The leading-order heavy-hadron chiral perturbation theory
Lagrangian is then given by [5-8]

2 .. _ .. _ .. _ . .
L= g(aﬂzf)ijaﬂzﬁ —itrplH;v - DH'] = iSfv - DSy + iT;jv - DTV + AS} Sy + gy plH(A#) vy, ysHY]

— i82€,,5ASKV" (A7) (SH)F + \/igg[gfi(ﬂlﬂ)"jTjk + Tki(ﬂl/‘)"jS{f] + (m, terms) + (1/m, terms), (8)

where trp denotes the trace in Dirac space, and the cova-
riant derivatives are defined as

DrH! = o*H' + (V) HI,
DSy = orST + (Vi) S5+ (Vr)i sk 9)
DrTY = g+TU + (V) TN + (VH)I, T,

with the vector and axial-vector fields

Vi = L ang + anet)
: (10)
An = L(gtong - ganeh)

The H and T fields are rescaled such that their masses do
not appear in the Lagrangian. The quantity A is the mass
difference between the S and T baryons. This mass differ-
ence does not vanish in the chiral limit nor in the heavy-
quark limit. From experiment, one has A = 200 MeV
[13,29].

Our definitions of the axial couplings g;, g,, and g3 in
Eq. (8) are related to the definitions of Yan et al. [5] and
Cho [7] as follows [30]:

Ch Ch Y
g1 =g = g0 g = —gIChO) 3 glvan)

g3 = ggCho) _ _\/gg(ZYan). (11)

We introduced the minus sign on g, relative to the defini-
tion by Cho, so that in our conventions all three couplings
are positive.

The Lagrangian (8) has the same form for both SU(2)
and SU(3) chiral perturbation theory, the only difference

[

being that the flavor indices run from 1 to 2 and 1 to 3,
respectively. The theory can be generalized to the partially
quenched SU(4]2) or SU(6|3) cases, where the valence and
sea quarks can have different masses; for more details see
[20] and the references therein.

As can be seen by expanding the field &€ = exp(i®/f) in
Eq. (8) in terms of the pion field ®, at lowest order the term
with the axial coupling g, leads to an H-H-® vertex, the
term with the coupling g, leads to an S-S-® vertex, and
finally the term with the coupling g3 leads to an S-7-®
vertex.

B. Axial-current matrix elements in heavy-hadron
chiral perturbation theory

The simplest quantities that depend on the axial cou-
plings are the matrix elements of the axial currents between
single-hadron states (an alternative approach to determine
the axial couplings based on static hadron-hadron poten-
tials is discussed in Ref. [31]). To extract g, g,, and g3, we
will calculate the matrix elements of the axial current in
both yPT and (lattice) QCD, and match the two with each
other:

XIAZPNY)oep = XIAFT 1Y)y (12)
In QCD, the axial current is simply given by
aQcp) _ T
A= = 45 YV Ysq- (13)

To derive the expression for the axial current in
heavy-hadron chiral perturbation theory, one can use the
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Noether procedure. For an infinitesimal local axial trans-
formation,

R(x) =Lt(x) =1 + ia,(x)7%, (14)
one finds that the change in the leading-order Lagrangian is
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given by
= (9 a, ) A" (15)

with

1) )
A = Lot 4 503, 33T - 2930, 51 = 790, 33, = v, ol AL HI = v, 87,

+ SV (7' )'ikSl;;k] + U,L[Tij(TZ:_)ikaj + Tij(Tg—)jkTik] + g1 trD[Hi(T§+)iij75H'i]

- igZSMVU'/\SZ[UU(T‘é-o-)ij(S)\)jk + \/§g3[(sv,u,)ki(7§+)ijTjk + Tki(72+)ij(su)jk]! (16)

where we have introduced the quantities

(1796 — ¢re¢M),
a7
(E17eé + M),

Equation (16) is the leading-order axial current in the
chiral effective theory. In the following, we work with a
particular flavor of the axial current,

A;(XPT) — A}L(XPT) _

iAZPT) (18)

which corresponds to the QCD current dy uYsu. To lowest
order in the pion fields (zero pion fields), the part of the
axial current that will contribute to the matrix elements we
will consider reads

AR=OPD = o trp[Hyy* ysH'] — ig2 e v, [(S,) 4a(S )™

+(8,)au(S2) 1+ V2g3[— 8 T4 — T g, (S#)“].

(19)

We will now calculate matrix elements of (19) at leading
order. To this end, we canonically quantize heavy-hadron
chiral perturbation theory. The following derivation allows
us to determine the correct normalization of the matrix
elements (canonical quantization cannot be performed in
the partially quenched theory, but the normalizations can
be inferred). We begin with the heavy mesons. Using
Eq. (1), we find that the free part of the heavy-meson-
kinetic term in Eq. (8) is equal to

£H = _iv# trD[I‘_Il-B”Hi]
= —iv, [—2PforP + 2P 9rpy], (20)
From this, we deduce the canonical equal-time commuta-

tion relations for the field operators (in the following, we
use sans-serif font for operators)

[

. 1 .
[Pi(x,0),PI(x',1)] =55 8 (x—x),

1 6’ (g, —v,v") 8 (x —x)).
(21)

The field operators of the noninteracting theory can be
written as

[Pii(x, 1), P (x,1)]= -

! d3k —ik-x
Pi(x) = \/_ (2 )3 aEP)(k)e ikex
t (P)T ikex
Pi (x) \/— (2 )3 (k) ke
3, 3
Pri(x) = \/——-/(j 1;3 Za(P)(k s)€, (s)e ™,
3
P (x) = 3 al (K, 5)e (s)e,
=1

J_ (2 )3
(22)

where ky = v - k, and the basis polarization vectors satisfy
the spin sum

()€ (s) =

uMw

—8uy T ULV, 23)

Equation (21) is satisfied if the commutation relations for
the creation and annihilation operators are

[al,,(k), & (k)] = 27)*8",6%(k — k),
(&l (K, 5), & T (K, )] = (27)°6 8,0 8% (k — k).

(24
We define single-particle states via
P! (k)) = V2u'ai"" (1)|0), o5)

1P¥i(k, 5)) = V2002t (K, 5)[0).

Note that all the heavy-hadron states and operators also
depend on the velocity v, which is a parameter in the
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Lagrangian. However, since v is fixed throughout this
paper, we do not include a label v explicitly.
The states (25) are normalized as

(Pi(k)|P/(k')) = 20°27)* 6" 83 (k — k'),
(P*i(k, s)|P* (K, s")) = 20°27)367 5,483 (k — k).
(26)

We now calculate the matrix element (P*¢|A*~UPD|puy,
Expressing the mesonic part of the current (19) using the P
and P* fields, we find

AP=OPD = oy trp[H gy ysH'] + ...

=g1trD|:Pd17”7“75(—P”75) 5 ]+

= —2g, PP+ .., 27)

where we have only shown the piece that contributes to the
matrix element considered here. By inserting the field
operators (22) into Eq. (27), we immediately obtain, at
zero residual momentum,

(P*(0, )IALDO) P O)]o = —28165(s).  (28)

Next, we consider the s; = 1 baryon field Si{ for which the
free part of the kinetic term in Eq. (8) is equal to

£S—S[ iv af‘—i—A]S”

_ }E(z

i=j

8:)8¢[—iv, o + AISY. (29)

In the following we always assume that the flavor indices
on the fields §* and §;; are ordered as i = j. We find the
canonical anticommutation relations

- ;,) 790" (Hzﬁ)ﬁ

X (g*, —v*v,)83(x —x/).

{Sﬂi‘i(xy t)oz’ Svklﬁ(xl’ t)} =

(30)
The field operators can be written as
. &k
S Kii(x) = [
,/(2 — s 00 ) (@7
X Z a(S)(k, ) UM (s)e K,
(€29)

- 4’k
Suij(*) = W f Q2m)}

6
X Zl ailt(k, )0, (s)e™,

where kp = v-k + # A, and the basis spinors satisfy the
spin sum

PHYSICAL REVIEW D 85, 114508 (2012)

6

_ 1+
S UL TY(s) = — (g7 - vﬂv”)[—ﬂ RNES
= 2 la
s=1 B
Note that U,(s) is not a Rarita-Schwinger spinor, but
rather contains the degrees of freedom of both spin-1/2
and spin-3/2 baryons. The creation and annihilation op-
erators satisfy the anticommutation relations

{af},(k, 5), a1 (K/, s)} = (27)°67,87,8,, 83 (k — k).

(33)
Here we define single-particle states via
|57k, )y = Voal (k, )[0), (34)

which corresponds to the following normalization:
(SU(Kk, 5)|SH(K/, s)y = v°(27m)3 6% 8718, 53 (k — k).
(35)

Using the expression (19) for the axial current, and the
mode decomposition (31), we find the following leading-
order matrix element of the axial current:

($94(0, 5)|A*=UPD(0)|S(0, s"))lLo

= — v, T, (U, (5. (36)

NG

Finally, we consider the s, = 0 baryon field 7%/. The free
part of the kinetic term in Eq. (8) is equal to

Ly =iv,T;orT = 2iv, Y T;;0*TV.  (37)

i>j

For the T and T fields, we also assume in the following that
the flavor indices are ordered (i > j). We obtain the ca-
nonical anticommutation relations

1+
(T3, 0 Tup 0} = 559437 (15 0) 9365 =),
ap
(38)
and the field operators can be written as

1

T =7 (2

)3 Z a(T)(k, $)U(s)e =,
(39)

- 2 — .
th( ) \/— (2 )3 a(JT)(k’ S)U(S)elk.xy

where ky = v - k, and the basis spinors satisfy the spin sum

Z U Uyl =[5 ;ﬁ]a[; (40)

The creation and annihilation operators satisfy the anti-
commutation relations
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{ag),(k, 5), a) T (k', ")} = (2m)*6,87,8, 8 (k — K!).

41
Again, we define single-particle states via
ITii(k, 5)) = VoalDt (k, )l0), (42)

which are normalized as
(TU(K, )| T (K', s')y = v°(27)3 6% 676,483 (k — k).
(43)

Now we have all the ingredients to obtain the leading-order
S-T transition matrix element of the axial current:

($94(0, 5)|A#=UWPD(O)| T(0, s"DILo = —g30*(s) U(s).
(44)

(g1)etr = g1 fz L I(m <V‘>>+g'[45{<m(“> 0) -
(82)efr = &2 f2

- 2.7<(m(vs) —A, 0)] + (analytic terms),
(g = & — fz L I(mlY) + fz[ (m, ~8) - 3

g382[ 5_['( (vs) A)

Here, m%* denotes the mass of a pion consisting of a
valence and a sea quark, mYY") denotes the mass 0f a plon
con51st1ng of two valence quarks, and 62¢ = [mY"]? —
[mYYP. The functions I, H., .’J'-[ » and XK, Wthh arise
from the chiral loops and include the leading effects of the
finite spatial volume, are defined in Ref. [20]. At the order
considered here the analytlc terms in Eq. (46) are linear
functions of [mY"']? and [m{¥ 2.

C. Axial-current matrix elements in lattice QCD

For the lattice QCD calculation, we construct interpolat-
ing fields for the heavy hadrons in terms of the quark fields
as follows:

P = Q_aa(’ys)aﬁqzﬁv P,u = Qaa(’y#)aBQLB’
Sita = €we(CYW) gy 5y Qear (47)
Tg = eabc(C’VS),B'yqiz,BQinca-

Here, a, b, ¢ are color indices, and «, B, y are spinor
indices. The light-quark field of flavor i is denoted by ¢’
(we will also use the notation u = ¢%, d = qd), and the

H(mY, A) + H(mb, 0) —

PHYSICAL REVIEW D 85, 114508 (2012)

To go beyond leading order, we need to replace g, g, &3
in Egs. (28), (36), and (44) by “effective axial couplings”
(81)ett> (82)efr> and (g3 )etr»

(P*(0, s)| AR~ UPD0)[P*(0)) = —2(g)efre ™ (s),

(S0, s)|A#= P (0)|9(0, s"))
_\/LE(gZ)effv)\GAMVPUV(S)Up(S/);

($94(0, 5)| A=) T(0, s)) = —(g3)err U*(s) U(s").
(45)
The next-to-leading-order expressions in the partially

quenched SU(4|2) theory (for myW — ﬁ,val) and m® =

Sea)), calculated via the perturbative expansion of the
path integral, have been derived in Ref. [20] and are
given by

48%sH , (m), 0)] + (analytic terms),

2
_ 28 1y + 82 [ H(m,0) = 8353, (mS, 0 )]+%[25{(m5¥s>,—A)—J{(mgzw,—A)

H Y, —A) + > 5{ S, A) + 3H (2, A) — K(m, A, 0)]

85 H (mY, 0)] + (analytic terms). (46)

heavy-quark (antiquark) field is denoted by Q (Q). The
tilde on the light-quark fields indicates that these are
smeared over multiple spatial lattice sites, in order to
improve the overlap of the interpolating fields with the
corresponding ground-state hadrons and reduce excited-
state contamination. We use gauge-invariant Gaussian
smearing obtained by

2 e
. <1 i ‘T_A(z)) ‘4 (48)
4ns

where A® is a three-dimensional gauge-covariant lattice
Laplacian which includes gauge links, o is the smearing
width and ng is the number of smearing iterations.

The heavy quark Q is defined in the static limit, and we
set v = 0. The static heavy-quark field Q satisfies

-0 (49)

Note that the interpolating field Si{a couples to both the
J =1/2 and the J = 3/2 baryons with s; = 1, with ex-
actly the same relative amplitudes as (3).
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We use the local four-dimensional lattice axial current,
where the quark and antiquark fields are evaluated at the
same lattice point. This current requires a finite renormal-
ization factor Z, to match the continuum QCD current,

1 , :
LQCD ~
AZ( QD) — ZaGiaa 3 () (v 7’5)0436123- (50)
The value of Z, depends on the lattice action used, as well
as the lattice spacing. We will come back to this in Sec. II1.

As before, we will work with a specific flavor of the axial
current,

A;(LQCD) = Zad oY u¥5)aplap- (51

In the following, we will omit the superscript “-(LQCD)”
in the axial current (51). Next, we define the overlap
factors, which describe the overlap of the operators corre-
sponding to the interpolating fields (47) with the relevant
ground-state hadrons in QCD. Here, we use the same
notation and normalization of states as in Sec. II B,

OIP (0)IP(k)) = Zp:,
OIP/(0)IP*(K, 5)) = Zprig,(s),
OISHa(0)IST(K, 5)) = ZgyU,,.4(s), (52)
OITLONTY (K, 5)) = Z7i Uy (s).

We stress that these states are now meant to be hadron
states in (lattice) QCD, rather than in the chiral effective
theory.

We calculate Euclidean two-point functions of the inter-
polating fields (47), as well as Euclidean three-point func-
tions with an insertion of the axial current (51). These
Euclidean correlation functions are obtained from the lat-
tice path integral, which is performed numerically using
importance sampling. In the following, we assume that the
Wick rotation t — —it has been performed, so that ¢ de-
notes the Euclidean time.

|

C[S""S_dd]ﬁfg(t) =

PHYSICAL REVIEW D 85, 114508 (2012)

We calculate the following three-point functions, where
(...) denotes the path-integral over the gauge and fermion
fields (for the domain-wall action used in this work, there is
also an additional path integral over Pauli-Villars fields
[25,32]),

CLPAP[# (1,1) =) Z(P*d"(x, NA”(x', )P} (0)),
CISUAS, )0y (1 1) = ixz(S?f"‘ (x, DA” (X', )85, 5(0)),
CISUAT 1051, 1) = ixz(Si""(x, DAY (X', )T 4,5(0)),
LT AYS 1150 1) = iimw(x, DARY (X!, 1)57,(0).

(53)
In addition, we calculate the two-point functions

P Pi0) = S (P (x, )PL(0)),

CLP P, 1m7 (1) X= S prar(x, P 0)),

CISUS Y1) = ;wz’x’“(x, 0S550) (54
CLS™S 4 Jinp (1) = §<Szi"”(x, 085u50)),
CTHT 4 )ap(t) = ngu(x, DT 4u(0)).

As an example, we show how the two-point function
C[s% de]%(t) is constructed in terms of quark propaga-
tors. The lattice calculation is performed in the isospin
limit of equal up and down quark masses. Inserting the
definitions of the interpolating fields, and performing the
Grassmann integrals over the fermion fields explicitly, we
have

€are(CYM)5y€en(CF7) o D (A4 (x) 05 ()5 (0) ), (0) 015 (0))

bg

= eabc(c'y#)ﬁy€fgh(cyy)paz<é?q];80(x’ O)G(q)yp(x: O)GES)QB(X’ 0)
X

= G5 (%, 0)G g (x, 0)

el 0y

J— ’:'.,a Zb
= 26abc(C7M)Syefgh(c'yy)pa'z<G(({)60'(x’ O)G(qg)yp(xy O)G(cé)aﬂ(x’ O»U (55)

Here, G(q) denotes a smeared-source smeared-sink light-
quark propagator and G(p) a heavy-quark propagator. The
notation (. ..); indicates the path integral over the gauge
fields U only. In the last step in Eq. (55) we have used the
symmetry of (Cy,) and the antisymmetry of €, to equate
the two Wick contractions. Note that the two-point func-
tion C[Sd“Sdu]{j;(t) contains only one Wick contraction,

because the two light quarks have different flavors.
Therefore, in the isospin limit,

_ 1 _
CLS™S s (D) = EC[dede]ZE(f)- (56)

For the static lattice action we are using, the heavy-quark
propagator is equal to
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0 - the three-point functions (53) in terms of quark propaga-
G(0ap 0) = 8 Y| Oixi-a irs of I :
(Q)ap' X x,0 2 lup o X, 1 —a tors, we use pairs of light-quark propagators with smeared
ot i sources at (0, 0) and (0, 7). This means that new inversions
X Up(x,t = 2a)...Uj(x,0), (57)  are needed for each value of 7.

By using the Hamiltonian and the momentum operator
to shift the left interpolating operator from x to 0 and the
axial current from x' to 0, and inserting complete sets of
states, we can show that

where U, is a spatially smeared gauge link in the temporal
direction (more details will be given in Sec. III). Because
the static heavy-quark propagator (57) contains the
Kronecker delta dy ¢, the sums over X in all the correlation
functions, Eqs. (53) and (54), are eliminated. To calculate

3
ZpaZp Z e (s)(P*(0, 5)|A”(0)| P (0))e Epat=g=Eput 4
s=1
6 6 _ , ,
CISUAS 1) (1. 1) = ZsuaZipa, D Y. Ua(s)(SU(0, 9)|A*(0)IS™(0, 5T (s e Fst =™ Fsant 4.,

s=1g'=1

C[P AP I# (1, 1) =

I

8]

’

CASUAT 4 (0 1) = ZguZ; Z 3. UEGKS 0 AN (0 ) (e Fesl et + . (58)

U (T (0, 5)|A*T(0)]594(0, s’))U”(s’)e_ET”"(’ "o~ Egiat 4

u MG\ n

2
CLT™AYS 4 1h 51, 1) = Zpu Z, Z

and
t 1 > _E s«d p*t 1 2 > * —F .t
C[P“Pl](t) = Elzlwl e Erut + ClP P (1) = §|ZP*d Z et (s)e* (s)e Frdt + ..,
s=1
_ 6 ) B 6
C[dede]ZZ(t) = ; Uéf(s)UZ;(s)lZdelze_Esdd’ + ..., C[Sd“Sdu]gg(t) = Zl UM(S)U'B(S)|ZS(1M|2 Egaut 4
c[r®t,,] a/3 (1) = Z Uu (s)’Ll,;(s)lZTdul2 Epaut 4 (59)

where the ellipsis indicates contributions from excited states, whose contribution relative to the ground-state contribution
shown here vanishes exponentially for r — oo,  — 00, r — ' — o0 (here and in the following we assume an infinite
temporal extent of the lattice). We will return to the discussion of excited states at the end of this section. Using the
relations (23), (32), and (40) to perform the spin sums (recall that here we have v = 0) and Eq. (45) to express the axial-
current matrix elements in terms of the effective axial couplings (g;)esr> (€2)eft> (£3)efr» WE Obtain

.

1 . / /
CLPAPIT (1,1) = = 5 (e (00" — g#")ZpaZpue™ Fra e brt 4

1+'yo

— 4 — /
:| stdZSd,, Egaa(1=1) g=Egaut’

L)

C[deASdu]MVp(t 1) = é(gz)effwf’\wp[

0 (60)

L)

1+ . / /
C[deATdu]M (1, 1) = —(g3)err(v* V" — g’“’)l: 27 ] ZS”’”’Z;duefEde(tfl)efET""[ + ..
ap

0

_ 1+ / /
LT TS, ) = ~(g3)enwv” — )] 27] ZpuZiue Eri=V) e Equt 4

and
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1
ClPPiI(r) = SV ZplPetrr g

1+y0

CLS Sty = (v = o)

. 1
CIPP (1) = S W = g Zpale

PHYSICAL REVIEW D 85, 114508 (2012)

“Epat

L)

:| |Zde|28_E5d‘lt + ...,
ap

1+9°
CAS“Sulipl) = (wror =g 57| 124
ap
_ 1+ 90
C[Td“Tdu]aB(t)=|: 27] |Zpau|Pe~Ert + .

In the following, we remove the trivial spin-structure
E J;y”]a > Which comes purely from the heavy-quark propa-
gator (57), from all baryon correlation functions.

Because the lattice calculation is performed in the iso-
spin limit (and in the static limit for the heavy quark), we
have the relations

Ep
ES(I!I = Esdu,

= EPd*, ZPu - ZPJ*,

Zgis = \2Zgu (62)
[the factor of v/2 in the last line comes from Eq. (56)]. As a
consequence of the equality of energies, the # dependence
of the ground-state contribution in the three-point func-
tions C[P*AP}1#*(¢, ') and C[S?AS,,1*"*(1, ') cancels
completely. For these three-point functions, the ¢ depen-
dence as well as the Z factors in the ground-state contri-
bution can be canceled by forming the ratios

|

(61)
Ze sl 4,
|
+d g pt
R (10) — 3 Zaem CPAPIP L)
N C[PMP;E](I) 81)eff
(63)
and
Ry(t, 1) = 26 Z# Vp 1 EOMVPC[deASdu]Wp(L )
’ 3 Z | LS8 4 11#(1)
= (82)err + (64)

where, as before, the ellipsis indicates contributions from
excited states that vanish exponentially when all Euclidean
time separations are taken to infinity. To extract (g )es, We
use the double ratio

[g C[deATdu]M'u (t tl)][g

_ CIT™ATS 111, 1)]

Ry(1, 1) =

(3 C[dede]“"(t)][C (79T 4,1(1)]

= (g3)err + (65)

The numerical results for (63)—(65) and the subsequent analysis will be described in Sec. IV. In the following, we discuss
the contributions from excited states to the ratios. Again, we assume an infinite temporal extent of the lattice; with a finite
temporal extent 7 this means that the following discussion is only valid for source-sink separations ¢ that are smaller than
T/2 by a sufficient distance (which is the case in our numerical calculations). We begin with R;, and define
OIP“OIPY) = Zp,,  OIPLOIP(e)) = Zp e, —240 ¢}

(PHAL )Py (&) = (66)

where | P¥) denotes the nth excited state with a nonzero overlap (0|P*(0)| P%), and similarly for | P:¢(g)). Because of heavy-
quark symmetr ‘){ and isospin symmetry, all energies and Z-factors in the P* sector are equal to those in the P*¢ sector, and

A(PP* = :1(5;: Note that
pp*
AR = (g1)en (67)
The complete spectral decomposition of R; reads
00_ oo_ Z Z>‘< A(PP )e_EPn e EPm(t 1)
Ry(1, 1) = &= 21 L (68)
n=1 |ZP,n| e mrat
Showing only the contributions from the ground states and first excited states, we find that
Zps (1"1"+ (PPN —8pt 4 ZraZp, (PP) —5pt 4 Zr2Zpy A #(PP) e~ Op(i—1)
= AP |72 [ 245" — Al hemor + R AR e o+ AT ’
R(t,F)=A + +..., (69)

L+ |22 [Peon
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with the energy gap 6p = Ep, — Ep . For a given value of ¢, the smallest contamination from excited states is obtained at

the midpoint ¢ = ¢/2. Evaluating (69) at ¢ = 1/2, we get

|@ |2(A(21;Ph) _ A(IIIJP*))e—ﬁpt + 29’{[21’,122,2 A(IP;P*)]E—(I/2)5PI

— APPY) Zp, 1Zp,I?
R\(1,t/2) = A}," ' + (%2 e +..., (70)
ZP.I
where N denotes the real part. By using the Taylor expansion 1/(1 + I% |2e=0t) =1 — I% |2e=%" + ..., we obtain
. 4 2 . . Zp1Z} .
R(1,1/2) = A{" + 2 (AP — APPD)p=pt 25}{[ |;1 ‘l”fAﬁ‘;P >]e—<1/2>3Pf +. (1)
Pl Pl

where we have omitted terms that decay like e ~/2%77 or faster, and are therefore exponentially suppressed relative to the
terms shown in (71) at large . The result for R,(z, t/2) has the same form (with suitable definitions of the overlap factors

and matrix elements):

ZS,2

Ry(1,1/2) = A + ~
S1

2 Zs\Z;
(A5 — Al)e2s" + 25)%[ 31 5'2A(1§S)]e*<1/2>5sl +..., (72)

1Zs 1|7

with A(ISIS) = (g2)efr and 85 = Eg, — Eg ;. For the double ratio R5(z, #/2) we obtain, after Taylor-expanding the square root

and omitting terms that decay faster than e~ %’ or e~ %77,

Ry(t,1/2) = AT —

(ST) 2,8t (ST) 2 =8t
ATV ZgolPem st ATV Zp,lPe 0 +m|:A(25iT)%:|€*(l/2)5st

2|Zs |7 2|Z, 12 5.1
Z ’ Zy2 725
+ m[A(gT)ﬂ]e*“/mrt + m[AgSz”Ly]e*“m(wrﬁ +..., (73)
Zr, ZraZs,

with AS" = (g3)er and 85 = Eg, — Egy, 8 =
Er, — E7 . The t-dependent terms in the right-hand sides
of Egs. (71)—(73) are the leading excited-state contribu-
tions to the extraction of (g;).s from the ratio method.

II1. LATTICE ACTIONS AND PARAMETERS

Our calculations are based on gauge field ensembles
generated by the RBC/UKQCD collaboration. These en-
sembles include 2 + 1 dynamical light-quark flavors, im-
plemented with a domain-wall action [24-26]. The gluons
are implemented with the Iwasaki action [33,34], which is
known to reduce the residual chiral symmetry breaking of
the domain-wall action [35].

The details of the actions used in generating the ensem-
bles can be found in Ref. [32]. Our analysis includes the
ensembles of size 243 X 64 and 323 X 64, which are de-
scribed in Ref. [27]. These ensembles have lattice spacings
of approximately 0.112 and 0.085 fm, respectively, so that
the spatial volume is about (2.7 fm)? in both cases.

At the coarse lattice spacing, we used only the ensemble

with amtfj’) = 0.005, which is the lightest available mass.

At the fine lattice spacing, we used the ensembles with the
lightest two available values of the sea quark mass,
am = 0.004 and am? = 0.006. The values for the
residual quark mass, which is the additive quark-mass
renormalization coming from the residual chiral symmetry
breaking at finite extent of the fifth dimension L, are
approximately am,., = 0.0032 at the coarse lattice spacing

and am, = 0.00067 at the fine lattice spacing. The sea-
strange-quark masses are about 10% above the physical
value [27], and we assign a 1.5% systematic uncertainty to
our final results for the axial couplings to account for this,
based on the size of the effect on similar axial-current
observables as determined using mass reweighting in
Ref. [27].

We calculated light-quark propagators using exactly the
same domain-wall action that was used by the RBC/
UKQCD collaboration for the sea quarks, with the same
domain-wall height of aMs = 1.8 and extent of the fifth
dimension L, = 16. We used propagator sources smeared
according to Eq. (48), with o = 4.35 and ng = 30. As

summarized in Table I, we calculated propagators for

(val)

valence quark masses am, , both equal to and lighter

than the sea quark masses. The data with miv,jl) < mfj,a)

are referred to as “partially quenched”. Also shown in
Table I, and plotted in Fig. 1, are the corresponding masses
of pions composed of the three different possible combi-
nations of valence and sea quarks. The lightest valence-
valence pion mass is 227(3) MeV, at the fine lattice
spacing.

For the heavy quark, we use a static action of the form
given by Eichten and Hill [22], which corresponds to
heavy-quark propagators of the form (57). For the temporal
gauge links in this action (or, equivalently, the propaga-
tors), we use hypercubic (HYP) smeared links [37] with
smearing parameters & = a, = a3 = (0.75. This leads to
an exponential improvement in the signal-to-noise ratio
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TABLE 1.

PHYSICAL REVIEW D 85, 114508 (2012)

Parameters of the gauge field ensembles and quark propagators. The lattice-spacing values are from Ref. [36].

L3XT am®® am® am{’® a (fm) m$ (MeV) myY (MeV) my” (MeV)
243 X 64 0.04 0.005 0.001 0.1119(17) 336(5) 294(5) 245(4)
243 X 64 0.04 0.005 0.002 0.1119(17) 336(5) 304(5) 270(4)
243 X 64 0.04 0.005 0.005 0.1119(17) 336(5) 336(5) 336(5)
323 X 64 0.03 0.004 0.002 0.0849(12) 295(4) 263(4) 227(3)
323 X 64 0.03 0.004 0.004 0.0849(12) 295(4) 295(4) 295(4)
323 X 64 0.03 0.006 0.006 0.0848(17) 352(7) 352(7) 352(7)

[23]. The smearing procedure can be iterated nyyp times,
leading to a broader smearing and further improvement of
the signal-to-noise ratio. We generated data for ngyp = 1,
2, 3, 5, 10. While all of these actions have the same
continuum limit, the dependence of the results on the
lattice spacing is expected to be different for different
values of nyyp. One may naively expect large discretiza-
tion effects for large values of nyyp, which correspond to a
large spatial extent of the heavy-quark-gluon interaction
vertex. We will discuss this in detail when giving the
numerical results in Sec. IV. Our final axial coupling
results only make use of data generated with nyyp = 1,
2, 3.

As mentioned in Sec. II C, to perform the contractions
for the three-point functions (53), we required pairs of
light-quark propagators with sources located at the same
spatial point and separated by t/a steps in the time direc-
tion. The numbers of measurements (propagator pairs) for
each value of #/a are given in Table II. At the coarse lattice
spacing, our data come from typically 120 statistically
independent gauge field configurations; at the fine lattice
spacing we used about 240 statistically independent gauge

configurations of the amsza) = 0.004 ensemble and 180 for

the amfff;’) = 0.006 ensemble. In most cases, we have
more measurements than configurations, because we gen-

0.15 . T
® a=0.112 fm ,
m a=0085 fm Ka
/.
— 0.10F -
> w
& ,
o [ ]
\::/I: , [ ]
= 0.05f = b
’ | |
0.00 0.05 0.10 0.15

M [Gev?

FIG. 1 (color online). The values of [m"]? and [m* ] used

in our calculation. The dashed line indicates the unquenched

case m¥Y) = m&\Y.

erated propagators from multiple source points on the
lattice. In those cases, we have averaged over the source
locations before the further analysis to remove possible
autocorrelations.

Within each of the three gauge field ensembles that we
used, the data from different source-sink separations, dif-
ferent valence quark masses, and different values of nyyp
are correlated with each other. In our analysis, we properly
took into account these correlations using the statistical
bootstrap procedure. The initial averaging over source
locations mentioned above was also required to reduce
all data from the same ensemble to matching ordered sets
of measurements, as necessary to calculate the covariance
matrices. It turned out that the correlations between the
amy = 0.001 and am{% = 0.002/0.005 data at the
coarse lattice spacing were very weak even though the
data came from the same ensemble of gauge field configu-
rations. The reason was that all source locations used for

(val) _
the am, ;" =

used at ami‘le) = 0.002/0.005. In contrast, the data from

amEZZl) = (0.002 and amfzzl) = 0.005 came from almost

identical source locations, resulting in very strong correla-
tions (these correlations were advantageous in constraining

0.001 propagators were distinct from those

TABLE II. Number of propagator pairs used for the three-
point functions for various values of the source-sink separation

t/a.

L3XT amf]‘fll) t/a Nineas (pprox.)
243 X 64 0.001 10 550
243 X 64 0.001 9,8,7,6 240
243 X 64 0.001 5 460
243 X 64 0.001 4 120
243 X 64 0.002 10 880
243 X 64 0.002 9,8,7,6,4 240
243 X 64 0.002 5 480
243 X 64 0.005 10 960
243 X 64 0.005 9,8,7,6,4 240
243 X 64 0.005 5 480
323 X 64 0.002 12 1200
323 X 64 0.002 9,6 480
323 X 64 0.004 12 1200
323 X 64 0.004 9,6 480
323 X 64 0.006 13 700
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the quark-mass dependence in our chiral fits). Similarly, at

the fine lattice spacing, the data from amgzgl) = 0.002 and

amﬁtvj]) = 0.004 came from identical source locations,

leading to strong correlations.

For the axial-current renormalization parameter, we use
the values obtained nonperturbatively by the RBC/
UKQCD collaboration, which are [27]

7. — 0.7019(26) for a = 0.112 fm, 74)
A 0.7396(17) for a = 0.085 fm.
IV. DATA ANALYSIS
A. Ratios

Examples of numerical results for the ratios (63)—(65)
are shown in Fig. 2 (for a = 0.112 fm) and Fig. 3 (for a =
0.085 fm). These ratios were calculated using statistical
bootstrap to take into account the strong correlations be-
tween the three-point and two-point functions in numerator
and denominator. Because of these correlations, the statis-
tical uncertainties in the ratios are found to be smaller than
those in the three-point functions themselves. To maximize
correlations, it is essential to use the two-point functions

0.6
0.5 B
0.4

Ri(t,t)
T T
1

T
1

14 i
1.0 ¢
0.6

T
1

R(t,t)

T
1

1.0
0.8
0.6 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
' (fm)

T T
1 1

Ry(t.t)

T
1

FIG. 2 (color online).
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from the source locations matching those of the three-point
functions. The figures show results at two different values
of the source-sink separation ¢ in each case, for am(u‘le) =
0.002 and ngyp = 3,

We observe clear plateaus of R;(z, 1) as a function of #,
whose extent appears to be slightly larger for the simple
ratios R, and R, compared to the double ratio R;. The
plateaus in # indicate that in these regions contributions
from off-diagonal matrix elements of the axial current
between a ground-state hadron and an excited state are
negligible in comparison to the statistical uncertainties,
because such a transition matrix element would introduce
t' dependence [see Egs. (68) and (69)]. For R/, the flatness
with respect to ¢’ has previously been observed and dis-
cussed in Refs. [15,18].

We averaged R;(z, ') over a symmetric range of ¢’ values
around #/2 in a region where there was no statistically
significant ¢ dependence (requiring that the y?/d.o.f. of
correlated constant fits be of order 1). These regions and
the extracted values, which we denote as R;(r), are indi-
cated in Figs. 2 and 3 for representative data sets. The
averaging in the plateau region is essentially equivalent to
using

06F = i
0.5 F [}

0.4 .

Ri(t, 1)

14+ R
L0 s
0.6 - .

R(t, )

1of N
os t 3 3 FTEH 3

06 1 1 1 1 1 ]

0.0 0.2 0.4 0.6 0.8 1.0
' (fm)

i &

Ry(t,t')

Ratios R|, R,, R; as a function of the current insertion time slice #, for the source-sink separations r/a = 5

(left) and t/a = 10 (right). The data shown are for a = 0.112 fm, nyyp = 3, and am(uv’zl) = 0.002.
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FIG. 3 (color online).
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Ratios R, R,, R; as a function of the current insertion time slice ¢, for the source-sink separations t/a = 9

(left) and t/a = 12 (right). The data shown here are for a = 0.085 fm and nyyp = 3, and amf:f,l) = 0.002.
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R;(z, t/2). (75)

Indeed, because of the strong corrrelation between neigh-
boring # points, we found that the averaging over # in the
plateau region (which is again performed using bootstrap)
gives almost the same result and uncertainty as R;(z, t/2).
An alternative method for defining R;(¢) is discussed in
Appendix B.

Summary plots of all the extracted values for R,(z),
R,(2), and R5(z) at the different quark masses, lattice spac-
ings, and numbers of heavy-quark smearing iterations nyyp
are given in Appendix A. Note that the numbers of mea-
surements vary (see Table II). The statistical uncertainties
are found to grow quickly when 7 is increased or am(u‘le) is
decreased, as expected [38]. Furthermore, the statistical
uncertainties are reduced with every iteration of HYP
smearing in the static heavy-quark action, which is also
expected [23]. While the results for (g;)er = lim, o R;(f)
from all fixed values of nyyp will become equal when the
lattice spacing is taken to zero, at nonzero lattice spacing
different values of nyyp will have different discretization
errors. Indeed, R; and R, are seen to increase with nyyp.
Remarkably, the results for R; are almost independent of
nyyp Within the statistical uncertainties even at nonzero
lattice spacing. See also Sec. IV B for the nyyp dependence

of (g)etr = lim, o R;(1).

B. Extrapolation to infinite source-sink separation

The effective axial couplings (g;).s at given values of
the lattice spacing, the quark masses, and nygyp, are defined
as the infinite-time limits of R,(7):

(8i)ett = }LTORZ‘(I) (76)

The ¢ dependence of R,(¢) is caused by excited states, and
at sufficiently large ¢, the contributions from the first
relevant excitation dominates. The expected functional
form of R, (), R,(¢), and R5(¢) in this regime is shown in
Egs. (71)—(73), respectively. As can be seen in these equa-
tions, the ‘“‘diagonal” contributions proportional to the
matrix elements A;; and A,, decay exponentially like

e, (77)

where & is the energy gap to the first excited state that has a
nonzero overlap with the corresponding interpolating field
as defined in Eq. (47); § = 6p for R|, 6 = 0y for R,, and
8 = min(Jg, 67) for R;. Additionally, there are *off-
diagonal” contributions proportional to the matrix ele-
ments A, and A,;, which decay only like

e~ (/21 (78)

However, as discussed in Sec. IVA and Ref. [18], these off-
diagonal contributions appear to be small, because the
numerical results for R(z, ') show plateaus as a function
of 7.

PHYSICAL REVIEW D 85, 114508 (2012)

We performed correlated fits to the lattice data for
R;(t, a, m, nyyp), which depends on the source-sink sepa-
ration ¢, the lattice spacing a, the quark masses (here
denoted generically as m), and nyyp, using the following
functions:

R((t, a, m, nyyyp) = (g1)er(a, m, nyyp)

— Al(a’ m, nHYP)e_Bl(a’m’nHYP)I,

Ry(t, a, m, nyyyp) = (82)err(a, m, nyyp)
(79)

_ Az(a, m, nHYP)efﬁz(a,m,nHyp)t’

R5(t, a, m, nyyyp) = (83)e(a, m, nyyp)

— As(a, m, nyyp)e ™ sl mmnelt,

Here 6, is the energy gap to the dominant excitation in R;.
Because §; is not constrained, it does not matter whether or
not we include a factor of 1/2 in the exponent. Since the
energy gap O; is positive by definition, we choose to
parametrize it as

ad;(a, m, nyyp) = elil@mmve), (80)

using the logarithm /;(a, m, nyyp) as the fit parameter.
Because the statistical uncertainties in R; grow exponen-
tially as ¢ is increased, we were only able to perform the
lattice QCD calculations in the range ¢ < 1.1 fm. As can
be seen in Table II, at the coarse lattice spacing (a =
0.112 fm) we have data for t/a = 4, 5, 6, 7, 8, 9, 10. We
found that the functions (79) described the data from the
coarse lattice spacing well for all these values of ¢/a. The

smallest statistical uncertainties are obtained for amflvf}l) =

0.005 and ngyp = 10, and therefore we first performed
unconstrained fits to this data set, obtaining the following
fit results (/; converted to §; = e'i/a):

(g1)et = 0.5264 *0.0090, A, = 0.53 = 0.39,

5, = (1.08 £ 0.38) GeV,  x2/d.of. = 1.07,
(g2)err = 1.037 £0.033, A, = 0.73 £ 0.35, -
8, = (0.75 £ 0.29) GeV,  x%/d.of. =031,
(g3)er = 0.827 £0.032, A, = 0.98 + 0.25,
8y = (0.66 = 0.16) GeV,  x2/d.o.f. = 0.41.

The corresponding fits and the data points are shown in the
left-hand side of Fig. 4. Notice that the fit to R gives an
energy gap consistent with recent lattice QCD results for
the 2§ radial excitation energy of about 0.75 GeV [39,40].
This is expected, because our interpolating fields (47) for
the heavy-light mesons have S-wave-type smearing and
therefore do not couple to the lower-lying 1P state. The fit
result (and the flatness of the plateau as a function of ¢')
indicates that the data for R, are dominated by
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hand side shows unconstrained fits of the a = 0.112 fm, am(uv‘zl) = 0.005 data; the right-hand side shows fits of the a = 0.085 fm,
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m d) = 0.004 data, where the energy gap was constrained using information from (81).

Zp(2s)

Ry (1) = (g1)efr + 7
P(1S)

2 .
(455~ ASIe " (82)

with a negligible off-diagonal matrix element A(ZI;P]S) = 0.
At the fine lattice spacing, we only have data for t/a =

6, 9, 12 (for am?) = 0.002, 0.004) or t/a =13 (for

am,(ZZl) = (0.006). Because the energy gap in physical units

is not expected to have an a dependence that is larger than
the statistical uncertainties in (81), it is possible to use the
fit results for /; from the coarse lattice spacing to constrain
the parameters /; at the fine lattice spacing (at similar pion
masses). As a first step, we performed fits to the data from
the fine lattice spacing with amfzz,l) = 0.004 and nyyp =
10, where only the parameters /; were constrained using an
augmented y? with a Gaussian prior for /;,

(li B ii)z

o)
g

X —xt (83)

Here, [; and ), are the central values and uncertainties of
the (scaled) energy gap parameters from the fit to the

coarse am(?) = 0.005, nyyp = 10 data, Eq. (81). The

fits to the data from the fine lattice spacing with aml(lvj) =

0.004 and nyyp = 10 then gave

(g)er = 0.510 £0.011, A, =2.7+3.6,
8, = (1.08 £ 0.38) GeV,  (gs)err = 0.998 = 0.041,
Ay=18%17 8, =(0.75*0.29) GeV,

(g3)er = 0.805 £ 0.034, A3 =2.0 = L0,

85 = (0.66 = 0.16) GeV. (84)

At the fine lattice spacing, it was necessary to remove the
data points with the shortest separation ¢/a = 6 to obtain
acceptable single-exponential fits. Therefore, the resulting
gap parameter matches exactly the prior, and y?/d.o.f. is
undefined. The central values of the overlap parameters A;
in (84) are larger than in (81), indicating a stronger overlap

of the interpolating fields with excited states at the fine
lattice spacing. Different overlap factors were expected
here, because the smearing width of the light-quark fields
in physical units was different (we used the same smearing
width in lattice units for both lattice spacings). The fit
curves are shown in the right-hand side of Fig. 4.

We then performed new fits to the data for all values of
the quark masses and nyyp. For those fits, the parameters
(g)efr(a, m, nygyp) were left unconstrained, but Gaussian
priors were used for both /; and A;, with central values and
widths as taken from the initial fits (81) for the coarse
lattice spacing and (84) for the fine lattice spacing.
Examples of these fits are shown in Fig. 5. The only
assumption made by using the priors is that the dependence
of [; and A; on nyyp and on the quark masses is smaller
than the width of the priors as determined by the statistical
uncertainties in (81) and (84). Given that these widths were
25% or larger in all cases, this appears to be a reasonable
assumption. As a test, we also performed unconstrained fits
where possible, which gave consistent results but were less
stable. The results for (g;)es(a, m, nyyp) are given in
Tables IIT and IV, and plotted in Fig. 6. The central values
and uncertainties shown there are bootstrap averages and
68% widths, respectively, from repeated correlated fits of
the ¢ dependence for a bootstrap ensemble of data.

To estimate the systematic uncertainties caused by
higher excited states, we calculated the shifts in (g;)es
for a representative data set at the coarse lattice spacing

(amgzzl) = 0.002, nyyp = 3) when removing one or two

data points with the smallest ¢/a ( = 4, 5) from the fits, or
adding a second exponential to the fit function,

Ri(1) = (g1)ett — Aje 0" — BiAe™ 087 (85)

Because the available data were not sufficient to determine

the new parameters B; and & 52), we used Gaussian priors to
constrain these parameters to physically reasonable values.
The parameters B; describe the amplitudes of the second-
excited-state contribution, relative to the first-excited-state
contribution, and we set Ei =0, Op, = 2. For the energy
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@ _ 2 : :

gaps ad;” = e'i we used priors with central values equal
to 2/3 times the fit results for §; in (81), and widths of
100%. The fitted parameters (g;).s and the corresponding
shifts 6(g;).s for the different cases are shown in Table V.
Since the shifts 6(g;).s themselves have statistical uncer-
tainties o 6(g;)err» We choose to quote the maximum
value of

VI8(g)er P + [08(g))en P (86)

from the three different methods (removing t/a = 4, re-
moving t/a = 4, 5, or adding a second exponential) as our
estimate of the systematic uncertainties in (g;).s caused by

higher excited states. The final estimates are 1.7%, 2.8%,
and 4.9% for g, g,, and g3, respectively.

Because the shifts 8(g;). in Table V are consistent
with zero in most cases, an alternative way of estimating
the systematics is to consider only the increase (calcu-
lated with quadrature) in the uncertainties of the fitted
parameters when the fits are modified by removing data
points or including higher-order terms. We will use that
method for the chiral fits at the end of Sec. IVC, see
Eq. (96). The two different methods (86) and (96) for
calculating the size of the systematic uncertainties give
consistent values.

C. Extraction of the axial couplings g, g,, and g3 using
HH yPT fits of the data

In the previous section, we obtained results for the
effective axial couplings (g;)s(a, m, nyyp) at two different
lattice spacings a, multiple values for the quark masses

amgzza) and amff;l), and multiple values for the heavy-quark

gauge-link smearing parameter nyyp (corresponding to
multiple heavy-quark lattice discretizations). All data are
for a finite spatial volume of about (2.7 fm)3. In the follow-
ing, we discuss how we extracted the axial couplings g,
g2, &3, which are the parameters of the continuum heavy-
hadron chiral perturbation theory Lagrangian (8), from the
data for (g,)err(a, m, nyyp).

To fit the quark-mass and volume dependence of (g;)ef
we use the next-to-leading-order predictions from HH yPT
[20], which were already shown in Eq. (46). Here, we
extend these formulas to include the leading effects of
the nonzero lattice spacing a. These leading effects are
quadratic in a, with coefficients d;,, . that depend on
nyp- We do not expect O(a) errors because of the chiral
symmetry of the domain-wall action used for the light
quarks (neglecting the small effects caused by the residual
chiral symmetry breaking at finite L; [27]) and the auto-
matic O(a) improvement of the static heavy-quark action.
Higher-order effects in the a- and m,, dependence of (g;)es
are discussed at the end of this section.
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For (g, )., the fit function is given by

PHYSICAL REVIEW D 85, 114508 (2012)

(&1)ese(a, m, nygyp) = g1[1 —f—I( (“)) + g1{45-[( (vs) ,0) — 45%/35_[ (m(vv) 0)}

+ MY + IR + dLnHYPaZ]. (87)
Similarly, for (g,).s and (g3)esr, We use
(g2)err(a, m, nyyp) = 82[1 - 71( (VS)) + fz{ H(m (VS), 0) - 52 -7'[ (m(w) O)} + j’é{z}[(m(;s), —4)
= H ), —A) — 25, —A, 0)) + SV MR + SImEIP + dy, ] (88)

[1——1( () 4 83 {5{( (w)

(g 3)eff(a’ m, ”HYP)

—A) — 5{( W) _A)+ 2 H(m<w> A) + 3H WY A)

_ j((m(vs) A, 0)} gz{ j_[(m(vs) A) — }[(m(vv) A) + j_[(m(vs) 0) — 5%/55_[ (m(vv) 0)}

cgvv)[mg;’v)]z + Cgvs)[mS;/S)]z + d3,ﬂHYPa2 ]

The functions I, H, H » and XK are the chiral loop
corrections [20]. They include finite-volume effects and
therefore they also depend on the lattice size. Furthermore,
these functions depend on the renormalization scale w, but
this scale dependence is absorbed by the fit parameters c(

and c ¥ as we checked explicitly by varying u in the ﬁts
We set the pion decay constant to f = 132 MeV and the
S-T mass splitting in Egs. (88) and (89) to A = 200 MeV.
This value of A is consistent with experiments [13,29] and
with our lattice data (we also checked that varying A

(89)

for the axial couplings). We calculated the covariances of
all correlated data points in Tables III and IV using boot-
strap, and performed fully correlated fits using the inverse
of the covariance matrix in the definition of y?. This
method propagates the uncertainties and correlations of
(g;)efr> as obtained from the fits to the ratios R;, into the
extracted parameters g; of the HH yPT Lagrangian.
Results from fits of the (g;). data using the function
(87) are given in Table VI and Fig. 7. The fit parameters are

g1 c(lw) (1“) and {d, .} (the latter for all values of nyyp

within a few percent does not significantly affect the results  that were included in the fit). We performed fits that

TABLE III.  Effective axial couplings (g;)er at @ = 0.112 fm, obtained by extrapolating R;(z)
to t = 0. At amEZZI) = 0.001 we do not have results for nyyp = 1, 2, because the statistical

fluctuations were too large to calculate the square root of the double ratio, Eq. (65).

(sea) (val)

am, 4 am, 4 npyp (g1 )eff (gZ)eff (g3)eff
0.005 0.001 1 0.463(28) 1.14(16)

0.005 0.001 2 0.473(20) 1.094(92) ...
0.005 0.001 3 0.479(18) 1.077(74) 0.843(68)
0.005 0.001 5 0.488(15) 1.063(62) 0.822(50)
0.005 0.001 10 0.514(15) 1.075(54) 0.828(40)
0.005 0.002 1 0.499(17) 0.984(42) 0.815(51)
0.005 0.002 2 0.496(13) 0.996(35) 0.816(41)
0.005 0.002 3 0.499(11) 0.993(29) 0.810(37)
0.005 0.002 5 0.5059(96) 1.001(27) 0.814(35)
0.005 0.002 10 0.5230(89) 1.039(35) 0.828(36)
0.005 0.005 1 0.496(13) 0.986(36) 0.831(43)
0.005 0.005 2 0.4950(94) 0.986(25) 0.820(34)
0.005 0.005 3 0.4987(80) 0.990(23) 0.812(30)
0.005 0.005 5 0.5080(74) 1.006(21) 0.814(28)
0.005 0.005 10 0.5270(71) 1.039(25) 0.828(27)
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TABLE IV. Effective axial couplings (g;)es at a = 0.085 fm, obtained by extrapolating R;(z)

to t = oo.

ami,s,fia) am%l) nyyp (g 1eff (82)ef (83)efr
0.004 0.002 1 0.496(52) 0.95(11) 0.78(14)
0.004 0.002 2 0.507(31) 0.920(75) 0.788(85)
0.004 0.002 3 0.505(24) 0.940(66) 0.778(64)
0.004 0.002 5 0.501(17) 0.946(59) 0.762(49)
0.004 0.002 10 0.505(13) 0.962(50) 0.772(41)
0.004 0.004 1 0.488(38) 0.939(82) 0.799(85)
0.004 0.004 2 0.498(23) 0.948(65) 0.795(62)
0.004 0.004 3 0.502(18) 0.982(66) 0.803(49)
0.004 0.004 5 0.503(14) 0.995(53) 0.799(39)
0.004 0.004 10 0.511(10) 1.001(41) 0.807(33)
0.006 0.006 1 0.412(49) 0.86(16) 0.79(12)
0.006 0.006 2 0.452(33) 0.905(95) 0.807(73)
0.006 0.006 3 0.465(29) 0.925(81) 0.797(64)
0.006 0.006 5 0.481(26) 0.974(72) 0.805(60)
0.006 0.006 10 0.508(23) 1.030(68) 0.824(56)

included data with multiple values of nyyp, as well as
individual fits including only data with one value of
ngyp- The fits that included multiple values of nyyp en-
forced a common continuum limit of the data with different
ngyp, but with separate a?-coefficients d, p,,, for each
ngyp. While we know that the actual continuum limit for
all values of nyyp has to be the same (if we took a to zero in
the numerical calculations), we only have data for two
different values of a, and one may question whether the
approach of the continuum limit is described by a simple
a® dependence as assumed in Eq. (87). In particular, one
may be worried that large values of nyyp, which corre-
spond to more spatially extended heavy-quark actions,
could lead to non-negligible contributions from higher
powers of a [23]. To investigate this, we started from a
fit that included all values of nyyp (1, 2, 3, 5, 10), and then
successively removed the data with the largest values of
nyyp- As can be seen in Table VI and Fig. 7, the fit
including the data from all values of nyyp had a poor
quality, @ = 0.17, and gave a somewhat low value for
g1. After excluding nyyp = 10 and nyyp = 5, the fits had
a good quality and the results for g; were stable under
further exclusions of the largest nyyp values. The fit in-
cluding nygyp = 1, 2, 3, which has Q = 0.70, gave the
result

g1 = 0.449 * 0.047 gy

(90)

Estimates of the systematic uncertainties in (90) will be
given at the end of this section. The results from the fits
including only one value of nyyp were all consistent with
(90), even for nyyyp = 10. This suggests that higher powers
of a* are actually negligible for the values of the lattice
spacings considered here (a = 0.085fm and a =
0.112 fm). The deviating value of g, as well as the poor
Q for the fit that included all values of nyyp simultaneously
are likely caused by technical issues with the covariance-
fitting of highly correlated data, associated with small
eigenvalues of the data correlation matrix [41]. We will
return to the discussion of higher-order discretization ef-
fects at the end of this section.

For the baryonic axial couplings, we performed simulta-
neous, fully correlated fits to the data for (g, ). and (g3)ess
using the functions (88) and (89), with the fit parameters g,,
g3 c(zw), cgw), C(sz)’ C(3VS) and {d,,, .. d5 ...} (the latter for
all values of nyyp that were included in the fit). As already
discussed in the fits for (g;).s, we performed fits that
included data with multiple values of ngyp, as well as
individual fits including only data with one value of nyyp.
The results are shown in Table VII and Fig. 8. Again, we
select the fit that includes nyyp = 1, 2, 3, which gives

(val

TABLE V. Fits used to estimate systematic uncertainties from higher excited states. Data for @ = 0.112 fm, am, d) = 0.002,
ngyp = 3. Shown are the fit results for (g;).s, as well as the differences 5(g;).s to the original fit result, calculated using bootstrap.

Fit (&1)etr 8(g1)est (82)etr 8(g2)est (83)etr 8(83)efr
Original 0.499(11) 0 0.993(29) 0 0.810(36) 0

t/a = 4 removed 0.496(13) 0.0030(76) 0.975(35) 0.016(19) 0.783(43) 0.026(15)
t/a = 4, 5 removed 0.494(12) 0.0041(76) 0.984(41) 0.009(26) 0.807(54) 0.003(30)
Second exponential added 0.498(11) 0.0009(77) 0.988(30) 0.005(21) 0.796(40) 0.014(36)
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TABLE VI. Results for the mesonic axial coupling g;, obtained by fitting the data for (g;)ef
using the function (87). The first four rows show the results from fits which include data with
multiple values of the heavy-quark smearing parameter nyyp. The remaining rows show the
results from fits with only one value of nyyp. The number of degrees of freedom (d.o.f.) is given
in the form (number of data points)—(number of fit parameters). The last column of the table

PHYSICAL REVIEW D 85, 114508 (2012)

gives the quality of the fit Q = I'(d.o.f./2, x*/2).

Ngyp g d.o.f. x?/d.o.f. 0

1,2,3,5,10 0.371(28) 30—8 1.3 0.17
1,2,3,5 0.401(39) 24 — 17 1.2 0.29
1,2,3 0.449(47) 18—6 0.75 0.70
1,2 0.440(60) 12-5 0.85 0.54
10 0.450(38) 6—4 0.09 091
5 0.468(47) 6—4 0.61 0.55
3 0.482(55) 6—4 0.73 0.49
2 0.465(66) 6—4 1.0 0.36
1 0.49(10) 6—4 0.72 0.49

g>» = 0.84 £ 0.204,, g3 =071 £0.124,. (91
This fit also had the highest value of the quality of fit, Q =
0.92. Estimates of the systematic uncertainties in (91) will
be given at the end of this section. As can be seen in Fig. 8,
the results (91) are in fact consistent with the results from all
other fits within the statistical uncertainties, demonstrating
that heavy-quark discretization errors are under good con-

trol. The covariance matrix for g, and g5 is

Cov =

(0.040 0.011 ) ©92)

0.011 0.014

The corresponding likelihood function is plotted in Fig. 9.
As another check, we performed fits of (g;).;r Where we
excluded all the partially quenched data (i.e keeping only
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FIG. 7 (color online). Graphical representation of the fit results
for g; from Table VI. The horizontal axis corresponds to the
different fits, ordered (from left to right) in the same way as the
rows in the table (from top to bottom). The line and shaded
region in the upper plot indicate the selected result and its
uncertainty, which is taken from the third fit (the fit that includes
data with ngyp = 1, 2, 3).

the unitary data with m = m(JS)). In that case, only one

analytic counterterm is needed for each coupling, and we

removed the terms cf“)[m(;”P from Eqs. (87)—(89). These
fits, again using nyyp = 1, 2, 3, then gave g; = 0.467 =
0.056, g, =0.92 £0.22, and g3 = 0.72 = 0.14, in full
agreement with (90) and (91) and with slightly larger
uncertainties.

Plots of the functions (g1)efs» (€2)efr» and (g3)es, With the
parameters from the fits including the complete data with
ngyp = 1, 2, 3 [i.e., the fit that gives the results (90) and
(91)] are shown in Figs. 10-12. For the figures, the func-
tions were evaluated in infinite volume, for the lattice
spacings a = 0.112 fm, a = 0.085 fm, and a = 0. The
right-hand sides of the figures show the values and uncer-

tainties of the fitted functions for the unitary case m(;v) =

m(#s), while the left-hand sides show the dependence on

both m(;v) and m$¥5>. At the two nonzero values of a, the
functions were evaluated for nyyp = 3 and the correspond-
ing data points are also shown (in the continuum limit, the
functions for nyyp = 1, 2, 3 are all equal). To allow the
inclusion in these plots, the data points were shifted to
infinite volume using

(gi)eff,data(m’ L= oo) = (gi)eff,data(m’ L =27 fm)
+ [(g1)efrfie(m, L = o0)
= (8i)efr.fi(m, L = 2.7 fm)], (93)

where we use the notation m = (m(JV), mgﬁs)). The numeri-

cal values of the volume shifts are given in Table VIII. The
largest volume shift (2.8%) occurred for (g,)qs at miyV) =
227 MeV.

The functions (g;)e and (g3)er develop small imagi-
nary parts for pion masses below the § — 7'z threshold at
m, = A [20] (the lattice data are all above the threshold).

The extracted parameters g;,3 are real. Figs. 11 and 12
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TABLE VII. Results for the baryonic axial couplings g, and g3, obtained by simultaneously
fitting the data for (g,)err and (g3).g using the functions (88) and (89). The first four rows show
the results from fits which include data with multiple values of the heavy-quark smearing
parameter nyyp. The remaining rows show the results from fits with only one value of nyyp. The
number of degrees of freedom (d.o.f.) is given in the form (number of data points)—(number of
fit parameters). The last column of the table gives the quality of the fit Q = I'(d.o.f./2, x*/2).

PHYSICAL REVIEW D 85, 114508 (2012)

Ngyp & 23 d.o.f. x?/d.o.f. 0

1,2,3,5,10 0.72(12) 0.635(90) 58 — 16 0.94 0.57
1,2,3,5 0.73(13) 0.61(11) 46 — 14 1.1 0.31
1,2,3 0.84(20) 0.71(12) 34— 12 0.61 0.92
1,2 0.81(22) 0.57(17) 22 — 10 0.50 091
10 0.90(15) 0.75(11) 12 -8 0.64 0.64
5 0.98(19) 0.76(13) 12 -8 0.74 0.57
3 0.98(23) 0.74(15) 12-38 0.54 0.71
2 0.91(23) 0.66(18) 12 -8 0.51 0.67
1 0.79(29) 0.61(27) 12 -8 0.42 0.74

show the real parts of (g;)esr and (g3)esr only, which have
kinks at the thresholds.

The fit results for the parameters cgw), cf-vs), which
describe the analytic contributions, were natural-sized,
i.e., of order 1/A3 with A, = 4 f,, for the renormaliza-
tion scale u = 4 f. The fit results for the parameters
d; p,..» Which describe the lattice-spacing dependence,
were also of natural size and consistent with zero within
the statistical uncertainties. The absence of significant a
dependence can also be seen in Figs. 10—12.

The individual contributions from different classes of
Feynman diagrams in HHyPT [20] to the fitted functions
(81)etr> R[(g2)esr)s and N[(g3)er] (evaluated for a = 0,

L = o0, and m\Y = mS¥S>) are shown in Figs. 13 and 14.
Note that while the sum of all contributions (including the
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FIG. 8 (color online). Graphical representation of the fit results
for g, and g5 from Table VII. The horizontal axis corresponds to
the different fits, ordered (from left to right) in the same way as
the rows in the table (from top to bottom). The lines and shaded
regions in the upper two plots indicate the selected results and
their uncertainties, which are taken from the third fit (the fit that
includes data with nyyp = 1, 2, 3).

analytic terms) is independent of the renormalization scale
M, the individual contributions are not, and the figures are
based on the natural scale u = 47 f .. For the range of pion
masses considered here, the next-to-leading-order (NLO)
contributions are significantly smaller than the leading-
order contribution (which is equal to g;). This, and the
natural size of the fitted coefficients ¢\, ¢!, indicates
that the chiral expansion of the axial-current matrix ele-
ments is well-behaved here.

To estimate the size of systematic uncertainties caused
by the missing next-to-next-to-leading-order (NNLO)
terms in the fits to the quark-mass and lattice-spacing
dependence, we performed fits to the data using modified

: NLO+HO . . .
functions (g,-)gff ) that include higher-order analytic
terms,

T T T T T T T T 72
10+ -
6.4
0.9 F 1 M 56
08 F 41 M as
- 40
& o7f |
3.2
0.6 - 1 sy
05 F 1 [q16
0.8
0.4 _
1 1 1 1 1 1 1 1 00

05 06 07 08 09 10 11 12
92

FIG. 9 (color online). Likelihood function for g, and g3,
equal to L(g,, g3) = (2m) ! det(Cov) ™12 exp{~ L (g; — g”) X
[Cov™'](g; — g§0))} where g?o) are the central values of our fit

results (91) and Cov is the covariance matrix (92). The dashed
curve indicates the standard error ellipse.
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FIG. 10 (color online). The fitted function (g,).s, evaluated in infinite volume, for nyyp = 3, at different lattice spacings (from
top to bottom: a = 0.112 fm, a = 0.085 fm, a = 0), along with the data points (shifted to infinite volume). The left-hand side

shows the dependence on both mY") and m%y*). The right-hand side shows the function (and its statistical uncertainty) evaluated at

mg-‘,'v) = mgfs). In the plots on the right-hand side, the partially quenched data points, which have m(;v) < m(;s), are indicated with
open symbols. They are shown at m, = m(qfv), even though the fitted function (g; ). actually has slightly different values for these

points.
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R(g2)ea]

R(g2)ea]

R(g2)ea]
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FIG. 11 (color online).

NLO-+HO
(gi)iff )(a, m, nyyp)

= (gi)gﬁfw)(a, m, nyyp) + gi[cgw‘w)[mgv)]“

+ CE-VS'VS)[m(;S)F + Cgvv,vs)[m(;v)]z[ms;ls)]z

+ dfjj:YPa2[m(7¥V)]2 + dfjfiwa2[m5¥s>]2 + g a*]. (94)
. (NLO) .

Here, the functions (g,).;  are as defined in Eqs. (87)-

(89). Because we do not have enough data to fit all the

parameters in Eq. (94), we constrained the parameters

PHYSICAL REVIEW D 85, 114508 (2012)
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Like Fig. 10, but for the real part of (g;)es-

corresponding to the higher-order terms using Gaussian
priors centered around zero and with widths equal to some
dimensionless factor w times the relevant natural scales

cg“’“) =0*w/A?,
=0=* wAéCD/A2,

cﬁ.W’W) =0*w/A?,

CEvv,vS) =0+ W/Aé)t(’ dg,vr:,}zyp

dY  =0xwAdep/AL h

Lngyp

=0=* WA4QCD.
(95)

i,nyyp
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FIG. 12 (color online). Like Fig. 10, but for the real part of (g3)es.
TABLE VIII. Size of the finite-volume corrections for the pion masses where we have data.
mg;ls) MeV) m(ﬂYV) (MeV) (81— _(if)l)(c? (gZ)::Bf‘:‘)_(g’;Z)(c?f) (83) ‘(55;3)&2
(gl)m (gz)e“ (gl)crr
294 245 0.0057 0.015 0.0074
304 270 0.0040 0.0070 0.0027
336 336 0.0016 0.00037 —0.00079
263 227 0.0072 0.028 0.013
295 295 0.0031 0.00027 —0.0012
352 352 0.0013 0.00033 —0.00071
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FIG. 13 (color online). Contributions from individual classes
of Feynman diagrams in HHYPT (see Ref. [20]) to the
fitted function (g)s, evaluated in the infinite volume, contin-

uum limit, for mY = m¥. The renormalization scale is u =
47 f.

Here we used A, =4wf, with f, = 132 MeV, and
Aqep = 300 MeV. The fit results for the axial couplings
g; as a function of the width factor w are given in Table IX.
While the case w = 0 corresponds to the original NLO fits,
in the limit w — oo the new parameters would become
unconstrained (because we have insufficient data, we are
unable to perform fits in this limit).

As can be seen in Table IX, the shifts in the central
values of the axial couplings are smaller than the statistical
errors up to the very large width w = 100. This is a con-
sequence of the smallness of the quantities m? /(47 f )%,
a> Agepmz/ (4 f )2, and a* Adcp, for the pion masses and
lattice spacings where we have data. The shifts in the
central values fluctuate statistically and can be close to
zero even for large w (at least for g;). However, including

L0 T T T T T
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0.6 - - -Tadpole |
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FIG. 14 (color online).

fitted functions (g;).s (left panel) and (g3)e (right panel), evaluated in the infinite volume, continuum limit, for m(,iv)

renormalization scale is u = 47 f.
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0
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the higher-order terms leads to a systematic increase in the
uncertainties of the fit parameters g; (as calculated from the
Hessian of y?), as expected. Also shown in the table is the
quantity

80 (g;) = yo2(g,)NLOTHO) — 52(gYNLO) (96

where o(g;)™N9 is the original uncertainty of g; from the
NLO fit, and o(g;)N-OTHO) 5 the new uncertainty of g,
from the higher-order fit (95). To calculate (96) we used
more digits for o(g;,)N? and o(g;)N-OHO) than shown
in Table IX. Equation (96) gives the additional uncertainty
in g;, calculated using quadrature, that results from the
higher-order terms. This additional uncertainty So(g;)
scales roughly linearly with the width parameter w. For a
reasonable choice of w, the quantity o (g;) can be con-
sidered to be the systematic uncertainty in g; from the NLO
fit due to the missing NNLO terms. Here we choose the
conservative value of w = 10 for this purpose. The result-
ing estimates of relative systematic uncertainties can be
found in Table X. There, we also show the estimates of the
other relevant sources of uncertainties: effects of higher
excited states in the fits to R;(7) as discussed in Sec. IV B,
and the effects the sea-strange-quark mass being about
10% above the physical value, as discussed in Sec. III.
Including the estimates of the total systematic uncertain-
ties, our final results for the axial couplings, based on (90)
and (91), are then

g1 = 0.449 = 0.047, = 0.019,,, = 0.449 = 0.051,
g2 = 0.84 + 0.20,,, = 0.0, = 0.84 + 0.20,

g3 = 0.71 = 0.12, = 0.0, = 0.71 = 0.13. (97)

0.8 T T T T T
061 - Leading order 7
- -Tadpole
0.4+ — Wavefunction renormalization |
’ -+~ Sunset
) — Analytic terms
5 02 7
=3 P
00 e
02} -
| | | | |
0.000  0.025  0.050  0.075  0.100 0.125  0.150

m2 (GeV?)

Contributions from individual classes of Feynman diagrams in HHYPT (see Ref. [20]) to the real part of the

= mY. The
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TABLE IX. Results of higher-order fits using Eq. (94) as a function of the width factor w

defined in Eq. (95).

w 81 Sol(g1) 82 8o(g,) 83 So(gs)
0 0.449(47) 0 0.84(20) 0 0.71(12) 0
1 0.449(47) 0.0020 0.84(20) 0.0023 0.71(12) 0.0045
5 0.452(48) 0.0089 0.84(20) 0.014 0.70(12) 0.017
10 0.455(50) 0.016 0.84(20) 0.024 0.70(12) 0.026
50 0.464(72) 0.054 0.82(22) 0.099 0.68(15) 0.094
100 0.452(94) 0.082 0.78(26) 0.17 0.63(21) 0.17
TABLE X. Estimates of systematic uncertainties in the axial couplings g;.
Source 81 82 83
NNLO terms in fits of m, and a dependence 3.6% 2.8% 3.7%
Higher excited states in fits to R;(z) 1.7% 2.8% 4.9%
Unphysical value of m{" 1.5% 1.5% 1.5%
Total 42% 4.3% 6.3%

V. COMPARISON WITH PREVIOUS RESULTS FOR
THE AXTAL COUPLINGS

We begin this section by discussing previous lattice
calculations of the heavy-meson axial-current matrix ele-
ments and the corresponding extractions of g;. A summary
of results is shown in Table XI. All of the past works used
an order-a improved Wilson action [42] for the light
quarks, and variants of the Eichten-Hill action [22,23] for
the static heavy quark. The first lattice estimate for g; was
obtained in the pioneering work of Ref. [14], using a 12° X
24 lattice and quenched gauge fields, where the fermion
determinants in the path-integral weight are set to 1, which
means that the vacuum-polarization effects of the light
quarks are neglected. In Ref. [14], the average of (g;)es
from two different valence pion masses (760 MeV,
900 MeV) was taken as the result for g;. Quenched calcu-
lations of g; were also reported in Refs. [15,16]. The
results for g; in these works were obtained by extrapolating
data for (g;).s, at pion masses in the range of about 550 to
850 MeV, linearly in [ to mYY = 0.

Since calculations without sea quarks have uncontrolled
systematic errors, more recent lattice calculations of g; have

been performed with dynamical flavors, albeit only for n, =
2. The first of these was done in Ref. [17], using two differ-
ent lattices of sizes 123 X 24 and 16> X 32, and pion masses
in the range 490—1100 MeV. Stochastic all-to-all propaga-
tors were used to reduce the statistical uncertainties. In
Ref. [17], the data for the axial-current matrix elements
(g1)ers was fitted using different approaches: linear in

m>2, linear + quadratic in m2, or linear + quadratic +

logarithmic in m2, using the average of g, from the linear
and the linear + quadratic + logarithmic fits as the final
result. A second unquenched calculation was published in
Ref. [18], using three different lattice spacings and pion
masses in the range from 400 to 1100 MeV. In Ref. [18],
the coupling g; was obtained from a linear+logarithmic fit
of (g})es- Recently, the axial couplings of orbitally excited
heavy-light mesons were also included [43]. Another n; =
2 calculation of g; was reported in Ref. [19], with three
different lattice spacings and pion masses down to 250 MeV.
In Ref. [19], the result of an extrapolation of (g ).s linear in
m2 was given as the value of g;.

The coefficient of the chiral logarithm used in the fits of
the axial-current matrix elements (g;). in Refs. [17,18]

TABLE XI. Comparison of lattice QCD results for the mesonic axial coupling g;. Also shown are the numbers of dynamical light-
quark flavors n, the fermion lattice action, and the range of valence pion masses used in the calculation.

Reference ny, action [mYT? (GeV?) g

De Divitiis et al., 1998 [14] 0, clover 0.58-0.81 0.42 = 0.04 = 0.08

Abada et al., 2004 [15] 0, clover 0.30-0.71 0.48 £ 0.03 = 0.11

Negishi et al., 2007 [16] 0, clover 0.43-0.72 0.517 = 0.016

Ohki et al., 2008 [17] 2, clover 0.24-1.2 0.516 £ 0.005 = 0.033 = 0.028 = 0.028
Bedirevié et al., 2009 [18] 2, clover 0.16-1.2 0.44 = 0.031’8:88

Bulava et al., 2010 [19] 2, clover 0.063-0.49 0.51 £0.02

This work 2 + 1, domain wall 0.052-0.12 0.449 £ 0.047 5, £ 0.0194
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was set equal to that of the strong-decay P* — Par in
SU(2) HHxPT [44], because the corresponding loop con-
tributions for the axial-current matrix elements were not
known at that time. The NLO expression for the strong-
decay amplitude in SU(2) HH yPT is proportional to

+em |

(98)

2 2

.’M(P*—>P7T)0<g1|:1—4gl(4 p— )zlogmz

We have recently derived the NLO expressions for the
axial-current matrix elements in SU(2), SU(3), SU(4|2),
and SU(6[3) HHyPT [20]. As discussed in Ref. [20], the
chiral expansion of the axial-current matrix elements con-
tains an additional tadpole loop contribution, which modi-
fies the coefficient of the logarithm. In the SU(2) case, one
has

m2. 2
Gnf )210g 2+cm

Because g; = 0.5, the coefficient of the logarithm in
Eq. (99) is numerically about 3 times larger than the
coefficient of the logarithm in Eq. (98). The logarithm
makes (g;) as a function of m2 curve downward when
m? is decreased (see Fig. 10). The results for g, from the
previous unquenched lattice calculations, which incor-
rectly used Eq. (98) or did not include any logarithm in
the fits, would be significantly lower if the correct HH yPT
formula (99) had been used instead. We have attempted fits
to the data of [17-19] using Eq. (99), obtaining values of g;
that are about 10 to 20% lower than what is published in

(goeff:gl[ —(2+4g? ] (99)

TABLE XII.

PHYSICAL REVIEW D 85, 114508 (2012)

these works. Note, however, that HH yPT is not expected to
converge in the upper range of the pion masses in [17,18].
For the data used in the present work, incorrect fits linear in
m2 or using Eq. (98) give values for g, that are higher than
the correct result, Eq. (90), by 12% and 8%, respectively.

Next, we move to the discussion of various theoretical
estimates of the axial couplings g;, g,, g3 based on ap-
proximations, models, and experimental data. A compari-
son of these estimates to our QCD results is shown in
Table XII. The nonrelativistic quark model (NRQM) pre-
dicts g; = g4¢, g, = 2g%! and g3 = 2g4¢ [5], where
gf(l = 1 is the axial coupling of the single-quark transition
u — d. Interestingly, if g;(d is set to 0.75, the value needed
to reproduce the experimental value of the nucleon axial
charge, one obtains g; = 0.75, g, = 1.5, g3 = 1.06, still
significantly larger than our QCD results. The predicted
ratios of the axial couplings in the NRQM are, however,
consistent with our lattice determination. The relativistic
quark models of Refs. [45,46] give g, = 1/3 and g; =
0.6 = 0.1, respectively.

Another theoretical approach for estimating the axial
couplings is the large-N, limit of QCD, where N, is the
number of colors. In the limit N, — o0, one finds that the
baryonic couplings satisfy the relation [47,57]

3
= 4|z = 1.22.
N,=00 \/;

For comparison, our lattice QCD result for this ratio is

82
83

&

2 (100)

= 1.19(26), (101)

Comparison of our lattice QCD results for the axial couplings g, g», and g3 with other determinations as reported in

the literature [all results are shown in our normalization, see Eq. (11)]. Here, NRQM stands for nonrelativistic quark model. Where
decay widths or branching fractions are listed under ‘“Method”, these are experimental inputs. As discussed in the main text, the axial
couplings extracted from experimental data are defined away from the static limit in some cases. When a reference contained multiple
results for the same coupling and did not specify which one is the most reliable, we quote here the range from the lowest result minus

its uncertainty up to the highest result plus its uncertainty.

Reference Method g1 g g3
Yan et al., 1992 [5] Nonrelativistic quark model 1 2 2
Colangelo et al., 1994 [45] Relativistic quark model 1/3

Becdirevié, 1999 [46] Quark model with Dirac eq. 0.6 =0.1
Guralnik et al., 1992 [47] Skyrme model 1.6 1.3
Colangelo et al., 1994 [48] Sum rules 0.15-0.55

Belyaev et al., 1994 [49] Sum rules 0.32 £ 0.02

Dosch and Narison, 1995 [50] Sum rules 0.15 £ 0.03

Colangelo and Fazio, 1997 [51] Sum rules 0.09-0.44
Pirjol and Yan, 1997 [52] Sum rules <\/6 -8 <2
Zhu and Dai, 1998 [53] Sum rules 1.56 = 0.30 = 0.30 0.94 = 0.06 = 0.20

Cho and Georgi, 1992 [54]
Arnesen et al., 2005 [55]
Li et al., 2010 [56]
Cheng, 1997 [30]

This work

I'B— wtv]
[ — A.7], NRQM
Lattice QCD

B[D* — D], B[D* — Dy]

0.34 = 0.48
0.51
<0.87
0.70 = 0.12 1.40 £ 0.24 0.99 = 0.17
0.449 £ 0.051 0.84 = 0.20 0.71 £0.13
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and the nonrelativistic quark model predicts g,/gz =
V2 =~ 1.41.

The axial couplings have also been estimated using sum
rules [48-53], with results as shown in Table XII. For the
heavy-meson coupling g;, most sum rule determinations
are smaller than our lattice QCD result, and much smaller
than the NRQM value. In contrast, the values of g, and g3
obtained using sum rules in Ref. [53] are larger than our
lattice results.

Experimental data for various heavy-hadron decay pro-
cesses has also been used to determine the axial couplings.
In Ref. [54], electromagnetic interactions were included in
HHYPT, and the coupling g; was extracted from the
measured branching fractions B[D* — D] and B[D* —
Dy] at tree level, finding g, = 0.43 = 0.61 for m, =
1.5 GeV and g; = 0.34 = 0.48 for m. = 1.7 GeV. Note
that these values for g, are not defined in the static limit;
they are effective values corresponding to the D*Dr cou-
pling. A similar calculation, which additionally included
the leading nonanalytic effects in the radiative decays, is
reported in Ref. [58]. The complete 1/m and loop cor-
rections in both the strong and radiative decays were
included in the analysis of Ref. [59]. There, the fit to
experimental data for the branching fractions B[D’(ks) —
D, ] and B[D‘(*S) — D(,v] gave two possible solutions
for g;. The fit of Ref. [59] was updated later by including
experimental results for I'D*] [60], leading to g, = 0.51
[55], where (unlike in Ref. [59]) g; is defined in the static
limit.

Recently, g; was also extracted from data for the B —
m€v form factors, giving results for g in the range from
0.02 = 0.32 up to 0.73Y{3 depending on the parametriza-
tions of the form factor shape [56]. The measured widths of
the baryonic decays 2} — A, 7 were used in Refs. [30,52]
to estimate g3, with the result 0.99 = 0.17. The NRQM
relations then give g; = g3/\/§ =0.70£0.12 and g, =
g3/2 = 1.40 = 0.24 [30]. However, as discussed in
Sec. VI, the value of “g3” extracted directly from I3} —
A .7r] should really be considered as an effective value of
the decay coupling constant at m, = m,, deviating from
the static-limit axial coupling by corrections of order
Agep/me ~ 30%.

VI. CALCULATION OF DECAY WIDTHS

In this section, we use our lattice QCD results for the
axial couplings g, and g5 to calculate various decay widths
of heavy baryons. At leading order in the chiral expansion,
the widths for the strong decays S — T are

ﬂ)zﬁ E

. (102
ng) My P (102)

1
I[S— Tw]=c? —( +
[ ] f 67Tf%,- 83
where S and T now denote physical s;, =1 and s, =0
heavy-baryon states such as 3, and A, |p,| is the magni-
tude of the pion momentum in the S rest frame,

PHYSICAL REVIEW D 85, 114508 (2012)

:\/[(Ms —Myp)? —m3 (Mg + Mrp)* —m3 ]

Ipl 2M; ., (103)
and ¢; is a flavor factor [61],
1 for ES) — Ap7™,
.= 1 for E(Q*) — AQ770,+ (104)

1/32  for E/Q(*) — Hom™,

/2 for Efy) — By,

The my = oo expression for I' can be found, for example,
in [52]. In Eq. (102), we included the term «;/mg, to
account for the first-order corrections for a finite heavy-
quark mass. The parameters «; are related to the additional
couplings in the order-1/m, HHYPT Lagrangian [62].
Terms suppressed by (m,/A )?* and (Aqcp/mg)?, which
are omitted from (102), lead to small systematic uncertain-
ties in I'.

To determine « /, and «3/,, we performed fits of experi-
mental data [63] for the widths of the 3%, 30 (J = 1/2)
and the 23"+, 30 (J = 3/2) using (102), where we con-
strained g5 to our lattice QCD result (97) and set my =
%M 7/y- These fits are shown in Fig. 15 and gave the results

K1/ = 0.55(21) GeV,
COV(Kl/z, g3) = —0.025 GCV,
K3/2 = 047(21) GCV,
COV(K3/2, g3) = —0.025 GeV.

(105)

The fit parameters «; are correlated with g3, and there-
fore we also show the covariances in Eq. (105). The value
of the sum g5 + VZ_:; in Eq. (102) is plotted as a function of

1/my in Fig. 16. For my = M, the values of g5 + r’n‘—fQ

20 I I I T T T T
e PDG, ¥, — A 7t
= PDG, ¥F = A7t P
15 H—Fit,J = 1/2 %
-~ Fit, J = 3/2 s

1 1 1 1 1 1
170 180 190 200 210 220 230

My — My, (MeV)

FIG. 15 (color online). Experimental data for s —
A 7] from Ref. [63], along with fits using Eq. (102), for J =
1/2 (solid curve) and J = 3/2 (dashed curve).
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FIG. 16 (color online). Value and uncertainty of the quantity
(g3 + k;/mg), which enters in the strong-decay width (102), as
a function of the inverse heavy-quark mass mél, for J =1/2
(solid curve) and J = 3/2 (dashed curve). At m’1 =0 the
function is equal to g3, which is given by our lattice QCD result
(97). The vertical lines indicate our choices for the inverse
bottom and charm quark masses.

are determined dominantly by the experimental input used
to fit Ky,

g3+ 12— 1.059(49), g5+ Y2 =
2 my/y My

=1.008(46).

(106)

Using the masses of the = and = baryons from Ref. [63],
we obtain predictions for I'TE** — Ef 7% E%7*] and
IMEX — B%° Er 7] as shown in Table XIII. There,
we also show other predictions from the literature, as well
as upper limits from experiments [71,72]. Our results for
[[E%*] and I'[E:°] are compatible with these limits.

We can also make predictions for the radiative decay
2*0 — 5%y, which is forbidden at tree level but can be
mediated by loops because of flavor-SU(3) breaking.
Using HHYPT, it has been shown that the branching
fraction of this decay is related to the axial coupling g,
as follows [73]:

B[E®— Ely] = (1.0 £ 0.3) X 1073g3. 107)
Combining this with our lattice QCD result for g,,
Eq. (97), and our calculated strong-decay width ITZ*0 —
BO70 B 7] = 2.78(29) MeV, we obtain

ﬁ—4(;7T > —ic
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16 I I i I T T T T T
| | — This work, J =1/2
-- This work, J = 3/2
12H e CDF, 5 — Ay 7t il
|| w CDF, 5% = A, 7t

I[5 = Ay 7] (MeV)
(=7}
T

0 Il 1 1 1 1 1 1
140 150 160 170 180 190 200 210 220

My = My, (MeV)

FIG. 17 (color online). Widths of the decays Ef)i — A=
as functions of the Ef) — A, mass difference. The curves (solid:
2, dashed: %7) and shaded regions show our predictions and

their uncertainties. The experimental data points are from
CDF [13].

B[E: — S0y] =

ITEY — Byl =

(7+4) X 1074,

(108)
(2.0 = 1.1) keV.

Next, we discuss the strong decays of bottom baryons. To
calculate these widths, we evaluated (102) for my = %My.
In this case the values of g; + r:;—’Q are determined domi-

nantly by the lattice result (97) for g3,

o+ 32— 0822(87), g3 + 2 =0.805(87).
2mY 2mY

(109)

Our calculated widths F[Ef) — A, 7] as functions of the

EEJ*) — A, mass difference are shown as the curves in
Fig. 17. Using the experimental values of the baryon

masses [13,63], we obtain the results for F[Eﬁj) —
A, 7= ] shown in Table XIII, in agreement with the widths
measured by the CDF collaboration [13].

In our previous work [21] we predicted that the widths of
the B/ and Ej are less than 1.1 and 2.8 MeV, respectively.
Very recently, the CMS collaboration has observed the

TABLE XIII. Results in MeV for the total strong-decay widths of charm and bottom baryons.
Hadron Ref. [52] Ref. [64] Ref. [61] Ref. [65,66] Ref.[67] Ref.[68] Ref.[69] This work Experiment
Py 6.0 4.35 35 4.2(1.0) 9.7+38%1% [13]
2 7.7 5.77 47 4.8(1.1) 49731 + 1.1 [13]
2 11.0 8.50 7.5 7.3(1.6) 11. 53;*}2 [13]
35 . o e 13.2 10.44 9.2 7.8(1.8) 7.5722709 [13]
=i 0.85 0.51(16) 2.1 %= 1.7 [70]
Bit 1.2-4.1 1.81 3.04(37) 3.18(10) 2.7(12) 1.13 244(26)  <3.1(CL = 90%) [71]
=h 1.2-4.0 1.88 3.12(33) 3.03(10) 2.8(2) 1.08 2.78(29)  <5.5(CL = 90%) [72]
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Hb , finding a width of 2.1 = 1.7 MeV [70]." The mass
difference to the =, was measured to be
Mz — Mz, = 154.41 = 0.79 MeV. (110)

The ,:b can decay into 2, 7" (seen by CMS) and into
0. Taking Mz, — Mz =3.1%5.6=* 1.3 MeV from

the CDF measurement reported in Ref. [74], we have
ME;o - Mgg = 157.5 = 5.8 MeV. (111)

Using the results (110) and (111), we can update our
calculation of the EZO width and find

[EX— &, »" BEV7% =051 £0.16 MeV. (112)
Given the observed mass difference (110), and assuming that
Mz =Mz =~Ms: —Ms, =21*2MeV [29], it is likely
that the decay H’0—> =, " is kinematically forbidden.

VII. CONCLUSIONS

The chiral dynamics of mesons and baryons containing a
heavy quark is controlled at leading order by three axial
couplings g, g», and g5. Knowledge of the values of these
couplings is an essential ingredient for precision QCD
calculations in flavor physics. In this paper, we have dis-
cussed in detail the first complete lattice QCD determina-
tion of g, g,, and g;. We have extracted the axial
couplings by fitting numerical data for matrix elements
of the axial current using the quark-mass and volume
dependence calculated in SU(4|2) heavy-hadron chiral
perturbation theory. Our final results are

g1 = 0.449 = 0.0474, = 0.019,,,
g2 = 0.84 % 0.20,,, * 004,
g3 = 0.71 = 0,12, * 004,

(113)

The systematic uncertainties in (113) are very small, be-
cause our analysis is based on data at low pion masses, with
a large volume, and at two different lattice spacings. We
have also carefully removed the excited-state contamina-
tion in the matrix elements by extrapolating the ratios of
correlation functions to infinite source-sink separation.

Previous lattice calculations of heavy-hadron axial cou-
plings had only considered the mesonic coupling g;. The
early calculations of g; did not include dynamical quarks
and hence are contaminated by uncontrolled systematic
errors. The ny = 2 calculations typically used large quark
masses and the fits to the quark-mass dependence were
performed either linearly in m2 or with an incorrect coef-
ficient of the chiral logarithm. Had the correct coefficient
been used, significantly lower values of g; would have
been obtained in these previous studies.

For the range of pion masses considered in our work
(230 MeV = m, < 350 MeV), the chiral expansion of the

"Without a spin identification, there is a small possibility that
the state observed by CMS is the Z1 instead. We do not consider
this further.
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axial-current matrix elements between heavy-light hadron
states is found to be well-behaved. The next-to-leading-
order contributions are small compared to the leading-order
contributions, and NNLO contributions are negligible. The
rapid convergence of the chiral expansion is also a conse-
quence of the smallness of the static-light axial couplings
(113). It is interesting to compare the chiral dynamics of
hadrons containing a heavy quark with that of light baryons.
Being particularly light, the interactions of virtual pions
(and other pseudo-Goldstone bosons) produce significant
contributions to many properties of baryons, and generically
these effects scale quadratically with the strength with
which a given baryon sources pions. This, in turn, is deter-
mined by the relevant axial coupling, g, in the case of
heavy hadrons, and g, = 1.26, |gyal ~ 1.6 and gax ~
—1.9 in the case of light baryons [75,76]. From the numeri-
cal values of these couplings, it is apparent that chiral
dynamics is more perturbative for heavy-light hadrons
than that for light baryons.

Our results for the heavy-light axial couplings, Eq. (113),
are significantly smaller than the values one obtains in the
nonrelativistic quark-model, g; = g4¢, g, =2g4? and

= 2g4¢, where gi! =1 is the axial coupling of the
smgle quark transition # — d. Even if gjgd is set to 0.75, as
needed to reproduce the experimental value of the nucleon
axial charge, the corresponding quark-model values of g1, 3
are still significantly smaller than the results (113) from
first-principles lattice QCD.

We have used our results for g, and g5 to calculate strong
and radiative decay widths of charm and bottom baryons. For
the strong decays, we have taken into account the
order-1/ mo corrections, which we have constrained by
combining experimental data for charmed baryon decay
rates with our lattice determination of g;. We found that
the 1/mg corrections are significant (their effect on the

amplitudes for 2(5) — A decays is about 40% at my =
m. and about 13% at my = m,,). As a consequence, the
coupling g5 cannot be reliably extracted from experimental

data for charmed baryon decays alone, and our lattice calcu-
lation in the static limit is crucial to calculate the widths of

bottom baryons. Our results for the widths of the 25,*) baryons
are in agreement with recent measurements at Fermilab.

Our determination of the axial couplings can also im-
prove the precision of future lattice QCD calculations of
other heavy-hadron properties such as masses, decay con-
stants, and form factors, because the axial couplings con-
trol the dependence of these properties on the light-quark
masses. Therefore, the calculation of the axial couplings
from first principles also has an impact on searches for
beyond-the-standard-model physics at the LHC and the
planned SuperB experiment. Importantly, our results in-
clude the baryonic couplings g, and g;. Heavy baryons
may offer additional opportunities for probing the structure
of new physics as a consequence of the different spin
quantum numbers.
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APPENDIX A: PLOTS OF RAW DATA
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FIG. 18 (color online). Summary of all data points for R;(z), R,(¢) and R5(f). At each value of t/a, results from up to five different
values of nyyp are shown (from left to right: ngyp = 1, 2, 3, 5, 10; points offset horizontally for legibility; in some cases there are no
results for R; for the lowest values of nyyp, because the statistical fluctuations were too large to calculate the square root of the double
ratio). In physical units, the range of the horizontal axis in all plots is from ¢ = 0.336 fm to t = 1.23 fm.
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APPENDIX B: COMPARISON OF STANDARD
RATIO METHOD AND SUMMATION METHOD

To extract the effective axial couplings from the ratios
R;(z, ') defined in Egs. (63)—(65), we defined R;(¢) to be the
average of R;(z,1') over a symmetric range of ¢/ values
around #/2 in a region where there was no discernible #
dependence, which essentially amounts to using

Ri(t,1/2). (B1)

An alternative approach for extracting g.¢ is the summa-
tion method [19,77-80]. In the following, we only consider
the case of the simple ratios (63) and (64) for degenerate
spectra. One defines the summed ratio S;(¢) by summing
R;(z, t') over all values of ¢,

t
Si)=a Rt 1. (B2)
=0
For large ¢, one expects [77,78]
Si(t) = ¢; + (gi)est, (B3)

with some constant ¢;. Thus, the coupling (g;)e; can be
extracted by taking the derivative [19,80],
d
sum —

R™(1) = - 8:(0), (B4)
which is approximated by a finite difference on the lattice.
Assuming that there is a nonvanishing off-diagonal matrix
element of the axial current between the ground-state
hadron and an excited state with an energy gap 6 (for our
data, contamination from off-diagonal matrix elements
actually appears to be very small, as discussed in
Secs. IVA and IV B), one expects that the systematic
uncertainties of (B1) and (B4) due to this excited state
are of order [80]

Ri(1) = (g))err = O(e™2%),

(B5)
R™ () = (g1)err = O(1e™%")

T T T T T T T

0.7 B

¢ Data

0.6 - —Fit to t/a =28,9,10

S1(t) (fm)

a=0.112 fm, am,(l‘::}l)

=0.04, nuyp =3

1 1 1 1 1 1 1

08 09 1.0 11
t (fm)

FIG. 19 (color online).
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[see Eq. (71) for the spectral decomposition of R;(z)]. Thus,
the excited-state contamination in R?“mmed(t) decays effec-
tively with twice the energy gap relevant for (g;).¢(¢), but
at the cost of an additional factor of ¢ in front of the
exponential, which may be important at intermediate val-
ues of 7.

Alternatively to taking the derivative as in Eq. (B4), one
may fit S;(¢) using the linear function (B3) with parameters
c¢; and (g;)er. In Fig. 19, we show numerical results for
S;(#), along with such fits. In Fig. 20, we compare numeri-
cal results for the standard ratio (B1), the derivative of the
summed ratio (B4), and the results for (g;).s from linear
fits to S;(¢) using Eq. (B3). For our data, the results from the
summation method, especially for the derivative of the
summed ratio, are seen to suffer from much larger statis-
tical uncertainties than the standard ratio. This was also
found in Ref. [80] and is not unexpected, because the
relative statistical uncertainty in the difference of two
similarly-sized observables (the discrete derivative used
here) is much larger than the relative statistical uncertainty
in the individual observables. Of course there are correla-
tions which can improve the situation, and we did take
these into account when calculating (B4), but because of
the way that our lattice calculation was set up (data at
successive values of ¢ did not always have neighboring
source locations), the correlations were not optimal.

It appears that the systematic errors of the results from
the summation method at short ¢ are similar in magnitude
to the systematic errors of the results from the standard
ratio method at the same ¢, but the deviations from (g;)eff
have the opposite sign. This shows that valuable informa-
tion about systematic errors can be obtained by comparing
both methods. For the present data, our process of
extrapolating the results from the standard ratio to infinite
t is superior because of the much smaller statistical
uncertainty.

Similarly to the work done in Ref. [80], we also studied
models for the three-point and two-point functions with

14 F T T T T T T T ]
. ¢ Data

12 | —Fit to t/a =8,9,10 .
£ 10 .
A 0.8 - -
0.6 - £ =

a=0.112 fin, am{™ = 0.04, nuyp =3
04 F -

1 1 1 1 1 1 1

05 06 07 08 09 1.0 1.1

t (fm)

Fits to the summed ratios S;(¢) and S,(¢), in the range t/a = 8, 9, 10. The data are for a = 0.112 fm, and a

heavy-quark mass of mEZZ') = (.04 (close to the physical strange-quark mass; the large mass was chosen here for the smaller statistical

uncertainties) and ngyp = 3.
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FIG. 20 (color online).
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1.4 T T T T

e Standard ratio method

© Summ. method (derivative)
1.3+ ¢ Summ. method (fit) H

0.5 1.0 1.5 2.0
t (fm)

Comparison of the standard ratio method and the summation method for R; and R, at a = 0.112 fm, for a

heavy-quark mass of am, d) = 0.04 (close to the physical strange-quark mass; the large mass was chosen here for the smaller
statistical uncertainties) and nyyp = 3. Shown is the dependence on the source-sink separation ¢. The derivative of the summed ratio,
Eq. (B4), is approximated using R{"™ = [S,(r) + S;( + a)]/a and plotted with square symbols at 7 + 1a. The results for (g;)e from
linear fits to S;(¢) using Eq. (B3) are plotted with diamond symbols. We performed fits in the range 7 = t,;, ... 10a, and the results are
plotted at t = t,;, + }‘a. For the data from the standard ratio method (circles), the curves indicate the results of fits with the form
Ri(1) = (g)err — A;e %" with free parameters (g;)cfr, A;, and §; see Sec. IV B.

excited states. We found that at intermediate values of ¢, the
systematic uncertainties of (B1) and (B4) were strongly
dependent on the assumptions made in the model. For
some models, the standard ratio showed an adantage
while for others the summation method showed an advan-
tage, so that again we were not able to draw definitive
conclusions.

Further methods for the calculation of hadron-to-hadron
matrix elements are based on the generalized eigenvalue
problem [80] and the “generalized pencil-of-function”
[81]. These techniques use matrices of correlation func-
tions with multiple interpolating fields to reduce the
excited-state contamination at finite . Because we only
have data from one interpolating field for each hadron, we
cannot test these methods here.
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