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[1] A rigorous but yet highly accurate and efficient numerical treatment of plane wave
scattering by T-shaped planar corrugations through full-wave modal analysis is first
presented in this paper, which entails the moment method using parallel-plate waveguide
cavity Green’s functions and a numerical spectral-domain Green’s function for planar
stratified media. Investigations in terms of both reflection-phase and dispersion diagrams
are conducted. After validating with the commercial software package: CST Microwave
Studio, this moment-method is in turn used to verify a formula derived by the
transverse resonance technique (TRT) for the surface-wave propagation constant
of corrugations in terms of the dispersion diagram. Correspondences between the
reflection-phase and dispersion diagrams are then established by relating the high and
low impedance frequencies in the former with the pass and stop bands of the latter.
With the abovementioned formula, the way is paved for a novel derivation of explicit
formulas for the reflection-phase of an incident plane wave impingent on the corrugations
as closed-form analytic functions of the various parameters, even for oblique azimuth
planes of incidence and for both TE and TM polarizations. Doing so, the high or low
surface-impedance (AMC or AEC) properties of such corrugations can virtually be
acquired instantly, thus providing incomparable speedup of the process of thorough
reflection-phase characterization of AMC or high-impedance surfaces and soft
surfaces, thus affording rapid designs of antennas and microwave devices
that make use of them.
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1. Introduction

[2] Corrugations have been an object of affectionate
attention and keen interest among purists in electromagnetic
theory for many decades. Dating as far back as to the 1940s,
among the earliest works were accredited toGoldstein [1943,
1944], who investigated waveguides with corrugated metal

walls. Another classical piece was byGoubau [1950], who in
1950, reviewed the work of Sommerfeld [1909] regarding
axial surface waves on cylinders and extended the concepts
by demonstrating that conductors with textured surfaces can
support axial modes. And this was not long before the emer-
gence of another seminal work by Elliott [1954], which studied
the electromagnetic fields and propagation characteristics of a
corrugated rectangular waveguide attached to a plane corru-
gated surface terminated by a ground plane. Shortly thereafter
came along a pioneering paper by Piefke [1959], in which the
transmission characteristics of a corrugated waveguide were
analyzed under the assumption of electrically small corruga-
tion period, allowing the structure to be replaced by a quasi-
homogeneous but anisotropic medium whose permittivity and
permeability are represented by tensors. And Hougardy and
Hansen [1958] studied the surface wave propagation along
an oblique angle with the orientation of the corrugations.
[3] The works of Kalhor [1976, 1977] in the seventies

analyzed the scattering of electromagnetic waves from

1Institute of Communications Engineering, Department of Electrical
and Computer Engineering, National Chiao Tung University, Hsinchu,
Taiwan.

Corresponding author: M. Ng Mou Kehn, Institute of Communications
Engineering, Department of Electrical and Computer Engineering, National
Chiao Tung University, 1001 University Rd., Engineering Bldg. IV,
Hsinchu 30010, Taiwan. (malcolmaxwell@gmail.com)

©2012. American Geophysical Union. All Rights Reserved.

RADIO SCIENCE, VOL. 47, RS3008, doi:10.1029/2011RS004938, 2012

RS3008 1 of 17



periodically corrugated conducting surfaces. Via matrix
inversions, solutions were obtained by numerically solving
systems of equations for the numerous unknown coefficients
that expand the sought quantities (typically the fields). But yet,
those methods still lacked full rigor and just gave approximate
solutions, as further evidenced by Kriegsmann and McCartin
[1996]. In Kim et al. [1999], a technique that hybridizes the
method of moments with the uniform geometrical theory of
diffraction (MOM/UTD) was presented for the analysis of
corrugated surface-wave antennas with an infinite ground
plane and fed by a parallel-plate waveguide. More recent
works of Uusitupa [2006], Hanninen and Nikoskinen [2008],
and Alfonso et al. [2009] described formulations based on the
method of moments to analyze the scattering of impingent
plane waves from corrugated surfaces.
[4] Theoreticians and computational enthusiasts were not

the only ones captivated by this structure. Experimentalists
and practical engineers in the microwave fraternity have,
likewise for the past many years, been making use of corru-
gations to develop improved microwave devices such as
waveguides and antennas. Most distinctively is the use of
corrugations in synthesizing surfaces on which the behavior of
electromagnetic waves can be controlled within specific fre-
quency bands. Well known as soft and hard surfaces [Kildal,
1990] inaugurated at the dawn of the nineties, applications of
such anisotropic surfaces are bountiful, e.g., reduction of the
total scattered fields from metallic support struts of feeds in
reflector antennas, curbing of cross-polarization of radiating
slots in cylinders, suppression of undesirable mutual coupling
and radiated sidelobes through reduced diffraction of surface
waves from platform edges [Li et al., 2005], as choke horn-
feeds for paraboloids, just to name a few.
[5] These soft and hard surfaces bear a close relationship

with the well-known electromagnetic bandgap (EBG) struc-
ture [Yang and Rahmat-Samii, 2008], whereby both demon-
strate frequency bands within which the propagation of surface
wave modes is permitted in some but prohibited in others. The
primary difference between them lies in the anisotropy of the
soft/hard surfaces, as in, surface-wave suppression in all
directions is afforded by EBG structures but only over an
angular span for corrugations, i.e., only along sector-limited
directions. Important applications of EBG properties include
the reduction of undesirable cross-talk between microwave
components in the areas of EMC and IC packaging [Mohajer-
Iravani et al., 2006; Kamgaing and Ramahi, 2008; Mohajer-
Iravani and Ramahi, 2007], suppression of losses due to
mutual coupling in array antennas [Yang and Rahmat-Samii,
2003; Farahani et al., 2010], as well as curbing edge diffrac-
tion from antenna structures thereby keeping the levels of
sidelobe radiation under control. Perhaps the most famous
example of an EBG structure is the so-called mushroom sur-
face [Sievenpiper et al., 1999]. Alternative configurations
include patch arrays on grounded substrates [Goussetis et al.,
2006]. Not so widespread recognized, however, is that corru-
gations are also able to exhibit EBG behavior, particularly for
the direction perpendicular to the gratings. This is tantamount
to transverse corrugations, i.e., the soft surface.
[6] In the same way as the customary periodic array of

patches printed on a grounded dielectric substrate [Goussetis
et al., 2006], corrugations are able to portray so-called artifi-
cial magnetic conducting (AMC) properties whereby the sur-
faces of the gratings exhibit high impedance values within

certain frequency bands. Specifically, at frequencies where the
phase of the reflection coefficient (or simply, reflection phase)
of an incident plane wave on the corrugations falls between
+90 deg and �90 deg, the surface is regarded as AMC or has
high impedances. The frequency range over which this prop-
erty prevails is then called the AMC bandwidth. Arguably, the
most prominent application of this attribute is the realization of
low-profile and conformal antennas. Others include the
exploitation of the varying reflection-phases with angles of
incidence, polarization, and frequency, to synthesize better
ground planes for antennas [Foroozesh et al., 2008a, 2008b].
[7] In virtue of the important roles which AMC and EBG

characteristics play in many applications, two benchmark
graphical representations of these properties have emerged
in literature. They are the so-called reflection-phase and
dispersion diagrams [Goussetis et al., 2006]. However,
despite the numerous studies on plane corrugations as out-
lined above, none of them has presented both the reflection-
phase diagrams and dispersion diagrams at the same time
and studied how these two could be related. It is thus among
the main objectives of this paper to investigate corrugations
via such graphical characterizations of their AMC and EBG
behaviors and seek to discover linkages between them.
[8] Despite widespread mention and use in literature of the

reflection-phase of periodic structures for studying HIS and
AMC surfaces, none of them has provided explicit formulas for
representing the reflection-phase for both principal polariza-
tions and oblique azimuth planes of incidence as closed-form
analytic functions of all parameters. However, in this paper, by
using the transverse resonance technique (TRT) to derive an
analytic functional form of the surface-wave number for TM
polarization for surface propagation in the direction perpen-
dicular to the corrugations, the ultimate goal here is to present a
never-before seen derivation of a formulaic expression for the
TM reflection-phase of a planar corrugated surface illuminated
by a uniform plane wave as an analytical closed-form function
of the numerous parameters of the corrugations (such as the
depth, material of the groove filling, period, etc), the angular
direction of the incident wave (represented by qinc and finc), as
well as the frequency. This remarkably innovative method for
obtaining an explicit formula for the TM reflection phase
allows for instantaneous (as opposed to heavy full-wave com-
putational simulations) but yet highly accurate determination of
the reflection-phase properties of planar corrugated surfaces, by
direct evaluations of the abovementioned derived analytic
function without even the need to carry out a single rigorous
computational solution of the structure. The importance and
usefulness of such a formula do not need any further emphasis
or justification. This above derivation shall then be extended to
obtain the reflection-phase formula for the TE case as well.

2. Theoretical Formulation: Full-Wave Moment
Method Treatment

[9] Before commencing the analysis, it is worth justifying its
value by saying that, although Uusitupa [2006], Hanninen and
Nikoskinen [2008], and Alfonso et al. [2009] also dealt with
plane wave scattering of corrugated surfaces using the moment
method, they all suffer from shortcomings which this presently
proposed approach does not. Compromise of rigor and robust-
ness is sustained by the approach of Uusitupa [2006] which
utilized restrictive slab models, whereas the method proposed
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in Hanninen and Nikoskinen [2008] is after all still only an
approximated one due to the impedance boundary condition
used. The accuracy of the treatment in Alfonso et al. [2009] of
finite corrugated surfaces is limited by the coarse modeling of
the equivalent magnetic current over the aperture of the corru-
gations with sub-domain rooftop basis functions (as opposed to
entire-domain modal ones). Moreover, Alfonso et al. [2009]
have restricted the analysis to magnetic current flow only
along the groove aperture and neglected the component per-
pendicular to the corrugations, rendering the method unsuitable
for managing gratings with wider grooves. The need to treat
each of the numerous apertures of the finite corrugations indi-
vidually also makes that approach cumbersome. On the con-
trary, the present full-wave method is elegant, fully rigorous,
and based on classical theories of surface equivalence and
Green’s functions derived from the reciprocity theorem, being
able to treat corrugations with grooves and ridges of any
thickness. The only approximation sustained is the truncation of
the number of entire-domain modal basis functions, an aspect
no numerical technique can avoid.
[10] The planar corrugated surface to be analyzed is shown

in Figure 1. An extended and more general form of corruga-
tions is herein considered, whereby a horizontal metallic strip
plate is now placed over each vertical ridge to form the so-
called T-shaped corrugations. When the strip-width equals the
ridge-width, thus shedding the iris-type apertures, this T-type
version then simplifies (specializes) to conventional corru-
gations. The analysis is divided into the following steps:
(A) initialization with orthonormalized parallel-plate wave-
guide modes, (B) expansion of infinitely long PEC-equivalent
magnetic aperture strip currents into parallel-plate waveguide
(PPW) modal basis functions, (C) obtaining the H-fields
radiated into the grooves via PPW cavity Green’s function,
(D) Fourier transform of the PEC-equivalent magnetic strip-
current over the iris-type aperture, (E) acquiring the spectral-
domain magnetic fields radiated by spectral-domain basis
magnetic currents located on the surface of the infinite PEC

ground plane, (F) obtaining the spatial-domain fields radiated
by the entire array of magnetic strip currents into the region
above the corrugations, (G) enforcement of the boundary
conditions requiring the continuity of tangentialH-fields across
the PPW cavity aperture, (H) Galerkin weighting and con-
struction of intermediate matrices, and (I) matrix operations
and construction of the ultimate moment-method matrix
equation to be solved via matrix inversion for the unknown
amplitude coefficients expanding the magnetic strip currents.

2.1. Orthonormalized Parallel-Plate Waveguide Modes

[11] Consider first, the following parallel-plate waveguide
(PPW) in Figure 2. The orthonormalized PPWeigenmodal field
functions for TMz and TEz modes are then written as follow.
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Figure 1. Corrugations with metal fin-plate over each ridge to form T-shaped corrugations.
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ETMz

y ¼ HTMz

x ¼ HTMz

z ¼ ETEz
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z ¼ HTEz

y ¼ 0 ð1gÞ

where ks ¼
(
1; when s ¼ 0

2; otherwise
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� w2m cav
apf gɛ cav
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and whereby the upper and lower cases in the curly braces {}
throughout these equations correspond to one another. The
symbol g or a represents the width of either the groove (cavity)
or aperture (iris) region, respectively, as also labeled by upper
case “cav” and lower case “ap” in the curly braces, as will be
explained later below. The integer s denotes the modal index of
either the groove or aperture region, representing the number of
half-cycle variation of the fields along the x direction.
[12] By these preceding equations, the PPW modes are

orthonormalized, i.e.

Za

x¼0

e
cav
apf g

xp;Trz xð Þh
cav
apf g

yu;Twz xð Þ � e
cav
apf g

yp;Trz xð Þh
cav
apf g

xu;Twz xð Þ
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dx ¼ dpr;uw

dpr;uw ¼
1; only when pr ≡ uw; i:e: p ¼ u;Trz ≡ Twz ¼ TEz or TMzh i

0; otherwise

�

as required for the derivation as well as utility of the PPW
cavity Green’s functions.

2.2. Expansion of Infinitely Long PEC-Equivalent
Magnetic Aperture Strip Current Into PPW Modal
Basis Functions

[13] Upon invocation of PEC equivalence, the grooves of
the corrugations are filled up with PEC and the iris is
replaced with an equivalent magnetic strip current of infinite
expanse along the y-direction, expressed as:

~M
þ
xð Þ ¼ ~Eap x; z ¼ 0þð Þ � ẑ ¼

¼ e�jky0y x̂
X
pTE

ApTEe
ap
ypTE

xð Þ þ ŷ
X
pTM

ApTM �eapxpTM xð Þ
h i( )

ð2Þ

[14] It is highlighted that this magnetic current exists over
the aperture only. Also note the vital term e�jky0y which is
pertinent to the anticipated treatment of plane wave

scattering by the corrugations later, i.e., they are illuminated
by an incident plane wave with a forcing wave number ky0
along y defining the dominant Floquet harmonic. It is crucial
to note that in the present formulation of the PPW modes,
this e�jky0y must be universally present throughout. Since þẑ
is used as the unit normal, pointing upwards into the upper

half-space, hence this ~M
þ
is perceived positive just over z =

0 aperture, i.e., at z = 0+, just outside the virtual PPW cavity
(infinitely long along y). Correspondingly, the M just within

the PPW cavity at z = 0� is: ~M
�
xð Þ ¼ �~M

þ
xð Þ.

2.3. Radiated H-Field Into Grooves via PPW Cavity
Green’s Function

[15] Figure 3 shows the groove region of the T-shaped
corrugations modeled as a shorted parallel-plate waveguide
cavity, with “propagation” direction along z being perpen-
dicular to the two infinitely long (along y) metallic plate-
walls (parallel to xy plane, i.e., cross-sectional with respect
to the propagation z-direction) serving as the shorting walls,
at z = �h and 0. On one of these two “end walls” (the one at

Figure 3. Groove region of corrugations modeled as a
shorted parallel-plate waveguide cavity.

Figure 2. Parallel-plate waveguide with plate-separation a or g along x, for aperture or groove.
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z = 0) locates an infinitely long (along y) magnetic strip
current aperture, which may generally be smaller than the
cross-sectional shorting metallic strip-wall, so as to model an
iris.
[16] The full derivation of the PPW cavity Green’s func-

tion would be too voluminous and thus cannot be provided
in this paper. But as far as this work is concerned, for the
magnetic source located at the z = 0 end of the PPW cavity,
and for H-field observation also at that z = 0 end of the
cavity, just to the left of the source, i.e., at 0�, the observed
transverse xy component of the H-field is directly written as:

~H
zs¼z2
t xo; zo ¼ 0�ð Þ ¼ e�jky0yo�

�
XPcavTM

pTM¼0

coth gcavzpTM
h

� 	
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⋯þ
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h

� 	
~hcavtpTE

xoð Þ
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TE
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AuTE

Za=2
xs¼�a=2

eapyuTE xsð ÞhcavxpTE
xsð Þdxs

2
666666664

3
777777775

ð3Þ

where~hcavtpTY
¼ x̂hcavxpTY

þ ŷhcavypTY
;with Y ¼ M or E. The o and

s subscripts of x denote the observation and source coordi-
nates. UTM

ap and UTE
ap are the truncated numbers of TM and

TE type PPW-cavity modes considered for the aperture
fields.

2.4. Fourier Transform of PEC-Equivalent Magnetic
Strip-Current Over Iris-Type Aperture

[17] The magnetic current of (2) may be restated as

~M x
yf g xs; zs ¼ 0þð Þ ¼

XUap

TE
TMf g

u TE
TMf g¼ 1

0f g
Au; TE

TMf g ~m x
yf g

u; TE
TMf g xs; kyn¼0


 �

ð4aÞ

~m x
yf g

u; TE
TMf g xs; kyn¼0


 � ¼ �eapy
xf g

u; TE
TMf g

xsð Þ ð4bÞ

where the single tilde signifies that these are already in the ky
spectral domain, evaluated at a single kyn=0 = k sin q0 sin f0,
in which q0 and f0 are the incident angles of the impingent
plane wave (defining the dominant Floquet harmonic) that
illuminates the corrugations from above, and k is the wave
number of the medium above the corrugations from which
the excitation plane wave arrives (emerges).
[18] Transforming these into spectral (kxz, kyn=0 = ky

ex)
domain [involving just a single (line/contour) integration
with respect to xs], we write:

~~M x
yf g kxz ; kyn¼0 ; zs ¼ 0þ

 � ¼ XUap
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TMf g

u TE
TMf g¼ 1

0f g
Au; TE

TMf g ~~m x
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 �
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 � ¼ Zxs¼þa
2

xs¼�a
2

~m x
yf g

u; TE
TMf g xs; kyn¼0


 �
eþjkxz xsdxs

ð5bÞ

with

kxz ¼ k0 sin q0 cos f0 þ 2zp=dx; ð5cÞ
such that the inverse transform from spectral kx to spatial x
domain only requires a summation over discrete spectral
components defined by this (5c) due to the periodicity along
only x (but not y) with period dx. The z is an integer denoting
the Floquet harmonic index, which we have intently used
instead of m that would had been in harmony with the n = 0
of ky but so as not to confuse with the magnetic basis cur-
rents ~m and ~~m . Symbols q0 and f0 are the angular coordi-
nates defining the direction of the dominant Floquet modal
beam, defined simply by the incidence angles of the impin-
gent plane wave (the primary excitation of the corrugations),
and k0 is the usual freespace wave number.

2.5. Spectral Magnetic Fields Radiated by Spectral
Basis Magnetic Currents Located on Surface of Infinite
PEC Ground Plane

[19] The spectral basis currents of this (5b) are subse-
quently employed as the secondary sources for the scattering
scenario (as opposed to the primary incident plane wave
source for the excitation scenario), which is the excitation of
the uncorrugated perfect electric conducting (PEC) planar
structure, for which the grooves of the corrugations have
been filled up with PEC (upon PEC equivalence). The spec-
tral fields radiated by these spectral basis currents (placed just
on the PEC surface) into the medium above the corrugations
are obtained from a numerical spectral Green’s function for
treating multilayer structures known as G1DMULT [Sipus
et al., 1998; Ng Mou Kehn et al., 2006], being the core rou-
tine of this technique, i.e.

~~H
~~m x;y½ �u; TE;TM½ �
w ¼ ~~G

M x;y½ �
Hw

� ~~m x;y½ �u; TE;TM½ � ; ð6Þ

where the w subscript may denote either x or y component of
the radiated spectral H-field. The spectral dyadic Green’s
function G is characterized by superscript M[x,y] signifying
the magnetic current source type and its x or y component of
the secondary excitation source, whereas its subscript Hw

indicates the type of the radiated field and its component. The
driving spectral basis current is indicated as ~~m x;y½ �u; TE;TM½ �,

which is from (5b), and is reminded that it pertains to a
certain zth Floquet harmonic being the kxz spectral com-
ponent of (5c). The complete details of this numerical
spectral Green’s function and its explicit expressions are
also way too massive and thus are not provided here.

2.6. Spatial Fields Radiated by Entire Array
of Magnetic Strip Currents Into Region
Above Corrugations

[20] As explained earlier at (5c), the inverse transform of
the spectral field of (6) is written as
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~H
~m x;y½ �u; TE;TM½ �
w ¼ 1

dx

X
z

~~H
~~m x;y½ �u; TE;TM½ �
z e�j kxz xþky0y


 �
; ð7Þ

[21] This (7) then constitutes the w-component of the
semi-spatial-domain H-field radiated by the [x, y]-directed
semi-spatial (in x only) domain (u,[TE,TM])th basis current
~m x;y½ �u; TE;TM½ � xð Þof (4b). Remember that we are now always at a

single component in the ky spectral domain, being ky = ky0 =
k0sinqsinf. Hence, a single tilde remains on the left-hand
side of (7). Assuming an odd integer Z as the total truncated
number of Floquet harmonics considered (for the purpose of
practical computations), the summation typically runs from
z = �(Z � 1)/2 to (Z � 1)/2. In the computations of this
paper, Z = 49 has been selected, which is sufficient to pro-
vide accurate results.
[22] Subsequently, the total fields radiated by all basis

currents would just entail a summation over the basis indi-
ces, each term scaled by an amplitude coefficient, according
to (4a), i.e.

~H
M x;y½ �
w ¼

XUap
TE;TM½ �

u TE;TM½ �¼ 1;0½ �
Au; TE;TM½ � ~H

~m x;y½ �u; TE;TM½ �
w ð8Þ

[23] This represents the w-component of the semi-spatial-
domain H-field radiated by the [x, y]-directed magnetic
current scatterer source components. It is noted that this
remains only the scattered magnetic fields. The known fields
due to the primary excitation source radiating in the bare
uncorrugated infinite PEC ground environment and
observed at the PEC surface where the equivalent magnetic
current strips are located are also obtained from G1DMULT,

but shall just directly be stated as H
prim
excit

w without further
specification.

2.7. Boundary Conditions: Continuity of Tangential H-
Fields Across PPW Cavity Aperture

[24] The boundary condition enforcing the continuity of
the tangential magnetic fields across the iris-type aperture of
the parallel-plate waveguide cavity is stated as:

~H
zs¼z2
t xo; zo ¼ 0�ð Þ ¼ x̂H

Mxþy
x

ŷH
Mxþy
y

� �
þ x̂H

prim
excit

x

ŷH
prim
excit

y

2
4

3
5 ð9Þ

where H
Mxþy
w ¼ HMx

w ~ro∈ Aap


 �þ H
My
w ~ro∈ Aap


 �
, in which

~ro represents the position vector of the observation coordi-
nates, which span over the aperture symbolized as Aap. As
before, w may be x or y.

2.8. Galerkin Weighting and Construction
of Intermediate Matrices

[25] Taking
Rxo¼a

2

xo¼�a
2

~eaptvF xoð Þ � � ẑ
h i

throughout the bound-

ary condition (9), for v = 1, 2,…,UF
ap (whereFmay denote TE

or TM), a total number of equations that equals the number of
unknown coefficients of the basis functions expanding the
aperture magnetic currents are generated. This system of

equation can be cast into a matrix equation. The intermediate
matrices that build up to this matrix equation are as follow. The
left-hand side square-bracketed quantities are the matrices
while the right-hand side ones are the expressions of their (p, q)
th elements, where p and q are the row and column indices, and
as identified by the index-labelers in round-brackets alongside
the left-hand side matrices.

½ATY
w ðz; uTY Þ�Z � Uap

TY
¼ 1

dx
~~H

~~m x;y½ �u; TE;TM½ �
w ð10Þ

for w = x or y, Y = E or M, independently.

B TM;TEf g
x;yf g v TM;TEf g; z


 �h i
Uap

TM;TEf g � Z
¼

Zxo¼a
2

xo¼�a
2

eapx;yf gv TM;TEf g
xoð Þe�jkxz xodxo

ð11Þ

C TM;TEf g u TM;TEf g; p TM;TEf g

 �� 


Uap
TM;TEf g � Pcav

TM;TEf g
¼

Za=2
xs¼�a=2

eapx;yf gu TM;TEf g

� xsð Þhcavy;xf gp TM;TEf g
xsð Þdxs ð12Þ

[26] Next, the matrix F(pTY, pTY) is defined, which is a
diagonal matrix whose diagonal elements are coth(gzp=1

cavh),
coth(gzp=2

cavh), …, coth(gzp=PTccav
cav h), for Y = E and M.

V TE
TMf g v TE

TMf g; 1
� 	h i

U ap

TE
TMf g�1

¼ �H
prim
excit
x
yf g

Zxo¼a
2

xo¼�a
2

eapy
xf gv

TE
TMf g

xoð Þe�jkxz¼0

z}|{kexx

xodxo

Vfinal v; 1ð Þ� 

Uap

TMþUap
TEð Þ�1

¼
VTM vTM; 1ð Þ½ �Uap

TM�1

VTE vTE; 1ð Þ½ �Uap
TE�1

( )
ð13Þ

2.9. Matrix Operations and Construction of Ultimate
Moment-Method Matrix Equation

[27] With the foregoing intermediate matrices laid out, the
following matrix operations are then performed.

M11 vTM; uTMð Þ½ �Uap
TM�U ap

TM
¼ BTM

x vTM; zð Þ� 

Uap

TM�Z
ATM
y z; uTMð Þ

h i
Z�Uap

TM

þ ⋯⋯þ CTM vTM; pTMð Þ½ �Uap
TM�PcavTM

n
� F pTM; pTMð Þ½ �PcavTM�PcavTM

o
Uap
TM�PcavTM

� 〚 CTM uTM; pTMð Þ½ �Uap
TM�PcavTM

n oT

〛PcavTM�Uap
TM

ð14Þ

M12 vTM; uTEð Þ½ �Uap
TM�Uap

TE
¼ BTM

x vTM; zð Þ� 

Uap
TM�Z

ATE
y z; uTEð Þ

h i
Z�Uap

TE

ð15Þ

M21 vTE; uTMð Þ½ �Uap
TE�Uap

TM
¼ � BTE

y vTE; zð Þ
h i

Uap
TE�Z

ATM
x z; uTM Þ�Z�Uap

TM

�h
ð16Þ
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M22 vTE; uTEð Þ½ �Uap
TE�Uap

TE
¼ � BTE

y vTE; zð Þ
h i

Uap
TE�Z

ATE
x z; uTEð Þ� 


Z�Uap
TE

þ ⋯⋯þ CTE vTE; pTEð Þ½ �Uap
TE � PcavTE

n
� F pTE; pTEð Þ½ �PcavTE�PcavTE

o
Uap

TE � PcavTE

� 〚 CTE uTE; pTEð Þ½ �Uap
TE�PcavTE

n oT

〛PcavTE�Uap
TE

ð17Þ
[28] These submatrices are then cascaded to form the final

matrix:

Mfinal

� 

Uap

TMþUap
TEð Þ� Uap

TMþUap
TEð Þ ¼

M11 vTM; uTMð Þ½ �Uap
TM�Uap

TM
M12 vTM; uTEð Þ½ �Uap

TM�Uap
TE

M21 vTE; uTMð Þ½ �Uap
TE�Uap

TM
M22 vTE; uTEð Þ½ �Uap

TE�Uap
TE

( )
ð18Þ

[29] Finally, the ultimate matrix equation is stated as:

Mfinal

� 

Uap

TMþUap
TEð Þ� U ap

TMþU ap
TEð Þ

AuTM¼0

⋮
AuTM¼Uap

TM

2
64

3
75

AuTE¼1

⋮
AuTE¼Uap

TE

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

Uap
TMþU ap

TEð Þ�1

¼ Vfinal v; 1ð Þ� 

Uap

TMþUap
TEð Þ�1 ð19Þ

which can then be solved for the vector containing the
unknown coefficients via matrix inversion.

3. Numerical Results: Validation With CST

[30] Two groups of numerical results computed by the
entirely self-developed numerical code based on the present
formulation are now presented: (A) reflection phase

Figure 4. Comparisons between reflection-phase diagrams generated by present moment-method
(MOM) and CST for first arbitrary example with common qinc = 30�, for (a) TM polarization finc = 0
and TE polarization finc = 90� and (b) TM polarization finc = 90� and TE polarization finc = 0.
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diagrams, and (B) dispersion diagrams. These results shall
be compared with those generated by a commercial full-
wave simulator: CST Microwave Studio®.

3.1. Reflection-Phase Diagrams

[31] The parameters of an arbitrary example of corruga-
tions for validation are as follow, according to Figure 1:
period dx = 2 mm, depth h = 8 mm, relative permittivity and
permeability of the filling, �cav = 2 and mcav = 1, groove-
width g = 0.85dx, and aperture-width a = 0.75g. The fol-
lowing graphs of Figure 4 show the plots of the reflection
phase against the frequency, for both polarizations (TMz and
TEz) and in the two principal incidence planes (finc = 0 and
90�), for a certain theta-angle: qinc = 30�, generated by the
two numerical tools: the code based on the present moment

method, and the full-wave simulator CST. Evidently, the
agreement between the two approaches is very good.
[32] As observed, when the polarization of the incident

plane wave (orientation of the incident E-field) is parallel to
the metallic corrugations, the reflection phase is close to
180� at all investigated frequencies, which is as expected.

3.2. Dispersion Diagrams

[33] Another arbitrarily selected corrugation example shall
be considered for the validation, this time in terms of the
dispersion diagram. The parameters of this second example
are stated as follow: dx = 3 mm, h = 4 mm, ɛcav = 3 and
mcav = 1, g = 0.55dx, and a = 0.45g. The comparison of its
dispersion diagram generated by the present moment method
code with that simulated by CST is conveyed by Figures 5a
and 5b, in which the characterization of the surface-wave

Figure 5a. Dispersion diagram (O → X path) of second arbitrary example. Solid lines: present moment-
method, dashed lines: CST. The light-line is as shown.

Figure 5b. Dispersion diagram (X→M path) of second arbitrary example. Solid lines: present moment-
method, crosses without lines: CST.

NG MOU KEHN: CORRUGATIONS REFLECTION-PHASE FORMULAS RS3008RS3008

8 of 17



modal propagation along the principal x-direction perpen-
dicular to the corrugations up till the Brillouin limit (Bragg
condition: kx = p/dx) is shown in Figure 5a whereas that
along an oblique direction with a fixed surface modal wave
number component of kx = p/dx but varying ky (increasing
from zero) is given by Figure 5b, of which the horizontal

axis quantity ksurf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=dxð Þ2 þ k2y

q
varies from p/dx toffiffiffi

2
p

p=dx . The former graph is formally termed as the OX
path whereas the latter as the XM path of the irreducible
Brillouin zone. Once again, the correctness and accuracy of
the present formulation is validated and verified, for both
the principal as well as oblique directions of surface wave
modal propagation.
[34] An interesting aspect is now pointed out. The fre-

quencies at which the dispersion traces approach zero slope
coincide perfectly with the so-called “soft” frequencies
[Kildal, 1990] of the corrugations, defined as

f softn ¼ c 2nþ 1ð Þ= 4dsoft
ffiffiffiffiffiffiffiffiffiffiffiffi
ɛrel;cav

p
 � ð20Þ

where n is an integer representing the order of the soft
boundary condition, c is the speed of light in vacuum, dsoft is
the depth of the corrugations at which the soft boundary
condition holds, being simply the groove depth d, and ɛrel,cav
is the relative permittivity of the dielectric filling the
grooves. These frequencies thus provide the upper-edge of
each surface-wave passband, which is also the lower-edge of
each stopband. Remarkably, as will be apparent later by the
established relationship between the reflection-phase and
dispersion diagrams in section 4, these frequencies shall also
be the AMC (or HIS) frequencies at which the reflection-
phase is zero, i.e., fn

soft = fn
AMC, where n is that same order.

4. Relations Between O → X Dispersion
Diagrams and Reflection-Phase Diagrams
for TMz-Polarized Incidence in Plane
Perpendicular to Corrugations

[35] Remarkable observations shall now be made in this
section. Consider the following Ex,refl/Ex,inc reflection-phase

diagram in Figure 6 for the second arbitrary example, for
TMz polarized incidence, finc = 0 for various qinc angles
ranging from zero (normal incidence) to 90 degrees (grazing
incidence). For the first two AMC frequencies at which the
corrugations exhibit high-impedance surface (or AMC)
properties (reflection phase = 0) are all almost the same
regardless of the theta angles of incidence. In addition, the
frequencies at which they display low-impedance surface (or
AEC) properties (reflection phase = 180 deg) are also the
same for all theta angles. And upon shrewd scrutiny of its
associated dispersion diagram in Figure 5a, it is discovered
that the frequency ranges over which the phase angles are
positive in the reflection phase diagram represent surface-
wave passbands in the dispersion diagram whereas the bands
of negative phase values define surface-wave stopbands in
the dispersion diagram. Explained in detail, the band from 0
to around 10 GHz corresponding to reflection-phase from
+180 deg to 0 (first AMC condition occurs) observed in
Figure 6 concurs with the passband of the dominant surface
wave mode also seen to exist from 0 to around 10 GHz in
Figure 5a. Following this, the range from the latter 10 GHz
to around 22 GHz pertaining to reflection-phase of 0 to
�180 deg is seen to fit nicely with the first stopband of
surface waves observed in Figure 5a. Next, the band from
this latter 22 GHz to around 30.5 GHz corresponding
to reflection-phase of +180 deg to 0 again matches well
with the second passband in Figure 5a. Likewise, the
30.5 GHz to 43 GHz range with negative reflection-phases
(0 to�180 deg) in Figure 6 shows up as the second stopband
in Figure 5a. Finally, the range of 43 to about 48 GHz with
positive reflection-phases (+180 deg to 0) characterizes the
last passband of Figure 5a.

5. Transverse Resonance Technique (TRT)

[36] The characteristic equations of the planar TM corru-
gated structure for both principal (perpendicular to the rid-
ges) and oblique directions of surface propagation can be
derived using the transverse resonance technique (TRT),
solving of which enables the generation of the dispersion
diagram. This entails matching of the impedances at the z =

Figure 6. Reflection phase diagram for second arbitrary example, TMz polarization, finc = 0, various qinc
ranging from 0 to 90�.
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0 interface (Figure 1) separating the corrugations (grooves
and ridges) from the upper half-space and is based on the
assumption that only the propagating TM mode exists in the
upper half-space and that the field in the corrugated region
(�h < z < 0) is in the form of a TEM wave in a shorted
parallel-plate region. Mathematically,

kz
wɛ0

þ j
g

dx

ffiffiffiffiffiffiffiffi
mcav

ɛcav

r
tan w

ffiffiffiffiffiffiffiffiffiffi
mgɛg

p
h

� 	
¼ 0 ð21aÞ

where g/dx is an incorporated correction factor that accounts

for the average impedance, and kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pfð Þ2m0ɛ0 � k2x

q
with ky = 0 for surface-wave propagation direction that is
perpendicular to the corrugations. This then yields

kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 pfð Þ2m0ɛ0 þ 4m0ɛ0

gpf
dx

� �2 mrel;cav

�rel;cav
tan2 2pfh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcavɛcav

p
 �s

ð21bÞ

for the principal direction (O → X path). This (21b) may
then be directly evaluated (solved) for the resonant kx for the
O → X propagation path.
[37] Figure 7 displays the band diagram for the principal

surface-wave propagation direction of an arbitrarily selected
case with the following parameters: g/dx = 0.4, dx = 1 mm,
ɛrel,cav = ɛcav/ɛ0 = 2, and h = 6 mm, generated using the full-
wave moment method code and the TRT using (21b). The
characteristic equation (21b) produces a dispersion trace
which takes on the form of cyclic ‘peaking’ of the surface-
wave propagation constant kx (along the x-direction perpen-
dicular to the corrugations) at various resonant frequencies.
Moreover, the trace just ‘grazes’ the light-line, i.e., it is tangent
to it, occurring at frequencies slightly above those whereby the
trace has dropped back to its local minima and begun to rise
again. However, as observed, only the rising parts of the
‘peaking’ trace after the ‘grazing’ are relevant, for which the
agreement with the dispersion trace generated by the full-wave
moment method code is seen to be superb. In fact, they agree
so well that the traces are virtually indistinguishable.

[38] By equating the derivative of kx in (21b) with respect
to the frequency f to 2p/c (c being the speed of light in
vacuum) and solving for f as the roots of the resultant
equation, we can obtain the cutoff frequency of each surface-
wave mode, or equivalently, the lower-edge frequency of
each surface-wave passband, being also the upper-edge fre-
quency of each stopband. Mathematically,

4p2f m0ɛ0
kx

1þ mrel;cav

ɛrel;cav

g

dx

� �2

tan 2pfd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcavɛcav

p
 �(

� tan 2pfd ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimcavɛcav
p
 �

⋯
⋯þ 2pfd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcavɛcav

p
sec2 2pfd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcavɛcav

p
 �" #)
� 2p

c
¼ 0 ð22Þ

[39] According to the relationship established in section 4,
the frequency roots of this equation shall then also constitute
the so-called AEC frequencies at which the reflection phase
equals �180�, regardless of the incidence qinc angle.
[40] Therefore, together with the fn

soft of (20), the f roots of
this (22) respectively provide both the AMC (HIS) and AEC
(LIS) frequencies of planar corrugated surfaces, making
them important mathematical quantities.

6. Closed-Form Expression for TMz Reflection-
Phase as Analytic Function of Parameters

[41] From the relationship struck in section 4 between the
positivity and negativity of the reflection phase (for TMz

polarized incidence in the finc = 0 plane perpendicular to the
corrugations) with the surface-wave passband and stopband
(in the O → X dispersion diagram), respectively, it may be
anticipated that the analytic expression of the surface-wave
propagation constant of (21b) can be used to derive a like-
wise explicit closed-form formula for the reflection-phase in
terms of the various corrugation parameters. The motivation
behind this idea stems from the herein-discovered phenom-
enon that at least the behavioral connection (in the cyclical
sense) between the propagation constant and the reflection-
phase, when both are plotted against the frequency, has
already been established, and thus the kx expression of (21b)
as a function of all parameters (except the incident theta

Figure 7. Dispersion diagram of O → X path for g = 0.4dx generated by full-wave moment method and
TRT, for dx = 1 mm, �rel,cav = �cav/�0 = 2, h = 6 mm.
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angle, which will be taken care of later) offers an excellent
starting platform to build on.
[42] The thought process of the derivation shall now be

described. First, concentrate on the graphs of the reflection-
phase and surface-wave propagation constant versus fre-
quency (simply, the reflection-phase and dispersion dia-
grams which we have been seeing in the preceding figures,
but with the axes of the latter diagram swapped, i.e., the
propagation constant is now represented by the vertical
axis). It is observed that the rise of each modal propagation
constant with frequency gets increasing steep as the surface-
wave enters deeper into the slow-wave region. This is cor-
responded with the increasing steep fall of the reflection-
phase with frequency from 180�. As the slope of the prop-
agation-constant versus frequency graph approaches infinity
(entry into a surface-wave stopband), the counterpart situa-
tion in the reflection-phase diagram is a zero-crossing, i.e.,
AMC or HIS condition. Although no linkage between the
two graphs can be detected for the frequency regions of
falling propagation-constant values in one and increasingly
negative reflection-phase values in the other, it is of no
necessity finding any connection since it can be observed
from all preceding reflection-phase diagrams that the traces
for positive and negative phases are vertically and horizon-
tally flip-symmetric. As such, it suffices to consider just
positive values of the reflection-phase. All these foregoing
observations constitute the foundational concept on which
the subsequent derivation stages rest.
[43] With the above laid out, it would not be difficult to

deduce that the reflection phase may assume a reciprocal
relation with the propagation constant according to:

∠G ¼ p 2p f =cð Þ=kx ð23Þ

noticing how the equality of the reflection-phase to 180�
whenever kx equals the free-space wave number, i.e., when
the dispersion curve grazes the light-line, has been enforced
as required. However, from our computational experiments,
it was found that the traces of the reflection-phase diagram
produced by this (23) just decay too slowly from 180� ini-
tially with frequency (i.e., initial entry into surface-wave
passbands) due to the strong quasi-asymptote of the disper-
sion trace with the light-line pertaining to initial gentle entry
of the surface-wave into the slow-wave region. Nonetheless,
as the surface wave moves deeper into the slow-wave
region, the rate of increase of its propagation constant with
frequency gradually matches up fairly well with the rate of
fall of the reflection-phase, thereby suggesting that the
reciprocal relationship of (23) can be viable over those fre-
quency ranges (nearer toward the upper edge of each sur-
face-wave passband).
[44] Now, if we take the liberty to break away from the

correction term g/dx ≤ 1 of (21b) and let it exceed unity to
become a new quantity, say zg/dx, it has been observed from
our computational experiments that the larger this z is, the
higher will be the rate of increase of the propagation constant
with frequency as the surface-wave initially moves into the
slow-wave region. In other words, as each mode prelimi-
narily moves from the fast-wave region into the slow-wave
region, the modified trace produced by using the above-
mentioned new quantity no longer creeps as slowly along the

light-line with rising frequency as before the z > 1 term was
implemented, i.e., reduced lingering on the light-line.
[45] With these above-described aspects, we may write the

modified term as

z ¼ aa2 2pf =cð Þ=kx
1 ð24Þ

with associated

kmodif
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 pfð Þ2m0ɛ0 þ 4m0ɛ0 z

gpf
dx

� �2 mrel;cav

ɛrel;cav
tan2 2pfd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcavɛcav

p
 �s

ð25Þ

∠Gmodif ¼ p 2pf =cð Þ=kmodif
x ð26Þ

where a1 > 1 and a2 are coefficients to be specified later. In
this way, when the surface-wave number kx equals the free-
space wave number (dispersion trace touches the light-line,
i.e., entry into surface-wave passband, with corresponding
flipping of the reflection-phase diagram curve from �180�
to +180� and subsequent falling toward zero-phase from
180�), the z term assumes the value of a1

a2 > 1, being the
maximum amplitude of the scaling coefficient where it is
needed to ‘pull’ the dispersion trace off the light-line at a
faster rate (with frequency) in order for an associated higher
fall-rate of the resultant ∠Gmodifof (26) with frequency.
Whereas as kx rises toward infinity (with associated zero-
crossing of the reflection-phase), z drops to a value closer to
unity in accordance with the increasingly matching rate of
change between the reflection-phase and dispersion dia-
grams as mentioned at the end of the paragraph preceding
the previous.

6.1. Dependency on Incident Theta Angle

[46] However, the dependency on the incident theta angle
of the impingent plane wave (as required by reflection-phase
studies) onto the corrugated surface has not yet been con-
sidered, i.e., the term qinc must be incorporated into the
functional expression for the reflection phase, the necessity
of which being obvious from Figure 6. This variable is
absent from the original formula of (21b). Intuitively, the
terms a1 and a2 of (24) are picked out to be assigned as
functions of qinc, i.e., a1(qinc) and a2(qinc). Subsequently, the
final form of the reflection-phase is anticipated to look like:

∠Gfinal ¼ pþ a0 qincð Þ½ � 2pf =cð Þ
kmodif
x a1 qincð Þ; a2 qincð Þð Þ � a0 qincð Þ ð27Þ

whereby a0 is a new quantity also dependent on qinc, and the
dependency of kx

modif from (25) on z of (24) and in turn on
a1(qinc) and a2(qinc) are explicitly shown. The dependency
on the rest of the parameters are implicit within kx

modif.
[47] Next, a parametric study of qinc in terms of the

reflection-phase diagram generated using the full-wave rig-
orous moment-method code is performed, for an arbitrary set
of controlled (fixed) values of all the other parameters. The
results of this study shall then constitute the reference data
needed to determine the functional forms of a0(qinc), a1(qinc)
and a2(qinc). To do so, the first step would be to compute
∠Gfinal of (27) for the abovementioned controlled values of
all parameters (except qinc) over ranges of values of a0,
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a1 and a2; specifically, from 0 to p/6 for a0 and 1.725 to 2.6
for both a1 and a2, each of them in some number of step-
divisions. The plotted graph of every resultant ∠Gfinal versus
frequency is then checked up with a certain qinc case from
the set of reference graphs of ∠GMOM against frequency
(where the superscript MOM denotes moment-method),
from which the most matching set of (a0, a1, a2) values is
selected to be assigned to that qinc case. Repeating this for all
qinc cases in the reference parametric data set reveals the a0,
a1 and a2 as discrete functions of qinc. For the present
example of eighteen qinc cases in the parametric set, the
discretized a0, a1 and a2 are constructed as discrete functions
of qinc. These 18-element vectors of numerical data for a0, a1
and a2 may then be curve-fitted into polynomial functions of
qinc by standard techniques. Upon doing so with a polyno-
mial degree of 5 for decent modeling of the discrete func-
tions, the functional forms of these coefficients are explicitly
stated as follow.

a0 ¼ P0 1ð Þq5inc þ P0 2ð Þq4inc þ P0 3ð Þq3inc þ P0 4ð Þq2inc
þ P0 5ð Þq1inc þ P0 6ð Þ ð28aÞ

a1 ¼ P1 1ð Þq5inc þ P1 2ð Þq4inc þ P1 3ð Þq3inc þ P1 4ð Þq2inc
þ P1 5ð Þq1inc þ P1 6ð Þ ð28bÞ

a2 ¼ P2 1ð Þq5inc þ P2 2ð Þq4inc þ P2 3ð Þq3inc þ P2 4ð Þq2inc
þ P2 5ð Þq1inc þ P2 6ð Þ ð28cÞ

where the coefficients of the polynomial functions are placed
in 6-element vectors P0, P1, and P2:

P0 ¼ 1:176;�3:097; 2:761;�0:9576; 0:1196;�0:001038½ �
ð29aÞ

P1 ¼ 2:448;�6:879; 6:693;�2:625; 0:3526; 1:719½ � ð29bÞ

P2 ¼ 1:415;�6:423; 9:239;�4:165; 0:5520; 1:717½ � ð29cÞ

[48] With these established, the efficacy of the formula for
∠Gfinal in producing the reflection-phase diagrams had been
demonstrated in terms of parametric studies; however these
results are not presented in this paper due to space con-
straints. Five parameters for characterizing the corrugations
and its impingent excitation plane wave had been consid-
ered. They are (a) the period dx, (b) the relative permittivity
of the groove-filling: ɛrel,cav = ɛcav/ɛ0, (c) the corrugation-

depth to period ratio: h/dx, (d) the ratio between the width of
the cavity (or groove) and the period: g/dx, and (e) the ele-
vation theta angle of incidence: qinc. Let us henceforth refer
to these five parameters as p1, p2, p3, p4, and p5, respectively,
for convenience and brevity. Table 1 provides the numerical
values of these investigated five parameters, being 6 of them
per parameter.

6.2. Inclusion of Incident Phi Angle Variation

[49] In order to include the dependency of the reflection-
phase for TMz polarization on the azimuthal incident angle
finc, a parametric study of the reflection-phase over those
aforementioned five parameters (defined as p1 to p5) is
conducted (again using the full-wave moment method), but
now including finc as the sixth parameter. From the com-
puted reflection-phase diagrams (not presented here due to
the voluminous size), comparison by observation of the
reflection-phase diagram between the finc = 0 case (being
the situation thus-far considered, i.e., propagation in the
plane perpendicular to the corrugations) and that of a non-
zero finc case for a certain common set of the other (five)
parameters (period, groove permittivity, depth, width, and
qinc) reveals frequency shifting between the two traces, the
amount of deviation being a function of frequency (increases
with it). Repeating such a comparison for another qinc case, it
is found that this frequency shift also grows with qinc, but
slowly for initially small qinc values (near broadside inci-
dence), becoming increasingly appreciable as the incident
plane wave gets closer to grazing. Repeating these compar-
isons yet for another finc case shows that the frequency shift
also varies with the azimuthal incidence angle. Hence, this
frequency shift is a function of three parameters: (a) fre-
quency, (b) qinc, and (c) finc. Interestingly, this shift does not
depend on the other four physical properties of the corru-
gations. Again in a similar way to the modeling of the
coefficients a0, a1 and a2 earlier on as polynomial functions,
the frequency shift can also be modeled as an analytic
polynomial function of those three parameters using the
numerical data generated by the parametric study. The con-
sidered ranges of the three parameters are as follow: (a) five
values of finc: 0.1�, 22.55�, 45�, 67.45�, and 89.9�; (b) eight
values of qinc: 0.1�, 10.85�, 21.6�, 32.35�, 43.1�, 53.85�,
64.6�, and 75.35�; and (c) nine values of frequency f: 5 GHz,
10 GHz, 15 GHz, 20 GHz, 25 GHz, 30 GHz, 35 GHz,
40 GHz, and 45 GHz. For convenience, we shall henceforth
use serial indices to denote any of these values, e.g., finc#3 =
45�, qinc#5 = 43.1�, f#7 = 35 GHz, etc.
[50] Performing the polynomial curve-fitting for a degree

of 2, i.e., a quadratic-equation modeling, the frequency
shift of the reflection-phase diagram trace for any nonzero
finc case (but sharing the same set of the other parameters
of the finc = 0 case) from that of the finc = 0 case may be
expressed as

fshift f̂ inc; q̂ inc; f̂
� 	

¼ Cf2q2 q̂
2

inc þ Cf2q1 q̂ inc þ Cf2q0

� 	
f̂
2

inc

þ Cf1q2 q̂
2

inc þ Cf1q1 q̂ inc þ Cf1q0

� 	
f̂ inc

þ Cf0q2 q̂
2

inc þ Cf0q1 q̂ inc þ Cf0q0

� 	
ð30aÞ

Table 1. Range of Values of the Five Parameters

p1 (mm) p2 p3 p4 p5 (rad)

1 2 2 0.45 0.001745
1.3 3 2.4 0.55 0.30194
1.6 4 2.8 0.65 0.6021
1.9 5 3.2 0.75 0.9023
2.2 6 3.6 0.85 1.2025
2.5 7 4 0.95 1.503

NG MOU KEHN: CORRUGATIONS REFLECTION-PHASE FORMULAS RS3008RS3008

12 of 17



where any Cfuqv is in turn a polynomial (quadratic) function
of f̂ , i.e.

Cfuqv f̂
� 	

¼ Cfuqvf 2 f̂
2 þ Cfuqvf 1 f̂ þ Cfuqvf 0 ð30bÞ

for all combination-pairs of (u, v) in (30a), and whereby

f̂inc ¼ finc � mf

 �

=sf ð31aÞ

q̂ inc ¼ qinc � mqð Þ=sq ð31bÞ

f̂ ¼ f � mf

� 	
=sf ð31cÞ

where m and s are the mean and standard deviation of
the parameter denoted by their respective subscripts.
For our range of parametric values stated above, these are:
mf = 0.7854, sf = 0.61953; mq = 0.6584, sq = 0.45958; mf =
2.5 � 1010, sf = 1.3693 � 1010. The numerical values of the
coefficients Cfuqvfw of (30b), where u, v, and w may denote 2,
1 or 0, are tabulated in Figure 8.
[51] Therefore, the ultimate explicit formula for the

reflection phase as an entirely closed-form analytic function
of all parameters of the corrugations, incident plane wave
(particularly now with even finc included), and the fre-
quency is stated as:

∠Gultim ¼ pþ a0 qincð Þ½ � 2pf ′=cð Þ
kmodif
xultim

a1 qincð Þ; a2 qincð Þð Þ � a0 qincð Þ ð32aÞ

from (27), in which a0, a1 and a2 those of (28a), (28b)
and (28c), and with

kmodif
xultim

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 pf ′ð Þ2m0ɛ0þ 4m0ɛ0 z′

gpf ′
dx

� �2 mrel;cav

ɛrel;cav
tan2 2pf ′d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcavɛcav

p
 �s

ð32bÞ

from (25), where

z′ ¼ aa2 2pf ′=cð Þ=k′x
1 ð32cÞ

from (24), in which a1 and a2 are those of (28b) and (28c),
and with

k ′x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 pf ′ð Þ2m0ɛ0þ 4m0�0

gpf ′
dx

� �2mrel;cav

ɛrel;cav
tan2 2pf ′d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcavɛcav

p
 �s

ð32dÞ

from (21b), and of course finally, with the shifted frequency:

f ′ ¼ f � fshift

 � ð32eÞ

where fshift is from (30a) and is a function of finc, qinc and f.
[52] The ultimate results for the demonstration of the

efficacy of equations (32a)–(32e) are now presented in
Figure 9 for five cases of entirely arbitrary parameters. Each
graph within this figure contains the reflection-phase dia-
gram generated by equations (32a)–(32e) and the rigorous
full-wave moment method formulated in section 2. Clearly,
the agreement between the two approaches is seen to be
outstanding. The CPU times for both were also computed
and the derived formula is found to be around 40 times faster
than the moment method.

7. Further Extension to TEz Polarized Incidence

[53] The same procedure as before for TMz can be
repeated for deriving a formula for the phase of the Ex,refl/Ex,

inc reflection coefficient for TEz modes, but with the only
difference now being in the modeling of the variation with
qinc. In other words, we anticipate that the same final formula
of (32a)–(32e) may reapply, but just with modifications of
a0, a1 and a2 in which the dependency on qinc lies. Such
inheritance of the functional variation of the TEz reflection-
phase with all other parameters aside from qinc from the TMz

case may on the outset appear to be rather speculative. It
however turns out to be actually correct and is thus a well-
taken risk that constitutes a vital discovery. Continuing with
the description of the procedure, similar to the former TMz

case, a parametric study of qinc in terms of the reflection-
phase diagram generated using the full-wave rigorous
moment-method code is first performed, for an arbitrary set
of controlled (fixed) values of all the other parameters. The
results of this study shall then constitute the reference data
needed to determine the functional forms of a0(qinc), a1(qinc)
and a2(qinc). However, now for TEz modes, it is found that a
proper modeling can be achieved with only a2 varying with
qinc, whereas both a0 and a1 are now being fixed constants:

aTE0 ¼ �p=18 ð33aÞ

aTE1 ¼ 1:8 ð33bÞ

[54] These values were obtained by numerical experi-
mentations and thus do not bear significance of exactness.
As before, a2 can be obtained as a discrete function of qinc.
Although a total of eighteen qinc cases ranging from 0 to 90�
have been considered in the parametric set as was for TMz

case earlier, the discretized a2 as a function of qinc is

Figure 8. Coefficients of equations (30a) and (30b). All
values are normalized to 106.

NG MOU KEHN: CORRUGATIONS REFLECTION-PHASE FORMULAS RS3008RS3008

13 of 17



Figure 9. Reflection phase diagrams for five arbitrary examples, generated by derived formula (32a)–
(32e) and validated by full-wave moment method, both for TMz polarization: (a) dx = 1.45736 mm,
ɛrel,cav = 7.086, h = 5.6276 mm, g = 0.4229 mm, finc = 12.107�, qinc = 28.22465�; (b) dx = 3.503 mm,
ɛrel,cav = 7.28, h = 14.4312 mm, g = 1.7062 mm, finc = 54.982�, qinc = 40.297�; (c) dx = 4.052 mm,
ɛrel,cav = 7.29, h = 4.809 mm, g = 2.7746 mm, finc = 61.963�, qinc = 18.41445�; (d) dx = 1.065 mm,
ɛrel,cav = 5.218, h = 2.98638 mm, g = 0.2498 mm, finc = 84.1824�, qinc = 32.9185�; and (e) dx =
5.9925 mm, ɛrel,cav = 6.712, h = 16.7716 mm, g = 1.5288 mm, finc = 55.551�, qinc = 32.8664�.
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constructed with only the first ten qinc values ranging from 0
to about 45� (0.7854 radians), because the concept of fre-
quency bands with positive and negative phase values
corresponding respectively to surface-wave passbands and
stopbands holds only if qinc is not too large for TEz case.
Hence, the upcoming derived formula is valid only up to qinc
= 45�. This 10-element vector of numerical data for a2 may
be curve-fitted into a simple quadratic (polynomial degree 2)
function of qinc again by standard techniques. Upon doing
so, the functional form of a2 is explicitly stated as follow.

aTE2 qincð Þ ¼ PTE
2 1ð Þq2inc þ PTE

2 2ð Þq1inc þ PTE
2 3ð Þ ð33cÞ

where the coefficients of the quadratic function are placed in
the 3-element vector P2

TE:

P2
TE ¼ �1:418844; 0:09376458; 1:603313163½ � ð34Þ

[55] Subsequently, the ultimate form of the mostly inher-
ited explicit formula (from the TMz case) for the reflection-
phase of TEz modes as a closed-form analytic function of all

parameters of the corrugations, incident plane wave and
frequency is stated as (modified from (32a)–(32e)):

∠Gultim ¼ pþ aTE0
� 


2pf ′=cð Þ
kmodif
xultim;TE

aTE1 ; aTE2 qincð Þ
 �� aTE0 ð35aÞ

from (32a), in which a0
TE is of (33a), and with

kmodif
xultim;TE

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 pf ′ð Þ2m0ɛ0 þ 4m0ɛ0 z′TE

gpf ′
dx

� �2mrel;cav

ɛrel;cav
tan2 2pf ′d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcavɛcav

p
 �s

ð35bÞ

from (32b), where

z′TE ¼ aTE1

 �aTE2 2pf ′=cð Þ=k′x ð35cÞ

Figure 9. (continued).
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from (32c), in which a1
TE and a2

TE(qinc) are of (33b) and (33c),
and where k′x is the same one as of (32d), repeated here for
convenience and clarity,

k′x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 pf ′ð Þ2m0ɛ0 þ 4m0ɛ0

gpf ′
dx

� �2mrel;cav

ɛrel;cav
tan2 2pf ′d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcavɛcav

p
 �s

ð35dÞ

and of course finally, with the same shifted frequency of
(32e), also repeated here:

f ′ ¼ f � fshift

 � ð35eÞ

where fshift is also from (30a) and is a function of finc, qinc
and f.
[56] The ultimate results for the demonstration of the effi-

cacy of equations (35a)–(35e) for TEz modes are now pre-
sented in Figure 10, now for two entirely arbitrary sets of
parameters. As before, each graph contains the reflection-

phase diagram generated by equations (35a)–(35e) and the
rigorous full-wave moment method formulated in section 2.
Clearly, the agreement between the two approaches is again
seen to be excellent for this TEz case. And comparing the
processor times of these two approaches, the formula of (35a)–
(35e) is found to be around 56 times faster than the moment
method, a larger speedup than TMz modes, interestingly.

8. Conclusions

[57] Planar corrugated surfaces play an important role in
today’s world of microwave devices and antennas by pre-
senting themselves as either artificial magnetic conducting
(AMC) or electromagnetic bandgap (EBG) surfaces. The key
aspect that characterizes the high-impedance surface prop-
erties is the phase of the reflection coefficient (or reflection-
phase), which for both TE and TM polarized incident plane
waves, allows for complete characterization. In spite of its
importance, nowhere in the existing literature may a closed-
form analytic formula for this reflection-phase for both TE

Figure 10. Reflection phase diagrams for two arbitrary examples, generated by derived formula (35a)–
(35e) and validated by full-wave moment method, both for TMz polarization: (a) dx = 4.7045 mm,
ɛrel,cav = 4.536, h = 11.60855 mm, g = 2.112 mm, finc = 49.01�, qinc = 22.2178� and (b) dx =
1.169 mm, ɛrel,cav = 4.4684, h = 4.34782 mm, g = 1.0306 mm, finc = 47.8915�, qinc = 32.71258�.
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and TM polarization as an explicit function of all parameters
be found, especially including the dependency on the azi-
muth angle of incidence finc. This work has resolved this:
explicit formulas for both TE and TM reflection phase as
closed-form analytic functions of all parameters of the cor-
rugations and the incident plane wave have been derived. As
demonstrated, immense speedup in computational time over
a full-wave approach with the method of moments by over 40
times is afforded. This strongly facilitates rapid designs of
AMC surfaces using such planar corrugations, especially
when the extent of the parametric-space to be searched for the
optimal design is large. It is believed that these formulas shall
become a powerful tool for industrial designers and academic
research engineers alike.

[58] Acknowledgment. This work has been funded by the National
Science Council of Taiwan (NSC 100-2221-E-009-142)
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