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Although widely recognized as a promising candidate for the next generation of data storage devices,
holographic data storage systems (HDSS) incur adverse effects such as noise, misalignment, and aberra-
tion. Therefore, based on the structural similarity (SSIM) concept, this work presents a more accurate
locating approach than the gray level weighting method (GLWM). Three case studies demonstrate the
effectiveness of the proposed approach. Case 1 focuses on achieving a high performance of a Fourier lens
in HDSS, Cases 2 and 3 replace the Fourier lens with a normal lens to decrease the quality of the HDSS,
and Case 3 demonstrates the feasibility of a defocus system in the worst-case scenario. Moreover, the bit
error rate (BER) is evaluated in several average matrices extended from the located position. Experi-
mental results demonstrate that the proposed SSIM method renders a more accurate centering and
a lower BER, lower BER of 2 dB than those of the GLWM in Cases 1 and 2, and BER of 1.5 dB in
Case 3. © 2012 Optical Society of America
OCIS codes: 210.0210, 210.2860, 210.1635.

1. Introduction

As a page-oriented storage approach [1], holographic
data storage (HDS) is characterized by its high speed
and large capacity [2–4] in contrast with conven-
tional storage devices such as a digital video disk.
Due to a rapidly increasing number of videos, pic-
tures, music, games, and programs stored in a perso-
nal computer, the burgeoning demand for a large
external storage capacity makes HDS a preferred al-
ternative to hard disk drive (HDD) as a data backup
device.

The HDS is constructed of a laser, spatial light
modulator (SLM), storage material, image sensor,

and optical components. The data are turned into
gratings and then stored as two beams interfere with
each other creating storagematerial. The data stored
are then recovered from diffractive images sensed by
an image sensor while the light inserts into the sto-
rage material. Distorted in the HDS system (HDSS)
by various effects such as aberration, scattering [5],
misalignment [6–7], and interpixel/page interference
(IPI) [8–10], the distorted diffractive image also de-
grades BER and a signal-to-noise ratio (SNR) in
HDSS. Among the several procedures developed to
reduce the impact on HDSS include an oversampling
method that reduces the misalignment and distor-
tion effect [11], as well as a postprocessing method
that repairs the pixel misregistration. It then re-
duces the blur effect on the images [6]. Our previous
work developed the GLWM to discover the fiducial
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points on the received images for alignment, findings
of which indicate that BER depends on the accuracy
of the fiducial point position [12].

This work describes a structural similarity (SSIM)
method to handle the alignment issue with checker-
board patterns, enabling HDSS to achieve a satisfac-
tory BER while only requiring lower quality optical
components or a loose mechanical tolerance. The ad-
vantages of SSIM over GLWM under various system
conditions are described in detail.

2. Methodology

GLWM, an alignment method, identifies the fiducial
point from the white windows of checkerboard
images (Fig. 1) [12]. A swept weighting matrix is ap-
plied to two checkerboard images in order to obtain
two new images of enhanced texture. Following
threshold selection, both of the new images are trans-
formed into the binary images and, then, the position
of the boundaries between the white and the black
windows in the binary images is determined using
the boundary identification method. Finally, the po-
sition of the fiducial point is determined by averaging
the positions of the white window boundaries. Theo-
retically, the block, surrounded by the black pixels or
windows, should be fitted for the white window.

Owing to an inappropriate choice of the threshold
level, a window contains two blocks (Fig. 2), while the
window boundary is identified by GLWM. If a win-
dow contains more than one block, several fiducial
points could be determined in a window, none of
the fiducial points regarded as the window center
correctly even determining the center of the fiducial
points. Therefore, an image comparison algorithm,
i.e., Pearson’s correlation method, can replace
thresholding and boundary searching. The image
comparison is using a reference image (noise-free)

to determine the position of the maximum similarity
in the distorted image.

Prone to effects caused by thermal, scattering, and
speckle noises, HDSS suffers from a significantly de-
graded image in terms of contrast, luminance, and
structure. There are two issues in the image compar-
ison of Pearson’s correlation method. First, two iden-
tical images compared to each other causes the result
into the form of 0∕0. Second stronger noise exists be-
tween the white windows in the checkerboard image
after the database matrices of smaller windows
sweep over the checkerboard image. Accordingly, the
image comparison approach is implemented using
the SSIM method, i.e., an algorithm featuring a hu-
man vision. Implementation of SSIM method uses a
reference image to comare locally with the distorted
image by using a predistortion technique, i.e., a con-
voluted weight matrix with Gaussian distribution.
The locally compared is that a square window moves

Fig. 1. (Color online) Procedure of fiducial points identifying with GLWM.

Fig. 2. (Color online) Fiducial points identifying with GLWM.
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pixel-by-pixel from the top left to the bottom right on
the reference and distorted image. For each move de-
termining, a SSIM index is determined from the com-
parison of the two images and all collected SSIM
indices are averaged into a mean value. The mean
SSIM index can describe the similarity degree be-
tween two images, therefore, extending the concept
into page alignment. A reference image is used to
sweep over the distorted checkerboard image of lar-
ger size and then, the fiducial points are identified as
the mean SSIM index in the local maximum. Here-
inafter, the SSIM index is equivalent to the mean
SSIM index.

In Fig. 3(a), the swept checkerboard images are
determined by using the SSIM method and the cor-
relation method during the above processing, respec-
tively, and the cropped image is from the equivalent
position of the swept image. The correlation index (or
SSIM index), −1 to 1, constructs the swept checker-
board image and is also corresponding to the gray

level in the swept checkerboard image of Fig. 3(a),
too. Owing to none of the stronger noise existing be-
tween the regions, which have the fiducial points, the
cropped image of the SSIM method is clearer than
the image of the correlation method. Figure 3(b) il-
lustrates the distributions of the correlation index
in the red and green lines of the cropped images.
The stronger noise exists between the two peaks
in the red line direction using the correlation meth-
od. In the green line direction of Fig. 3(b), the peaks
of the correlation method are higher than the peaks
of the SSIMmethod, but the peaks of the SSIMmeth-
od still have local maximum to identify the fiducial
points as weaker noise existing. Consequently, the
SSIM method is suited to be used in the identifica-
tion of the fiducial points in the HDSS.

Wang et al. [13] developed the SSIM formula,
which takes into account three factors, i.e., lumi-
nance, contrast, and structure. Each factor is defined
as a function and combined into the SSIM formula
[13]. Applying this formula to image quality matrices
can be expressed as

SSIM�r; t� � �2μrμt � C1�
�μ2r � μ2t � C1�

×
�2σrt � C2�

�σ2r � σ2t � C2�
; (1)

where the subscripts r and t denote the reference and
distorted images; μr and μt represent the mean
values of r and t; σ2r and σ2t refer to the variance;
σrt is the covariance between both images; and C1
and C2 denote both two small constants used to ad-
just the ratio between the preceding coefficients.

As an objective measure between two images, i.e.,
the reference and the distorted alike, the SSIM index
ranges from −1 to 1 [13], according to the noise types
and levels. A SSIM index of 1 implies that the two
images are identical. However, for a SSIM index of
−1, the two images are opposite in the luminance,
contrast, or structure [14]. In this work, by using a
checkerboard image and the SSIM method, the fidu-
cial points are located as follows:

I. Construct two database matrices (images) of
size 2×2 bits, alternate in black and white (Fig. 4).
II. The pixel number, covered by each bit in the

database matrix, is exactly half of that, covered by

Fig. 3. (Color online) Plots of the comparison between Pearson’s
correlation method and SSIMmethod. (a) Swept checkerboard im-
age comparison. (b) Comparison of correlation index in Pearson’s
correlation method and SSIM method.

Fig. 4. (Color online) Sample of database matrices.
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each bit on the checkerboard image, sensed from the
image sensor.
III. The gray levels corresponding to black and
white windows of the database matrices can be deter-
mined by the SNR of HDSS. (Default values of black
and white windows are 0 and 255, respectively.)
IV. An identical size of the received checkerboard
image to that of the database matrix is extracted,
during which a SSIM operation is performed.
V. While sweeping over the received checkerboard

image(s) by the database matrices, in each move
receives a SSIM index, new images are thus con-
structed with the SSIM indices.
VI. Use a newly generated two-dimensional matrix
to sweep over the new images and identify the local
maximum of SSIM indices, aggregated as the so-
called fiducial points.

The database matrix is equivalent to a reference
image, a nondistortion and non-noisy image, which
is used to identify the similarity structure in the
checkerboard images by sweeping. Size of the data-
base matrix is determined by the checkerboard
image received by HDSS, given the system magnifi-
cation and the number of pixels associated with each
bit in the input image.

For instance, according to Fig. 5, each white and
black window of the checkerboard images received
from HDSS has approximately 5×5 pixels. Therefore,
the size of the database matrix is set to 6×6 pixels,
and the white and black windows of the database
matrix are arranged as shown in Fig. 4. The swept
database matrix, database matrix 1, starts from the
top left portion of the checkerboard image, with each
shifting receiving a new SSIM index; in addition, the
local maximum of SSIM index likely occurs in posi-
tion 2 in Fig. 5. After the database matrix sweeping
over the checkerboard image, all SSIM indices are
collected into a new image, as shown in Fig. 6
(top). The square windows are transformed into cir-
cle regions, and the distributions of SSIM indices are
smooth and continuous in the regions (which sur-
round the fiducial points). In the edge effect in the

edge regions of Fig. 6, the indices are lower than
other regions since the database matrix cannot fully
compare with the checkerboard image. Figure 6 (bot-
tom) displays the comparison of SSIM indices be-
tween edge and nonedge. Restated, only half of the
database matrix can compare with the edge of
the checkerboard image, while the other half of the
database matrix is out of the checkerboard image.
Finally, a new matrix of 7×7 pixels sweeping over
the new image discovers the fiducial points, while
the local maximum of the SSIM indices is at the cen-
ter of the new swept matrix.

The locations, numbers, and accuracy of fiducial
points are affected by the values of C1 and C2 in
the SSIM formula, the size of the database matrix,
gray level threshold, and the matrix size in search
of the maximum value. For a high SNR system, the
system parameter tolerance negligibly influences the
determination of the fiducial points. Conversely, a
system with a low SNR exhibits a significant depen-
dence of fiducial point locations on the parameter
accuracy.

Before the BER calculation, a decided threshold
must divide the gray level of the received images into
0 and 1. The BER can be defined as

BER � p0 × p�1j0� � p1 × p�0j1�; �2�
where p0 and p1 denote probabilities that the total
number is 1 or 0, respectively, p�1j0� and p�1j0� prob-
abilities for 1 or 0 to be judged 0 or 1, respectively.

The SNR can also be expressed as [5]

SNR � μ0 � μ1
�σ20 � σ21�1∕2

; �3�Fig. 5. (Color online) Example of fiducial points identifying with
SSIM method.

Fig. 6. (Color online) Edge effect in swept checkerboard image by
using SSIM method.
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where μ0 and μ1 denote the mean values of 0
and 1, and σ20 and σ21 denote the variance of 0 and 1,
respectively.

In the SSIM operation starting, the database
matrix is distorted to compensate for the noise of
the distorted image by convoluting a weighting
matrix with Gaussian distribution. In the right part
of Eq. (1), σrt, σr, and σt dominate the value ranges of
the right part of Eq. (1) from −1 to 1, and the sign of
the value is determined by the sign of σrt. For
explaining the predistorted database matrix com-
pensating the distorted image, the variance and
covariance are rewritten as follows:

σ2t � �at0�σ2t0 � μ2t0� � at1�σ2t1 � μ2t1�� − �at0μt0 � at1μt1�2

� at0�σ2t0 � μ2t0 − at0μ2t0� � at1�σ2t1 � μ2t1 − at1μ2t1�
− 2at0μt0at1μt1; �4�

σ2r � ar0�σ2r0 � μ2r0 − ar0μ2r0� � ar1�σ2r1 � μ2r1 − ar1μ2r1�
− 2ar0μr0ar1μr1; �5�

σrt�
1

�N−1�
XN
x;y�1

�Grayr�x;y�−μr�×�Grayt�x;y�−μt�

� 1
�N−1�

XN
x;y�1

Grayr�x;y�×Grayt�x;y�−Nμrμt; (6)

where at0 and at1 denote the proportion of 0 and 1 to
the total numbers in the distorted image; ar0 and ar1
denote the proportion of 0 and 1 to the total numbers
in the database matrix.

According to Eq. (6), the covariance σrt varies with
the gray levels of each pixel and the mean values in
both images so that the distributions of the gray level
in both images influence the degree of the covariance.
However, the range of the right part of Eq. (1) can be
determined as the hypothesized covariance. When
the database matrix does not become distorted by
convoluting Gaussian matrix, ar is equivalent to zero
and the value of the right part of Eq. (1) is dominated
by the σt. As the database matrix is distorted by con-
voluting Gaussian matrix, σrt equivalent to σ2r or σ2t ,
the value of the right part of Eq. (1) is determined as
1. Therefore, the value range of the right part of
Eq. (1) is determined as 1∕σ2t to 1.

The distribution of the distorted image is supposed
to approach Gaussian distribution after Gaussian
matrix convoluting in the SSIM operation and the
database matrix are also convoluted Gaussian ma-
trix to be distorted, too. However, the database ma-
trix and the distorted image can be created by using
Gaussian distribution approaching with different
standard deviation and then the value of right part
of Eq. (1) can be determined in varying standard
deviations of both images. Figure 7(a) displays the
standard deviations of the database matrix and

the distorted image versus the determined value of
right part of Eq. (1) as the mean values of both
images fixed in each standard deviation. The solid
line demonstrates the varying standard deviations
of the distorted image, the standard deviation of
2.7 in the database image, and the maximal deter-
mined value occurs in the standard deviations of
both images equalizing to each other. The dash line
illustrates the varying standard deviations of the da-
tabase matrix versus determined value of the left
part of Eq. (1) as the standard deviation of 6 in
the distorted image. Before the Gaussian matrix con-
voluting, the standard deviation of the database
matrix equalizing to 0, the determined value is less
than 0.1 in all cases. The slope in the left side of the
maximal determined value is steeper than the right
side one, and consequently, the noise tolerance can
increase by using the predistortion technique in
the SSIM operation starting. In the left part of
Eq. (1), the relation between mean value of both
images and the determined value is also solved
and presented in Fig. 7(b). There are three mean
value conditions, 50, 128, and 254, of the database
matrix to show the direction of the determined value
changing. The slope direction of the left part is simi-
lar to the case of the right part and SSIM value can

Fig. 7. Summary of the variables varying with the determined
value of SSIM formula (Eq. 1). (a) Standard deviation versus
the value of the right part of SSIM formula. (b) Mean value versus
the value of the left part of SSIM formula.
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be determined by the two parts multiplied. There-
fore, the maximal SSIM value can be determined
in the differential equation of SSIM and the available
mean value of the database matrix also can be deter-
mined in the differential equation.

The maximum range of the gray level in the data-
base matrix is determined, in which the differential
equation of SSIM and the other parameters, μr, μt, σ2r ,
σ2t , and σrt, are denoted as follows:

μr �
1

N2

XN
i;j�1

Grayr�i; j�; (7)

μt �
1

N2

XN
i;j�1

Grayt�i; j�; �8�

σ2t � 1

�N − 1�2
XN
i;j�1

�Grayt�i; j� − μt�2; �9�

σ2r � 1

�N − 1�2
XN
i;j�1

�Grayr�i; j� − μr�2; �10�

σrt �
1

N − 1

XN
i;j�1

�Grayr�i; j�− μr�× �Grayt�i; j�− μt�; �11�

∂SSIM
∂μr

� B0A − A0B
��μ2t � μ2r � C1��σ2t � σ2r � C2��2

;

A � �2μtμr � C1��2σtr � C2�;
B � �μ2t � μ2r � C1��σ2t � σ2r � C2�;
A0 � 2μt�2σtr � C2� � �2μtμr � C1�

×

"
2

N − 1

XN
x;y�1

−�Grayt�x; y� − μt�
#
;

B0 � 2μr�σ2t � σ2r � C2� � �μ2t � μ2r � C1�

×

"
2

�N − 1�2
XN
x;y�1

−�Grayr�x; y� − μr�
#
; (12)

where N denotes the number of pixels, Grayr�i; j�,
and Grayt�i; j� denotes the gray levels of the r and
t images.

In Eq. (12), the maximum differential value of μr is
difficult to be solved, explaining the use of the nu-
merical method to determine the maximum differen-
tial value. Additionally, the gray level of the black
windows of the database matrix is changed from 0
to 200 to determine the working range of the fiducial
points finding with the SSIM method and the gray

level of the white windows in the database matrix
is fixed as 255.

3. Experiments

All experiments are conducted with a coaxial HDSS,
as schematically depicted in Fig. 8. In contrast to
GLWM (center), the proposed algorithm is implemen-
ted in three cases. In Case 1, L4 symbolizes a Fourier
lens, providing a high SNR as well as less aberration,
while in Case 2, a usual lens, rather than the Fourier
lens, is employed to enhance the system aberration
effect and render a degraded SNR, for the reason that
the magnification here is superior to that in Case 1 in
the context of constant exposure timeand laser power.
Finally, in Case 3, translating the SLM by the displa-
cements of −0.1 mm to 0.1 mm, the system is made
operated in a low SNR circumstance.

Adopting the previous research data [12], there are
a total of 2.16×106 bits of raw data, coded with a Reed
Solomon code (31, 25, and 3), 1024 bits per page, each
bit covering 4×4 pixels onto a SLM with a pixel pitch
of 19 μm. With the Fourier lens with 375 mm focal
length employed in Case 1, the system exhibits a
magnification of roughly 2.7, with a bit covering
18×18 pixels onto an image sensor with a pixel
pitch of 12 μm, while employing the usual lens with
500 mm focal length, Cases 2 and 3 demonstrate a
magnification of 3.7 or so, with a bit covering
23×23 pixels on the image sensor. The SLM of Case
3 is shifted from −0.1 to 0.1 mm, except at 0 mm, with
a displacement 0.05 mm and the SLM position of
Case 2 is at 0 mm.

Database matrices of sizes 18×18 and 24×24 pixels
are used to sweep the checkerboard images, respec-
tively, in various cases, with gray levels of 50 and 255
corresponding to black and white, respectively. The
size of the database matrices is determined by the
maximal even integer, which is more than or equal to
the size of a bit in the checkerboard image. In the
noise-free system, the determined size is the mini-
mal size to completely surround each center in the
2×2 bits of the checkerboard image. As the database
matrices moving out the correct position (position 2
in Fig. 5) in the checkerboard image, the SSIM value

Fig. 8. (Color online) Sketch of HDSS and a block diagram of the
fiducial point finding.
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would be decreased and lower than the value in the
correct position. For conducting a sweep trial, an
arbitrary choice of the checkerboard images is made,
or two images, alternate conversely in black and
white, are selected, in which the fiducial points are
identified successfully, as expected. The swept image,
below normalized background noise of 0.1 (approxi-
mately gray level of 25), is subsequently treated as
the noise, set to 0. Then, using matrices of sizes
19×19 and 25×25 pixels to scan the swept images, re-
spectively, the fiducial points are hence identified, if
the maximum value is situated at the matrix center,
aggregated, and then applied to subsequent images.
The size of the swept matrices cannot be large to sur-
round each center in the 2×2 bits of the checkerboard
image, owing to the swept matrices filtering the fidu-
cial point as maximal SSIM value in a bit window.
Therefore, the size of the swept matrices is deter-
mined by the minimal odd integer, which is under
the size of a bit in the checkerboard image. In Cases
1 and 2, the locations of fiducial points are reached
by first performing GLWM and the SSIM method on
the sensed corresponding image. Meanwhile, in Case
3, the task is done by the fiducial points derived
from Case 2. Therefore, matrices around the fiducial
points of sizes 9×9, 11×11, 13×13, 15×15, 17×17,
19×19, and 21×21 pixels are thus extracted and aver-
aged to graph the histograms. By using Eqs. (2) and
(3), BER as well as SNR is evaluated; in addition,
both approaches are compared in terms of accuracy.
An average matrix of large size covers a large win-
dow of the image sensed, leading to a low BER and
fiducial points staying toward the window center.
Furthermore, the solution for optimized BER is
found in case of the raw data with minimal or no
errors.

4. Results and Discussion

Figure 9 displays an image commonly received in
three cases and the SNRs of three cases are summar-
ized in Table 1. This figure reveals that Case 1, a high
SNR system, exhibits an extremely sharp window
border, low aberration effect, and satisfactory BER
with arbitrary alignment methods, yet at the cost of
expensive optical components. However, since a nor-
mal lens is used in Cases 2 and 3, the image quality is
degraded due to the effects of aberration and noise.
Especially in Case 3, the window border turns blurry
owing to the shift effect.

Figures 10 and 11 summarize the numerical re-
sults of the working range of the fiducial points in
Cases 1 and 2, respectively. The numerical results
determined from Eq. (12), the database matrices
sweeps over the distorted checkerboard image fol-
lowing SSIM operation, and the database matrices
of sizes 13×13 and 19×19 pixels are selected as the
minimal BER determined in Cases 1 and 2, respec-
tively. Then, the differential values, on the fiducial
points are collected to plot Figs. 10 and 11. The curve
is separated into two parts: positive correlation in
the top part and negative correlation in the bottom

part. For example, since database matrix 1 sweeps
over the checkerboard image, parts of the fiducial
points have a negative correlation as the positions
of fiducial points in the black windows. The negative
correlation means that the two images are not simi-
lar to each other in the luminance, contrast, or struc-
ture and determined SSIM index is negative, and
vice versa. In Table 1, the SNR of Case 1 is higher
than Case 2, explaining why Case 1 has fewer aber-
rations effect to achieve the flatness curve of the
mean value in Fig. 9. The approximate working
ranges of SSIM method can be determined from
the positions of the turning points in the top envelope
of the positive correlation part. Because the positions
of the turning points of the fiducial points are dissim-
ilar to each other, each gray level in the approximate
working range is utilized to determine and verify the
fiducial points correctly in the fiducial points finding.
Eventually, the working range is redefined by the

Fig. 9. Image commonly received in three cases, that is,
(a) Flens, (b) Nlens, (c) −0.05 mm shifting, (d) −0.1 mm shifting,
(e) �0.05 mm shifting, (f) �0.1 mm shifting in descending order.

Table 1. Summary of the SNR in All Cases

Case SNR

Case 1 (Flens) ∼20
Case 2 (Nlens) ∼10
Case 3 with shifting �0.05 mm (Nlens) ∼8.5
Case 3 with shifting −0.05 mm (Nlens) ∼6.8
Case 3 with shifting −0.1 mm (Nlens) ∼5.5
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gray levels, which can determine the fiducial points
correctly. In the GLWM method, the working range
can be determined by the thresholds varying as
the fiducial points determined correctly. Therefore,
the working ranges of the threshold in Cases 1 and
2 by using GLWM are 11 (gray level of threshold from
154 to 165) and 31 (gray level of threshold from 124 to
155), respectively, and the working ranges of the gray
level of the database matrices by using SSIMmethod
in Cases 1 and 2 are increased to 100 and 120, respec-
tively. The wider range of the gray level by using
SSIM method is owing to the SSIM index decreasing
quickly as the database matrix sweeps over a nonu-
niform or imperfect image. The larger working range
in Case 2 is owing to the slight overexposure in the
Case 1. However, the SSIM method supports a wider
threshold range of gray level than the GLWM does.

According to Fig. 12, Case 1 is of a minimum BER
of 3.42×10−47 redundant noise interference is filtered
using a higher oversampling ratio [15–16]. By using
the SSIM method, the fiducial points located at the
window centers are more accurate than GLWM.

Thus, an oversized matrix can still cover the corre-
sponding window area. Compared with GLWM, a
slightly higher level of BER occurs in the SSIM
method, owing to IPI as well as a slight amount of
dust, when the matrix size is below 13×13 pixels.
With a larger size of the matrix, a lower level of
BER is as expected yielded by the SSIM method.
However, an averaging matrix with larger sized re-
ducing IPI in the white windows, the BER of the
SSIM method (2.71 × 10−26) provides 5 orders lower

Fig. 10. Plot of differential value versus gray level for a database
matrix sweeping over the checkerboard image in Case 1.

Fig. 11. Plot of differential value versus gray level for a database
matrix sweeping over the checkerboard image in Case 2.

Fig. 12. Comparison result of matrix size versus BER in Case 1.

Fig. 13. Comparison result of matrix size versus BER in Case 2.

Fig. 14. Comparison result of matrix size versus BER in Case 3.
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than GLWM (1.43×10−21) in the 17×17 pixel matrix
size. According to Fig. 13, the comparison results
in Case 2 indicate that the SSIM method performs
better than GLWM at most of the matrix sizes while
the lower SNR does. The fiducial points located by
the SSIMmethod are closer the windows center than
GLWM. Thus, the system has a satisfactory BER
2.85×10−14, and the BER provides 4 orders lower
than GLWM (2.77×10−10) in the 21×21 pixel matrix
size. In the two cases, the matrix size accounts for
0.76 ∼ 0.8 of the pixels by one bit on the received
checkerboard image, the lowest level of BER ob-
tained, when the fiducial points have an accurate
alignment. Figure 14 summarizes the comparison re-
sults of Case 3, a defocus system, which bends the
window border outward.

The SSIM method also apparently demonstrates a
lower BER than GLWMwhen using an arbitrary size
of matrix, thus, confirming that the proposed method
is the most effective means of seeking the center lo-
cation of windows. In summing up Cases 2 and 3, the
shifting distance versus the lowest BER and the ma-
trix size of Cases 2 and 3 are fitted and presented in
Fig. 15. An ideal case is one in which the peak loca-
tions of the BER and matrix size overlap. However, a
displacement between the peaks of the lowest BER
and the matrix size is due to the aberration balanced
by defocus [17].

5. Conclusions

This work compares GLWM and the SSIMmethod in
three cases in terms of the center location. Conse-
quently, the SSIM method is a more accurate means
of locating thewindowcenter, especially in the context
of defocus, ultimately reaching a low level of BER
as well. Therefore, inexpensive optical elements in
HDSS can be utilized to decrease system costs as
the SSIM method. There are two problems involving
the SSIM method, one in which the windows in the
checkerboard image edge cannot fully compare with
the database matrix such as to derive a lower SSIM
value, and the other one inwhich SSIMmethod is five
times the calculation time of GLWM method (SSIM:

183.5 s andGLWM:35.8 s).Characterized byahuman
model, SSIM is adopted to provide two advantages in
which the problem of multiple fiducial points caused
by a single threshold is subsequently removed. Addi-
tionally, more factors, i.e., the image contrast and
structure, are both considered. Restated, the center
can still be precisely located, even in the case of an
aberration, as caused from the checkerboard image
received. Furthermore, the centering task can still
be fulfilled by a checkerboard image (as mentioned
earlier) by the SSIM method, even though either of
the two images is damaged or unidentified. We con-
clude that the proposed SSIM method, developed
based on the SSIM algorithm, has a superior center-
ing accuracy, more image parameters considered, as
well as other advantages, making it more applicable
to a HDSS than to GLWM.
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