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On Group Partition for Wireless Multicast Flow Control

Rung-Hung Gau, Member, IEEE

Abstract—In this paper, we propose partitioning group mem-
bers into subgroups according to their instantaneous channel
gains for single-hop wireless multicast flow control. We study
the case in which there are a number of logical channels and
the access point uses a logical channel to broadcast information
to a subgroup. In particular, distinct logical channels could be
allocated different levels of transmission power and fractions
of time. In order to maximize the network throughput, we
formulate and solve a discrete optimization problem. In addition,
we use simulation results to show group partition is a promising
approach for wireless multicast flow control.

Index Terms—Cross-layer design, wireless multicast, group
partition, discrete optimization.

I. INTRODUCTION

N a wireless local area network, if the access point has to

choose a single downlink data transmission rate for all of
the nodes in a multicast group, the node with the worst channel
gain might dominate the network performance. To improve the
network throughput, we propose using a number of logical
channels with different levels of transmission power and
partitioning group members into several subgroups according
to the instantaneous channel gains. McCanne, Jacobson, and
Vetterli [1] proposed layered multicast in which several layers
of information are provided and each receiver subscribes
to one specific layer. Bhattacharyya, Kurose, Towsley, and
Nagarajan [2] studied the problem of finding the optimal rate
at each layer to minimize the completion time of a fixed-size
file. Gau, Haas, and Krishnamachari [3] studied the impacts
of the distribution of the receiver capacities on the throughput
of multicast flow control. Many related works on Internet
multicast flow control can be found in [3] [4] [5] and the
reference therein. They focused on wired networks in which
the network throughput depends only on the partitioning of
group members. In contrast, in this paper, we focus on wireless
networks in which the network throughput depends on channel
assignment and partitioning of group members. Ge, Zhang,
and Shen [6] proposed a cross-layer wireless multicast scheme
in which the access point transmits information only when
enough receivers have channel gains greater than a predeter-
mined threshold. Pantelidou and Ephremides [7] studied the
problem of choosing at each time slot a power vector and
a rate vector for multicast sessions to maximize the sum of
utilities of all destinations, when the wireless channel is not
known exactly. Rajawat, Gatsis, and Giannakis [8] proposed a
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cross-layer design and an optimal multicast resource allocation
framework for wireless fading networks in which the nodes
could perform network coding. They took an approach of
continuous optimization, while we take an approach of discrete
optimization in this paper. Recently, the multicast capacity
of multihop wireless networks had been extensively studied
[9] [10]. We focus on single-hop wireless networks and
therefore routing [11] is beyond the scope of this paper.
Our major technical contributions include proposing a discrete
optimization approach for single-hop wireless multicast flow
control.

II. SYSTEM MODELS

As in [6], we study single-hop wireless multicast. In the
wireless network, there is a multicast session from the access
point to a group of n nodes. Time is partitioned into time
slots. The access point executes the same algorithm in every
time slot. Therefore, it is sufficient to consider a time slot.
Let g; be the channel gain from the access point to node ¢
in the time slot, V1 < ¢ < n. We adopt the widely used 11D
(independent, identically distributed) Rayleigh fading model
[12]. Thus, g;’s are IID exponential random variables [12]. For
a node, the channel gains at different time slots are assumed
to be IID random variables. Let o2 be the power spectral
density of the additive white Gaussian noise. Let w be a given
positive integer. The access point selects some nodes from the
group to form w subgroups according to instantaneous channel
gains. There are w logical channels and each logical channel
is used to broadcast information to a subgroup. To avoid the
problem of “listening to the slowest receiver”, a node may
not be selected. Let S; be the set composed of the indexes of
nodes that belong to the jth subgroup, V1 < j < w. Then,
S; ¢ {1,2,..,n}, Vj, and S, NS, = 0, Vu # v. Denote
the cardinality of the set S by |S|. Then, |S;| is the total
number of nodes in the jth subgroup. A node that is not
selected by the access point is said to be assigned to the
(w + 1)th subgroup. Let P be the total power allocated to
the access point to serve the multicast session. Let P; > 0 be
the power allocated to the jth logical channel and o;; > 0 be
the fraction of time allocated to the jth logical channel. Then,
Z;“-U:l P; = P and Z;“.”:l aj = 1. In this paper, we study
the case in which the values of n, g;’s, w, P;’s and «;’s are
given in advance. Let 6 be a permutation of {1,2,..,w} such
that 6(j) is the index of the logical channel that is assigned
to the jth subgroup, V1 < 7 < w. Note that a a permutation
of {1,2,..,w} is a one-to-one mapping from {1,2,..,w} to
{1,2,..,w}. The permutation function 6 is called the channel
assignment function. Let I, be the set composed of all the
permutations of {1,2,..,w}. Then, 6 € IL,,.
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III. OPTIMAL GROUP PARTITION

Without loss of essential generality, it is assumed that
gi > git1, V1 < i < n — 1. The access point uses
the 6(j)th logical channel to broadcast information to the
jth subgroup. When node ¢ is the unique node in the jth
subgroup, based on information theory [12], if the access
point transmits information to node ¢ at rate smaller than
gy logy (1 + ””g;) node 4 could successfully receive
the information. To assure that all the nodes in the jth
subgroup could successfully receive the information broadcast
from the access point, the data transmission rate for the jth
subgroup equals ;) X minges, logy(1 + %) Recall
that |S;| is the total number of nodes in the jth subgroup.
Thus, the overall througl};)ut for the jth subgroup equals
() X Mingie s, logy (1+ 9(’;91) |S;]. In order to maximize
the network throughput, we formulate the following wth order
optimal group partition problem.

Po(jy9i
maXZag(J) X mln 1og2( M) x |55

= ag(j)0”
subject to
S;c{L,2,.,n},Vi<j<w
Sy NSy =0,Yu#v
9 € 1I,,. (1)

To reflect that the information-theoretic capacity may not be
reached in practice, one can multiply the above object function
by ¢ € [0, 1]. To make the presentation concise, it is assumed
that ¢ = 1.

Let h[w, n| be the optimal value of the object function for
the wth order optimal group partition problem in (1). The
above discrete optimization problem can be solved by the
brute-force approach. For a fixed channel assignment function
0, each of the n nodes could be assigned to one of the (w+1)
subgroups. Thus, for a fixed channel assignment function 6,
there are (w4 1)™ different ways for the access point to select
the n nodes to form (w+ 1) subgroups. Although there are w!
different channel assignment functions, based on symmetry,
it is sufficient to consider a channel assignment function.
Therefore, the computational complexity of the brute-force
approach is O((w+1)™). The definition of O(+) can be found
in [13].

In order to develop fast algorithms for solving the optimal
group partition problem, we first derive related analytical
results. Let 8 > 0 be a positive real number. Define fz(z) =
log,(1 + Bx), Y > 0. Since dfs—g(f) = Bﬂgé;e) >0, Vz >0,
fs(x) is an increasing function of x in (0, c0).

Theorem 1: Let (S5,55,..,.55,0%) be an optimal solution
for the wth order optimal group partition problem. If a €
U, S5, b ¢ Uy, 57, and g; # g;, Vi # j, then g, > gs.

Proof:

1. Suppose g, < gp. Since a € U, ST, there exists an
integer k£ € {1,2,..,w} such that a € S}. Define S}, =

{1,2,..,n} — U, S;. Let a’ and b be two integers such that
Jar = mm”es* i and gy = maxgies: | gi- Then, gor <
Ja < gb < Gor-

2. Define Sy = Sj — {a'} + {V'} and §; = S,
Vj € {1,2,..k — Lk + 1,k +2,..,w}. Then, |S;| = |S7],
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vVl < j < w. In addition, min;;cg, log, (1 + —aj(“jg;) =
rnlnl ies: 10g2(1 + M) Vi € {1’27,,, - 1Lk+1,k+

Qg 0(j )(72
.., w}. Furthermore, since gy > go and g; # g;, Vi # j,
minges, logy (1 + —209% ) > min;;icsr logy (1 + 7722 )

g(j)o? g(j)o/"
3. Then,

Py(jy9i
ZO&Q anelnlog( +W)X|SJ|—

Py
Zag( X mln 1og2(1—|- o) 2) |71
= ES ( )U
Poiy9i
= [min logy(1+ (3)92
i:1E€ Sk Qg O

. PO(J)gz
min log,(1 + X |Sk
€S 2( Oég(J)O' )] | |

> 0.

4. However, the above result contradicts with the fact that
(S7,55,..,55,0%) is an optimal solution for the wth order
optimal group partition problem. Thus, g, > gp.

QED.

Definition: For the wth order optimal group partition prob-
lem, a solution (S1,S2,..,S4,0) is said to be an ordered
solution if there exists a permutation ¢ € II, such that
MAXk:ke S, ;) I < Milgkes, ;) Ik, V1 < j <w — 1

Theorem 2: For the wth order optimal group partition
problem, if g; # g;, Vi # j, there exists an ordered optimal
solution.

Proof:

1. Let (S, 52, .., S,0) be a solution that is not ordered.
Then, a better solution (S7,S5%,..,57,60) can be found as
follows. Without loss of essential generality, it is assumed that
ming.kes, gk = mink;keu}v:lsj gr. Let ¢ be a permutation
of {1,2,..,n} such that g4;) < gg@it1), V1 < @ < n— 1
Define n; = |S;|, V1 < j < w. Define ¢; = >} 4 Nk,
V1l < j < w. Define ty = 0. Initially, set »r = 1. Define
87 =285, V1<j<w.

2.1 S = {o(tr—1+1),d(tr—1+2), .., ¢(t;)}, define S} =
ST 1 V1 < j < w, increase the value of r by one, and then
repeat step 2. Otherwise, let 2(r) be the minimum element
in the set {z : t,_1 +1 < z < t,,¢(x) ¢ Sr}. Let u(r)
be an integer such that ¢(x(r)) € Sy(. By definitions of
z(r) and u(r), u(r) # r and ming.kes, ) Gk = Jo(x(r))- In
addition, there exists an integer y(r) such that y(r) > z(r),
¢(y(r)) € Sr, and gg(y(r)) > Gg(a(r))- I 2(r) # tr—1+1, go
to step 3. Otherwise, swap S, and S,,, recalculate the values
of n;’s and ;’s, and then repeat step 2.

3. Define S = Sy —{o(y(r))} +{¢(x(r))} and S}, =
Siry o)} — {é(x(r))}. Define Sf = S771, V) ¢
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{r,u(r)}. Then,

P (J)gl T
ag(j) X 1 mln 1og2( —=—=) x |S}| -
le ’ apyo®
Po)9i
Zag(J) X mln 1og2(1 + =20 ) % |S;]
j=1 (J)U
Py
= ZO(@(J) X mln 1og2(1 4 09 2) S| —
= ()0
P0 9i r—
Zaem X min 10g2(1 4 09T ——) x |5 4
i=1 :GS 0(])0
PG(u(r))gz
= 1 —_—_— . ST P—
Oée(u(r))llgg{l 0gy(1 + ot ))02) | 'r)|
PG(u(r))gz r
Qp(u(ry) i logy(1 + —===) - [ ST ]
iieS] ) A (u(r)) 0
> 0.

The second equality is due to that ST = Si~ Ly ¢
{7“ u(r)}, [Sr] =[S, and mingesr gi = g¢(tr 1) =
min, ; ¢--1 gi. The inequality is due to that |57, )| = |S£_ [,
Miises: i = o(y(r) > Jo(@(r) = Milecgrot Gis and
log, (1 + Sz) is an increasing function of =, when 3,z > 0.

4. Since the total number of feasible solutions is finite, there
exists an optimal solution. A solution is either ordered or not.
Based on 3, a solution that is not ordered cannot be optimal.
Thus, there exists an optimal ordered solution.

QED.

Note that when w = 1, P, = P and a; = 1. Recall that
gi > gi+1. Based on the above two theorems, we solve the
first-order optimal group partition problem as follows.

_ P- gay
hl,n] = g nax log, (1 + ) x dy
P 9d1
dy = arg " {ré%>1<<n log, (1 + ) X dy
ST ={1,2,.,d}. 2)

Based on equation (2), it takes O(n) time to solve the first-
order optimal group partition problem. Similarly, the second-
order optimal group partition problem can be solved by
Procedure 1 in O(2!n?) = O(n?) time.

It can be proved that the optimal group partition problem
has optimal substructure [13]. In particular, an optimal solution
for the optimal group partition problem can be constructed
efficiently from optimal solutions to its subproblems. Thus,
when w > 2, we propose using dynamic programming [13] to
solve the problem as follows. For each triple (k,m,6), where

ke {1,2,.,w}, m € {1,2,..,n}, and 6 € IL,, define an
optimization problem ¥(k,m,6) as follows.
k
) Pyjy X gi
maxj;ag(j) X ll}lelglj log, (1 + P 02) |S;]
subject to
S;c{1,2,..,m}V1<j<k

SuNSy,=0,YVu#v
Uk_15; ={1,2,..,m}. (3)
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Procedure 1 The Second-Order Group Partition Algorithm
Input: n, (gl, g2, . ,gn) (Pl, Pg), (al, ag), 02.
Output: (S7,55),0%, h[2,n].

1: w < 2. h2, n]<—0 dp 0.

2: Let II,, ; be the kth element in II,,.

3: for k =1 to w! do

4 0 «— Hw71€.

5 for do =1 ton do

6: for di =1 to ds do

7: S1 (—{1,2,..,d1}.

8 SQ<—{d1+1d1+2 d

9 p= U g xlog, (1+ ijﬁg )% (dj—dj_1).
10: if 11 > h[2,n] then

11 hi2,n] < p, (S7,85) < (S1,52), 0* < 0.
12: end if

13: end for

14:  end for

15: end for

Let f[k,m, 6] be the optimal value of the object function
for the optimization problem in (3). Note that

hlw,n] = flw, dyw, 6]. 4)

max max
0:0€T, du:1<dy<n

For each fixed 6 € II,,, we derive the values of f[k,m,6]’s
as follows. First, V1 < m < n,

Pe(l)gm
09(1)02

In addition, V1 < k <w —1,1 < m <n,
flk+1,m,0]
{flk, dr, 0] + ag(ry1) ¥

fll,m, 0] = agy x logy(1+ (5)

= max
dkzlgdkgm

log2(1+M) X (m —dg)}. (6)
Qg(k+1)0
Based on equations (4)-(6), when w > 2, the wth order
optimal group partition problem can be solved in O(w!(w —
1)n?) time. Note that in practice, the value of n could be
very large, while the value of w is usually small. Therefore,
the algorithm is efficient in practice.

IV. SIMULATION RESULTS

We wrote a C program to perform discrete event-driven
simulation. To the best of our knowledge, well-known sim-
ulation tools such as ns-2 and OPNET are also based on
discrete event-driven simulation. For proof of concept, we only
simulate selected key features at the transport layer and the
physical layer. At the MAC layer, a perfect TDMA scheme
is used. In a simulation instance, there are 100,000 time
slots. We first study the case in which the mean of g; equals
one, n € {10,20}, P = 100, and 0? = 1. When there is
no partition, the access point broadcasts information to all
group members at rate log,(1 + = —3~). When w = 2, the
access point allocates total signal power to two subgroups
such that % = «3. In Figure 1, we show the network
throughput. In terms of the network throughput, setting w = 1
is superior to setting w = 2. This is due to that the power
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Fig. 1. The network throughput of the optimal group partition algorithm.
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Fig. 2. The average served members of the optimal group partition algorithm.

split P = P; + P> and split in degrees of freedom [12]
are not jointly optimized when w = 2. If oy = 0.9, the
network throughput when w = 2 is about 90% of the network
throughput when w = 1. A node is said to be served in a time
slot if the node successfully receives some information in the
time slot. In Figure 2, we show the average number of group
members that are served in a time slot. When a; = 0.9 and
w = 2, on average, more than 95% of the group members are
served in a time slot. In contrast, when oy = 0.9 and w =1,
on average, about 80% of the group members are served in
a time slot. It should be noted that a node might belong to
different subgroups in different time slots, since channel gains
at different time slots are IID random variables. When the
proposed scheme is used in a symmetric network, according
to our simulation results, the value of Jain’s fairness index is
always greater than 0.99. All group members will receive the
desired data in the long term.
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V. CONCLUSION

In this paper, we have proposed a novel cross-layer ap-
proach of group partition for single-hop wireless multicast
flow control. In order to maximize the network throughput, we
have formulated and efficiently solved a discrete optimization

problem. In addition, we have used simulation results to show
group partition is a promising approach for wireless multicast
flow control. In particular, we have found that the proposed
approach of group partition strikes a good balance between
the network throughput and the average number of served
group members in a time slot. A direction of future research is
predicting some channel gains based on temporal correlations
for a large-scale network. Future work also includes taking
limits of medium access control protocols into consideration.
For asymmetric networks, a promising direction of future
research is to partition users into subsets according to their
average channel gains and apply the proposed algorithm to
each subset. Based on the proposed algorithm, in principle,
we can find the optimal order of group partition by solving
n optimal group partition problems with orders ranging from
1 to n. However, the computational complexity of the above
approach is very high. Thus, we suggest selecting the value of
w to be smaller than or equal to five in practice. Designing an
efficient algorithm to find the optimal order of group partition
is an important future work.

REFERENCES

[1] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered
multicast,” in Proc. 1996 ACM SIGCOMM.

[2] S. Bhattacharyya, J. F. Kurose, D. Towsley, and R. Nagarajan, “Efficient
rate-controlled bulk data transfer using multiple multicast groups,” in
Proc. 1998 IEEE INFOCOM.

[3] R.-H. Gau, Z. J. Haas, and B. Krishnamachari, “On multicast flow control
for heterogeneous receivers,” IEEE/ACM Trans. Networking, vol. 10, no.
1, pp. 86-101, Feb. 2002.

[4] X. Li, S. Paul, and M. Ammar, “Layered video multicast with retrans-
missions (LVMR): evaluation of hierarchical rate control,” in Proc. 1998
IEEE INFOCOM.

[5] L. Vicisano, J. Crowcroft, and L. Rizzo, “TCP-like congestion control
for layered multicast data transfer,” in Proc. 1998 IEEE INFOCOM.

[6] W.Ge,J. Zhang, and S. Shen, “A cross-layer design approach to multicast
in wireless networks,” IEEE Trans. Wireless Commun., vol. 6, no. 3, pp.
1063-1071, Mar. 2007.

[7]1 A. Pantelidou and A. Ephremides, “Wireless multicast optimization: a
cross-layer approach,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4333—
4343, July 2011.

[8] K. Rajawat, N. Gatsis, and G. B. Giannakis, “Cross-layer designs in coded
wireless fading networks with multicast,” IEEE/ACM Trans. Networking,
vol. 19, no. 5, pp. 1276-1289, Oct. 2011.

[9] S. Shakkottai, X. Liu, and R. Srikant, “The multicast capacity of large
multihop wireless networks,” IEEE/ACM Trans. Networking, vol. 18, no.
6, pp. 1691-1700, Dec. 2010.

[10] C.-H. Liu and J. G. Andrews, “Multicast outage probability and trans-
mission capacity of multihop wireless networks,” IEEE Trans. Inf. Theory,
vol. 57, no. 7, pp. 4344-4358, July 2011.

[11] D. H. Lorenz, A. Orda, D. Raz, and Y. Shavitt, “Efficient QoS partition
and routing of unicast and multicast,” IEEE/ACM Trans. Networking, vol.
14, no. 6, pp. 1336-1347, Dec. 2006.

[12] D. Tse and P. Viswanath, Fundamentals of Wireless Communications.
Cambridge University Press, 2005.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd edition. The MIT Press, 2009.



