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Trace Aloha for Random Multiple Access in Wireless MIMO Networks
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Abstract—In this paper, we propose and evaluate the Trace
Aloha protocol for distributed medium access control in wireless
MIMO networks. We study the case in which a node only knows
the MIMO channel matrix from the node to the access point and
the total number of nodes in the network. Given a MIMO channel
matrix, a node could calculate the corresponding singular values.
According to the Trace Aloha protocol, a node transmits data
if and only if the sum of the squared singular values exceeds
a predetermined threshold. We use both analytical results and
simulation results to justify the usage of the proposed protocol.

Index Terms—Medium access control, wireless networks,
MIMO, random multiple access.

I. INTRODUCTION

IN this paper, we propose a novel opportunistic medium
access control scheme based on the matrix traces of MIMO

(multiple input multiple output) channels [1] in a wireless
network. In a wireless MIMO network, each node has multi-
ple transmitting antennas and the access point has multiple
receiving antennas. MIMO technologies have been applied
to one-to-one communications in order to increase the data
transmission rate. In addition, multi-user MIMO technologies
such as successive interference cancellation [1] could reach the
information-theoretic network capacity. Many previous works
on medium access control with MIMO channels concentrate
on the centralized schemes. In contrast, we focus on dis-
tributed medium access control with MIMO capabilities in
this paper.

The proposed Trace Aloha algorithm exploits the singular
values [2] of a MIMO channel matrix and is based on the
well-known slotted Aloha protocol [3]. Early works on Aloha
used the (0, 1, e) collision channel model [3] in which the data
transmission rate is a constant. Ghez, Verdu, and Schwartz
[4] derived stability properties of slotted ALOHA with multi-
packet reception capability. In the last decade, many works on
medium access control with multipacket reception emerged.
Naware, Mergen, and Tong [5] studied the impact of multiple
packet reception on the stability and delay of slotted Aloha
when the buffer size is infinity. Gau [6] analytically derived
the non-saturation throughput for slotted Aloha in wireless
networks with multipacket reception. Dua [7] proposed a user-
centric approach for evaluating the performance of slotted
Aloha with multipacket reception in a wireless network in
which the total number of nodes is finite but the buffer size
at each node is infinity. Lotfinezhad, Liang, and Sousa [8]

Manuscript received April 4, 2012. The associate editor coordinating the
review of this letter and approving it for publication was Y.-D. Lin.

R.-H. Gau is with the Department of Electrical Engineering, National Chiao
Tung University, Hsinchu, Taiwan (e-mail: runghung@mail.nctu.edu.tw).

This work was supported in part by the National Science Council, Taiwan,
R.O.C. under grant number NSC 100-2628-E-009-017-MY2.

Digital Object Identifier 10.1109/LCOMM.2012.042312.120755

derived the optimal retransmission probabilities for slotted
Aloha in wireless sensor networks with multipacket reception.
Recently, Guo, Hu, Zhang, and Chen [9] proposed the adaptive
space-time diversity slotted Aloha protocol for random access
in wireless MIMO networks. They focused on collision reso-
lution/interference cancellation at the signal processing level.
In contrast, we propose a novel transmission policy based on
the squared singular values of a MIMO channel matrix. Gong,
Perahia, Stacey, Want, and Mao [10] investigated the problem
of medium access control in wireless LANs with downlink
multi-user MIMO capabilities. In contrast, we focus on uplink
medium access control with multi-user MIMO capabilities.
Qian, Zheng, Zhang, and Shroff [11] studied the problem of
distributed scheduling in multi-hop MIMO networks. We focus
on single-hop wireless MIMO networks.

II. SYSTEM MODELS

In the wireless network, there are an access point and n ≥ 2
nodes. The access point has nr antennas, while a node has nt

antennas. We focus on uplink transmissions from the nodes to
the access point. Time is partitioned into time slots. Let T be
the length of a time slot. Typically, the length of a time slot is
smaller than the coherence time of the wireless channel [1].
Denote the set of complex numbers by C. Let xk[t] ∈ Cnt be
the transmitted signal/vector from node k to the access point
in time slot t, ∀t. Let Hk[t] ∈ Cnr×nt be the MIMO channel
matrix from node k to the access point in time slot t, ∀t.
Let y[t] ∈ Cnr be the received signal at the access point in
time slot t. Let w[t] ∈ Cnr be the additive white Gaussian
noise in time slot t, ∀t. Note that for each fixed t, xk[t],
y[t], and w[t] are complex-valued column vectors. Denote the
expected value of a random variable X by E [X ]. Let A∗ be
the Hermitian transpose (the conjugate transpose) [2] of the
matrix A. It is assumed that the background noise w[t] is
circularly symmetric complex Gaussian [1], ∀t. In particular,
E[w[t]] = 0 and E[w[t]× (w[t])∗] = N0Inr , ∀t. According to
[1], for each fixed t,

y[t] =

n∑

k=1

Hk[t]× xk[t] + w[t]. (1)

It is assumed that Hα[t1] and Hβ[t2] are statistically inde-
pendent, ∀α �= β, t1, t2. In addition, it is assumed that for
each fixed k, Hk[1],Hk[2],Hk[3], ... are IID (independent and
identically distributed) random variables. We adopt the IID
Rayleigh fading model [1]. In particular, for each fixed pair
(k, t), the entries of the channel matrix Hk[t] are IID circu-
lar symmetric complex Gaussian random variables. Namely,
[Hk[t]]i,j ∼ CN (0, 1

μ ) [1], ∀k, t, i, j. Let P be the total
transmission power of a node. Let W be the bandwidth used
for information transmission from a node to the access point.
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We focus on the saturation case in which a node always has
data to send. Let C(H) be the capacity of a MIMO channel
when the MIMO channel matrix is H. Given the values of
H, P , N0, and W , the capacity of the MIMO channel can
be obtained by singular value decomposition and the well-
known water-leveling algorithm [1]. It is assumed that at the
beginning of time slot t, node k knows the value of Hk[t]
(through channel estimation) and the value of μ. However, at
the beginning of time slot t, node k does not know the value
of Hi[t], ∀i �= k. In time slot t, if node k transmits, it transmits
with rate equals C(Hk[t]). Let A[t] be the set composed of
the indexes of the nodes that transmit in time slot t. Based
on network information theory [1], if |A[t]| = 1, the access
point successfully receives/decodes data for sure in time slot
t. On the other hand, if |A[t]| ≥ 2, the access point could
not receive/decode any data in time slot t. Recall that when
|A[t]| ≥ 2,

∑
i:i∈A[t] C(Hi[t]) is larger than the maximum

achievable sum rate of the multiple access channel in time
slot t.

For a continuous random variable X , denote the probability
density function by fX(x) and the cumulative distribution
function by FX(x). Denote the set of real numbers by R.
Recall that

∣∣∣∣a+ b
√−1

∣∣∣∣2 = a2 + b2, ∀a, b ∈ R. Let
1{condition} be the indicator function with value one if the
condition is true or with value zero if the condition is not true.

III. THE TRACE ALOHA PROTOCOL

We propose and analyze the Trace Aloha protocol in this
section. In order to optimize the network throughput, it is
desired that a node transmits only when the instantaneous
MIMO channel capacity is relatively large. Since it is quite
difficult to compute the cumulative distribution function of
C(Hk[t]), the proposed Trace Aloha protocol is based on
the cumulative distribution function of the trace [2] of the
matrix Hk[t] × (Hk[t])

∗. Define nmin = min(nt, nr). Let
λk,1[t], λk,2[t], .., λk,nmin [t] be the singular values of the ma-
trix Hk[t]. Recall that the singular value decomposition of
Hk[t] can be interpreted as two coordinate transformations
and (λk,i[t])

2’s correspond to the magnitude responses of the
corresponding Gaussian parallel channels [1]. Thus, for each
pair (k, t), we define Zk[t] as follows.

Zk[t] =

nmin∑

i=1

(λk,i[t])
2. (2)

According to [1], (λk,1[t])
2, (λk,2[t])

2, .., (λk,nmin [t])
2 are

eigenvalues of the matrix Hk[t]× (Hk[t])
∗. Based on [2], the

trace of a matrix equals the sum of all eigenvalues of the
matrix. Denote the trace of the matrix A by tr(A). Then,

Zk[t] = tr(Hk[t]× (Hk[t])
∗). (3)

A. Symmetric MIMO networks

When the Trace Aloha protocol is used, in time slot t, node
k transmits data to the access point if and only if Zk[t] ≥ θ,
where θ is a real number to be determined. Abbreviate Zk[t] by
Zk. In order to improve the network throughput, we propose

setting θ to be the unique root of the following equation in
[0,∞).

E[
n∑

k=1

1{Zk ≥ θ}] = 1. (4)

Since Zk’s are IID random variables and E[1{Zk ≥ θ}] =
P{Z1 ≥ θ}, based on Equation (4),

P{Z1 ≥ θ} =
1

n
. (5)

Before deriving the value of θ, we elaborate on the differ-
ence between the Trace Aloha algorithm and the basic Aloha
algorithm. Let V 1

k [t] ∈ {0, 1} be a binary random variable
such that V 1

k [t] = 1 if and only if node k transmits in time slot
t, when the basic Aloha algorithm is used. Let V 2

k [t] ∈ {0, 1}
be a binary random variable such that V 2

k [t] = 1 if and only
if node k transmits in time slot t, when the Trace Aloha
algorithm is used. When the basic Aloha algorithm is used, in
time slot t, node k transmits with probability 1

n regardless of
the value of Hk[t]. Thus, P{V 1

k [t] = 1|tr(Hk[t]×(Hk[t])
∗) <

θ} = 1
n . When the Trace Aloha algorithm is used, in time slot

t, node k transmits if and only if tr(Hk[t] × (Hk[t])
∗) ≥ θ.

Thus, P{V 2
k [t] = 1|tr(Hk[t]× (Hk[t])

∗) < θ} = 0. Although
P{V 1

k [t] = 1} = P{V 2
k [t] = 1} = 1

n , the random vector
(V 1

k [t],Hk[t]) and the random vector (V 2
k [t],Hk[t]) have dif-

ferent probability distribution functions. Thus, as shown later
in the paper, the throughput of the Trace Aloha algorithm is
larger than the throughput of the basic Aloha algorithm. Based
on the principle of symmetry, P{argmaxi:1≤i≤n V

2
i [t] =

k||A[t]| = 1} = 1
n , ∀1 ≤ k ≤ n. Namely, when the Trace

Aloha algorithm is used, given that a unique node successfully
transmits in time slot t, the probability that the unique node
is node k equals 1

n , ∀1 ≤ k ≤ n.
Define g(x) = P{Z1 ≥ x} − 1

n . Since Z1 is a continuous
random variable and fZ1(x) > 0, ∀x > 0, g(x) is a continuous
and decreasing function of x. Furthermore, g(0) = 1− 1

n > 0
and limx→∞ g(x) = 0 − 1

n < 0. Thus, based on the theorem
of intermediate value, g(x) has a unique root in (0,∞). Thus,
θ is well-defined. Since Z1 is a non-negative random variable,
based on Markov inequality [12], P{Z1 ≥ x} ≤ E[Z1]

x . Thus,
g(nE[Z1] + 1) ≤ E[Z1]

nE[Z1]+1 − 1
n < 0. Therefore, based on the

theorem of intermediate value, θ ∈ (0, nE[Z1] + 1).
We now derive the value of θ. Note that P{Z1 ≥ θ} = 1−

P{Z1 ≤ θ}. Since the proposed protocol is memoryless, Hk[t]
is abbreviated by Hk whenever appropriate. Since [Hk]i,j’s are
IID circular symmetric complex Gaussian random variables,
||[Hk]i,j ||2’s are IID exponential random variables [1]. In
addition, E[||[Hk]i,j ||2] = 1

μ and F||[Hk]i,j ||2(x) = 1 − e−μx,
∀x ≥ 0, ∀k, i, j. Furthermore, ∀1 ≤ k ≤ n, 1 ≤ i ≤ nr,

[Hk × H∗
k]i,i =

nt∑

j=1

[Hk]i,j × ([Hk]i,j)
∗

=

nt∑

j=1

||[Hk]i,j ||2. (6)

Thus, for each fixed pair (k, i), [Hk × H∗
k]i,i is a nt-th order

Gamma distributed random variable. In particular, E[[Hk ×
H∗

k]i,i] =
nt

μ , f[Hk·H∗
k]i,i

(x) = μnt ·xnt−1

(nt−1)! e−μx, ∀x ≥ 0, and



884 IEEE COMMUNICATIONS LETTERS, VOL. 16, NO. 6, JUNE 2012

F[Hk·H∗
k
]i,i(x) = 1 −∑nt−1

k=0
(μ·x)k

k! e−μx, ∀x ≥ 0 [12]. Since
[Hk × H∗

k]i,i is a nt-th order Gamma distributed random
variable, Zk =

∑nr

i=1[Hk×H∗
k]i,i is a (nt·nr)-th order Gamma

distributed random variable. In addition, E[Zk] =
nt·nr

μ , ∀k.
Since Z1 is a (nt · nr)-th order Gamma distributed random
variable, based on Equation (5),

ntnr−1∑

m=0

(μ · θ)m
m!

e−μθ − 1

n
= 0. (7)

The above equation can be solved by numerical methods such
as binary search.

Let λD be the network throughput, when the Trace Aloha
algorithm is used. In particular, the network throughput is
defined to be the average number of bits that are successfully
received by the access point per time unit per Hertz. Then,

λD

= E[

n∑

k=1

1{Zk ≥ θ, Zi < θ, ∀i ∈ {1, 2, .., n} − {k}}

×C(Hk)]

= n× E[1{Z1 ≥ θ, Zi < θ, ∀i ≥ 2} × C(H1)]

= n× P{Z1 ≥ θ, Zi < θ, ∀i ≥ 2} ×
E[C(H1)|Z1 ≥ θ, Zi < θ, ∀i ≥ 2]

= (1− 1

n
)n−1 × E[C(H1)|Z1 ≥ θ]. (8)

Recall that node k transmits with rate C(Hk[t]) in time slot t
if and only if Zk[t] ≥ θ. Thus, we have the first equality. The
second equality is based on that E[

∑n
i=1 Xi] =

∑n
i=1 E[Xi]

and symmetry. The third equality is based on that E[X ] =

E[E[X |Y ]]. Note that Zi’s are IID random variables and
P{Zi < θ} = 1 − 1

n , ∀i. In addition, H1 and Zk are
statistically independent, ∀k �= 1. Thus, we have the last
equality.

Let λ
′
D be the network throughput when the basic Aloha

algorithm is used. Recall that when the basic Aloha algorithm
is used, node k transmits with probability 1

n in time slot
t regardless of the value of Hk[t]. In addition, if node k
transmits in time slot t, it transmits with rate equals C(Hk[t]).
Then,

λ
′
D = (1− 1

n
)n−1 × E[C(H1)]. (9)

B. Asymmetric MIMO networks

We now modify the Trace Aloha algorithm for the asymmet-
ric case in which [Hk[t]]i,j ∼ CN (0, 1

μk
), ∀k, t, i, j. Typically,

μk depends on the location of node k. Let (θ1, θ2, .., θn) be a
real vector such that

n∑

k=1

ntnr−1∑

m=0

(μk · θk)m
m!

e−μk·θk = 1. (10)

Similar to the symmetric case, when the Trace Aloha al-
gorithm is used, in time slot t, node k transmits if and
only if Zk[t] ≥ θk. Let θ† be a positive real number such
that

∑n
k=1

∑ntnr−1
m=0

(μk·θ†)m

m! e−μk·θ†
= 1. When network

throughput rather than fairness is the primary concern, we
can simply set θk = θ†, ∀k. In this case, the Trace Aloha
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Fig. 1. The network throughput for the Trace Aloha algorithm in symmetric
networks.
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Fig. 2. The network throughput and Jain’s fairness index for two variants
of the Trace Aloha algorithm in asymmetric networks.

algorithm is called the throughput Trace Aloha algorithm.
When fairness is a major concern, we can choose θk such that∑ntnr−1

m=0
(μk·θk)m

m! e−μk·θk = 1
n , ∀k. In this case, the Trace

Aloha algorithm is called the fairness Trace Aloha algorithm.

IV. SIMULATION RESULTS

We wrote a C program to obtain event-based simulation
results. Each simulation instance contains 100, 000 time slots.
We first studied the case in which 2 ≤ n ≤ 200, nt = nr = 2,
P = 100, T = 1, W = 1, N0 = 1, and μ = 1. In
Figure 1, we show the values of λD and λ

′
D for symmetric

MIMO networks. Regardless of the total number of nodes in
the network, the proposed Trace Aloha algorithm outperforms
the basic Aloha algorithm. When n = 200, the throughput
improvement is more than = 5.48

4.16−1 = 31%. Note that in both
algorithms, whenever a node transmits, the data transmission
rate adapts to the MIMO channel matrix. As the total number
of nodes in the network increases, the value of λ

′
D decreases.
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In contrast, when the Trace Aloha algorithm is used, the
network throughput when n = 200 is larger than the network
throughput when n = 10. We elaborate on the above result as
follows. When the value of n is large, given that a unique
node transmits in a time slot, the corresponding data rate
tends to be significantly larger than the value of E[C(H)].
Thus, λD is not a strictly decreasing function of n. We have
also used Jain’s fairness index to evaluate the fairness of the
Trace Aloha algorithm. In Figure 2, for asymmetric networks
in which n = 10 and μ1 �= μ2 = μ3 = .. = μn, we show the
network throughput and the fairness index for the throughput
Trace Aloha algorithm, the fairness Trace Aloha algorithm,
and the basic Aloha algorithm. Regardless of the value of μ1,
the throughput of the Trace Aloha algorithm is larger than the
throughput of the basic Aloha algorithm. When μ1 ≤ 0.5, in
terms of the network throughput, the throughput Trace Aloha
algorithm is superior to the fairness Trace Aloha algorithm.
However, in terms of fairness, the throughput Aloha algorithm
is inferior to the fairness Trace Aloha algorithm. The fairness
Trace Aloha algorithm and the basic Aloha algorithm have
almost identical fairness indexes. Nevertheless, in terms of
the network throughput, the former outperforms the latter.

V. CONCLUSION

In this paper, we have proposed and evaluated the Trace
Aloha protocol for distributed medium access control in
wireless MIMO networks. In a wireless MIMO network, each
node has multiple transmitting antennas and the access point
has multiple receiving antennas. We have focused on the case
in which a node only knows the MIMO channel matrix from
the node to the access point and the total number of nodes
in the network. Given a MIMO channel matrix, a node could
calculate the corresponding singular values. According to the
Trace Aloha protocol, a node transmits data if and only if the
sum of the squared singular values exceeds a predetermined

threshold. In order to optimize the network throughput, we
have proposed an approach to select the threshold. We have
used both analytical results and simulation results to justify
the usage of the proposed protocol. Future work includes
designing novel random multiple access schemes based on
the joint probability density function of the singular values
of random matrices of MIMO channels. Another direction
of future research is minimizing the average packet delay of
random multiple access when packet arrival times are random.
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