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ABSTRACT 

We consider the existence of positive solutions of a certain class of algebraic 
matrix Riccati equations with two parameters, c (0 ~< c < 1) and a (0 < a ~< 1). 
Here c denotes the fraction of scattering per collision, and a is an angular shift. 
Equations of this class are induced via invariant imbedding and the shifted Gauss- 
Legendre quadrature formula from a simple transport model. By establishing the 
existence of positive solutions of such equations, the problem of the convergence of 
some iterative schemes for solving them can be completely solved. 

1. I N T R O D U C T I O N  

Cons ider  the  algebraic matrix Riccati equat ion of  the  form 

B - A S -  SD + SCS =0.  (1 )  
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Here  A, B, C, and D are matrices having the following structure: 

1 1 1 ] 
A N - × N  - =  diag c ( w [ +  or) ' c ( w ~ +  a )  ' ' C ( W N - +  a )  

- Z(w;+ ~ ) '  2(w;+ ~ ) '  ' 2(w~-~ ~) 

:= D A - ia T, [1] 
where i = " ; 

i 

1 1 1 ] 
ON+ xN += diag c ( w f -  a )  ' c ( w ~ -  a )  ' ' c ( w ~ + -  a )  

C+ + + ] 1 C2 CN+ 
i 7 -  , , , 

2 ( w  1 - o,) 2 ( w ; -  o,) 2 ( w ? , + -  o,) 

:= D D - idT; 

B = iiT; 

C ~ da T. 

Equation (1) contains two parameters c and or. Here  c denotes the 
average total number  of  particles emerging from a collision, which is assumed 
to be conservative, (i.e., 0 ~< c ~< 1), and a (0 ~< a ~< 1) is an angular shift. 
The  dimensionally dependent  quantities w i- and w~ + denote the Gauss- 
Legendre  sets (see, e.g., [12]) on [ - a ,  1] and [ or, 1], respectively; and ci- and 
c + are, respectively, their corresponding weights. Without  loss of  generality, 
we shall assume that 

- a < w f < w ~ <  .. .  < w ; - < l  and a < w ~ < w $ <  ... < w • + < l .  

Such an equation is induced via invariant imbedding (see, e.g., [1, 2, 15]) and 
the shifted Gauss-Legendre quadrature formula from a simple transport 
model [5, 6]. 
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For ot = 0, two iterative procedures for finding the minimal positive 
solution (in the componentwise sense) of Equation (1), one corresponding to 
a nonlinear version of the Gauss-Jocobi (GJ) method and the other associated 
with a nonlinear version of the Gauss-Seidel (GS) method, were proposed, 
respectively, by Shimizu and Aoki [13] and by Juang and Lin [9]. While such 
iterative procedures have been proved quite effective in practice (see [10-11] 
and the work cited therein), their convergence has not yet been fully 
investigated. Sufficient conditions for convergence of the GJ and GS methods 
were given in [10] and [9], respectively. However, it was noted (see Table 2 of 
[8]) that those sufficient conditions will fail if c is not far away from 1. And it 
was also observed (see Theorem 1 of [8]) that the existence of a positive 
solution of (1) implies the convergence of both iterations. This observation 
can be easily extended to the case that a ~ 0. Therefore, to completely solve 
the convergence problem one needs to find a direct method for establishing 
the existence of positive solutions of Equation (1) for all 0 ~< c ~< 1 and 
0 ~< ot ~< 1. This is what motivates our work here. 

In this article, we first show that an a priori bound, which is independent 
of c and a, can be obtained by introducing a one-parameter (kl, 0 < k 1 < 1) 
family. Therefore, degree theory is applied to show the existence of positive 
solutions. Some applications and concluding remarks are given in Section 3. 

2. MAIN RESULTS 

To derive our main results, we first write Equation (1) in the component 
form 

- -  + - S q  = c 1 + 1 + . 
W/-q- O/ W ; - -  O~ 2 k=l Wk "q- O~ 2 = W~-- O~ 

(2) 

The structure of (2) suggests that we seek a solution of the form 

+ 

Sij = w[-+ w~ h,lj, (3a) 
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Define 

and 

N -  - c • c k (6a) 
x =  2k=1 hk 

c ~ c; (6b) 
Y= 2 k=l-~Z 

1 N+ + 
k--~l Ck Sa'  1 ~< i ~< N-,  (3b) h i = l +  2 = w ~ - - a  

1 ~ c[ 
lj = l + -~ k=l w---~ otSkj, I <~j <~ N +. (3c) 

Substituting (3a) into'(3b) and (3c), respectively, we obtain 

c N+ c~(w~-+ ~) 
h, = 1 + -~ ~_, w~-+ w~ h'lk' 1 <~ i <~ N - ,  (4a) 

k = l  

c ~ c[(w 7-  or) N +. (4b) 
lj = 1 + 7 k : l  W--"~TW5 hklj' 1 <~ j <~ 

Set h~ = l /h~,  lj = 1/~;  then Equation (4) can be equivalently reduced to 

N + + c c 
h , = 1 - 7  = "~'-k + , l < ~ i < ~ N - ,  (5a) 

9 k:l ( w , +  w;)fk 

c ~ c; c[__E ' ( w ; + ~ ) c ;  N + (Sb) 
~ = 1  2 k=X "~-'k-k q'-7 = (w;+w/.)[tk, l<<.j4 . 



ALGEBRAIC MATRIX RICCATI EQUATIONS 93 

Multiplying (5a) by cc7/2[~i, and summing  the resulting equation over  the 
index i, we have that  

2 i = 1  2 
c[ 

=: x - xy + a. (7a)  

A similar procedure  is applied to (5b) to get 

2EC+--i=I 2 =y--xY+-21k=X'~k ~2i=l(Wi-+w~)h i 

= : y - x y  + b (7b)  

Adding (7a) and (7b), we obtain 

( 1 - x ) ( 1 -  y )  = l - c .  (8) 

REMARK. 

1. For  a = 0, the quantities h i and lj are the descrete version of  
Chandrasekhar 's  well-known H functions [3, 4]. 

2. For  a = 0, (8) reduces to a descrete  version of  some expressions [3, 4] 
concerning the propert ies  of  H functions. 

Since a + b = xy, we see immediately,  for a ~: 1, that if h i and lj are 
positive solutions of  (4), then there must  exist two positive numbers  k I and 
k 2 , w h e r e 0  < k  1,k 2 < l a n d k  1 + k  2 = 1, s u c h t h a t  

a = k~xy and b = k2xy .  ( 9 a , b )  
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It then follows from (7), (8), and (9) that the following holds: 

1 - ( c /2 ) (1  - a )  + k l c  ± ¢ [ 1  - ( c /2 ) (1  - or) + k lc ]  2 - 2k,(1 + a ) c  

x = 2k 1 

= : a  1 ± b 1, (10a) 

1 - ( c / z ) O  + ~ )  + k2c ± v/[1 - ( c / 2 ) 0  + ~ )  + k2~] 2 - 2k2(1 - ~ )~  

y = 2k 2 

= : a  z ± b 2. (10b) 

Since k 1 and k 2 are to be treated as real parameters, necessary conditions for 
(10) to be meaningful are that both [1 - ( c /2 ) (1  - a )  + k l c ]  2 - 2k~c(1 + 
a )  and [1 - ( c /2 ) (1  + a )  + k2c]  2 - 2 k 2 c ( 1  - a )  are nonnegative. How- 
ever, these are so if 0 ~< a ~< 1 and 0 ~< c ~< 1. To see this, we note that, for 
c ~ O, f l ( k l )  := [1 - ( c /2 ) (1  - a )  + k l c ]  2 - 2klc(1  + a )  has a minimum 
(1 + a) (1  - or)(1 - c), which is nonnegative whenever  0 ~< a ~< 1 and 0 ~< 
c ~ < l .  

We denote by F the feasible region {(k, c, or) : 0 < k < 1, 0 ~< c ~< 1, and 
0 ~< ~ < 1} for the solution of  (1). The properties and signs of  1 - x and 
1 - y will be examined in the next lemma. 

LEMMA 1. 

(i) 1 - a 1 + b 1 >~ 0 a n d  1 - a 1 - b 1 <~ 0 f o r  all  ( k l ,  c, or) ~ F. 

(ii) 1 -  a 2 + b 2 >~ 0 a n d  l - a 2 - b 2 <~ O f o r  all ( k2 ,  c, a )  ~ F.  
1 1 T h e n  1 - a  I + b  1 >1-~ (iii) L e t  c be  su f f i c i en t l y  smal l ,  say  0 <~ c <~ ~. 

6 
a n d  l - a 2 + b 2 >t ~ f o r a l l k  l a n d k  2 , 0  < k 1, k 2 < 1, a n d a l l  a ,  O <~ a <~ 1. 

Proof .  Since the computation leading to (i) and (ii) is similar, we shall 
only prove (i). To see (i), it suffices to show that bl  z > / ( 1 -  al )2, or 
equivalently 

[ c ]2 
1 -  ~ ( 1 -  a )  + k l c  - 2 k l c ( 1 +  or) 
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Since the left-hand side of  the inequality is equal to 4(1 - k l ) ( k l ) ( 1  - c), the 
assertion of  L e m m a  2(0 thus follows. 

1 To prove (iii), we see that  if 0 ~< c ~< g, then 

a i -- b 1 

(1 + 

1 - @ / 2 ) ( 1 - a )  + k~c + ¢ [ i - @ / 2 ) ( 1 - ~ )  + k l c ]  2 -  2 k l c ( l + a )  

1 < 2c(1 + a )  < 

for all k 1 and a .  Thus, 1 - a 1 + b I >/ ½, as asserted. Similarly, we have 

a 2 -- b 2 

(1 - a ) c  

1 - @ / 2 ) ( 1 + a )  + k2c + ¢ [ 1  - @ / 2 ) ( 1  + a )  + kzc]  z - 2k2c(i  - a )  

c c 1 

~< 1 -  @ / / 2 ) ( 1 + a )  ~< ~ ~< -7" 

Therefore ,  1 - a 2 + b 2 >~ -~, as asserted. • 

In view of  (8), we see that  if h~ and lj are solutions of  (4), then either 

1 - x > ~ 0  and 1 - y > ~ 0  ( l l a )  

o r  

1 - x  < 0  and 1 - y  < 0 .  ( l l b )  

An a priori  bound,  which is independent  of  k l ,  c, and or, is obtained in 
the following lemma.  

LEMMA 2. Let fh and  [j be  any  pos i t ive  solut ions o f  (5) sat is fy ing ( l l a ) .  
Then  there  is an m > 0 such that  min{h i, lj} >~ m f o r  all i, j ,  all 0 <<. a <~ 1, 
a n d  all 0 <~ c <~ 1. 

Proof.  Using (4), we see clearly that  /~i ~< 1 and /j ~< 1 for all i , j .  
Therefore ,  

N + c ( w : -  
1÷;7 
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and  

C ~ W k C k 

/J ~> 1 - x  + 2 k = 1 W k q -  1" 

Since 1 - y > / 0  and  1 - x > /0 ,  t he re  mus t  exist posit ive cons tan ts  k 1 and  

k e, k I + k e = 1, such that  1 - x = 1 - a 1 + b I a n d  1 - y = 1 - a e + b e, 
w he r e  a I - b  I and  a e - b  e are de f ined  in (10). Now, via L e m m a  l(iii),  

1 f o r 0  ~<c ~< 1 1 - x >/ ~ ~. Consequen t ly ,  

1 ~ w k c k 
>i m i n  1 ,  ]-6 ( w [  + 1) =:  m2 > 0 

k = l  

for all j ,  all 0 ~< c ~< 1, a n d  all 0 < ot ~< 1. O n  the  o the r  hand ,  

N+ + ~ ( 1 -  ,~) C C k 

Y = 2 k ~ l  -~k ~ 2 m  2 

and  so 1 - y > / 1  - c(1 - a ) / 2 m  2. Hence ,  if  0 ~< c ~< m 2 or  a >/ 1 - m 2, 
1 t h e n l - y  >/ 7. However ,  i f l > ~ c > i m  2 a n d 0 ~ <  a~<  1 - m  2 , t h e n  

N + N + c ( w ~ -  a ) c [  m 2 ( w ~ -  1 + m2)c ~ 

= k = l  1 + w  k 

Consequen t ly ,  f~i /> min{½, m l }  : =  ml-  T h e  asser t ion of  the  l e m m a  n o w  
follows on  choos ing  m = m i n { m  1, m2}. 

THEOREM 1. Equation (1) has positive solutions satisfying ( l l a )  for all 
O <~ c <~ 1 and O < a <~ 1. 

Proof. Using  (3a), L e m m a  2, an d  the  fact that  wj + >/ot  and  w f  >1 - a  
for all i, j ,  we conc lude  that  for any  posit ive solut ion Sij of  (2) satisfying 
( l l a ) ,  

c (1  - a 2) m 2 
m e ~ - -  

Sij  ~ 2 2 
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for all i , j ,  all 0 ~< c ~< 1, and all 0 ~< ot ~< 1. Here  m is defined as in Lemma 
2. Let S be a column vector defined as 

= ( a l l , . . .  , S I X  + , $21, $22 ,°°" , S 2 N + , ' "  , S N - I , " "  , aN-N+) T. 

Then (2) can be formulated as 

g = Fc(g), 

where Fc is a continuous and nonlinear map from a N-N+ to R N-N÷ . Choose 

( )( = - -  - -  1 +  ~ > 0 ,  

r 1 +  4 k = l W k + O l  4 = w [ - o t  

and let D = {x ~ R n-n+ : I lx l l~  < r}. Clearly, D is a bounded open set in 
R N-u+, and F c is continuous on D. Consider the homotopy H~ = I - F c, and 
suppose that S - Fc(S) = 0 for g ~ D; then IISIl~ = IIFc(S)ll~ < r / 2  < r. 
Thus S ~ D. Hence, by homotopy invariance (see, e.g., Theorem 13.2.11(ii) 
of [7]), 

d ( H c , 0 ,  D)  = d(Ho,O,  D) = d ( I , 0 ,  D)  = 1. 

The above argument is true for all 0 ~< ot ~< 1. Therefore, we conclude that 
Equation (1) has positive solutions for all 0 ~< c ~< 1 and 0 ~< a ~< 1. • 

REMARK. We are motivated by the work of Stuart [14] to use the 
homotopy argument to show the existence of positive solutions of (1). 

3. APPLICATIONS AND C O N C L U D I N G  REMARKS 

As in the case that a = 0 (i.e., no angular shift), the iterative procedures 
for solving the minimal positive solution of the equation (1) can be classified 
into three types: first, the iteration of Aoki and Shimizu, which is essentially a 
nonlinear version of Ganss-Jocobi (GJ); second, the iteration of Juang and 
Lin, which is essentially a nonlinear version of Ganss-Seidel (GS); third, a 
nonlinear version of SOR, whose effectiveness has yet to be studied theoreti- 
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eally. We now define the GJ and GS methods, respectively, as follows: 

( )( ) t~ k O k j  _ _ _ _  S}? +1) = c ( w i - - t -  o l ) ( w ?  o l )  1 ~ - ~ ( P )  1 c ; S } f f  ) 

w ; + w ?  1+ 7~=, w-~7-~ 1 + 7 = w ; - ~  

(12a) 

S,tj °) = 0 for all i, j ,  (12b) 

and 

( ) = _L2J_ 
w ; + w [  1+ 2k:~ w ; + ~  + 2k:~w[+~ 

× 1 + ~ w~--~_~ + ~ = . w - - - ~ ;  , ( laa)  

~ )  = 0 for all i, j .  (13b) 

Let S = (S?)  be a positive solution of Equation (1), whose existence is 
assured by Theorem 1. 

An easy induction will give 

max(S~f), S~j p)} ~ S q  for all i, j and all p.  

It is also clear that for each i. ". the iterations IS(P)/~ - and f.q(P)I~ ~,~ - J -  " i j  "p = U " - - i ]  "p = 0 ~ * ~  

monotonically increasing. Therefore, the limits of both iterations exist; .they 
(~) (~) (~) (~) will be denoted by Sq and S i, , respectively. Furthermore, (S i , )  = ( S i j ) .  (~) (~) s 

To see this, we first note that ~S? ) and (SI j )  both are positive solutions of 
(p) ( ) (1). Therefore, an reduction will gave Sq <<. Sij for all I, j,  and p. Thus, 

S~;' ~< S~;). Similarly, S~; )/> S~;'. We summarize the above results as follows. 

THEOREM 2. For all 0 ~ c <~ 1 and 0 <<. ~ <~ 1, the iterations {S(P)I ~ U "p = o M ~ . . . . .  
and {S~P)}p=0 converge to the minimal postttve solution Smi n o f  (1). 

The minimal positive solution Smi n o f  (1)/s defined in the following sense: 
i f  S is a positive solution of  (1), then S >~ Smi,, i.e., S,j >1 (Smi,),j f o r  all i , j .  
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THEOREM 3. Equation (1) has a unique positive solution satisfying ( l l a )  
for O <~ c <<, 1 and O <~ ~ <<, 1. 

Proof. Let (hmin) i and (lmi,) j be the minimal positive solution pair of 
(4), whose existence assured by Theorem 2. Let X mi n and Yrnin be defined as 
in (6) except that h i and lj are replaced by (hmin) i and (lmin)j, respectively. 
Consequently, Xmi . ~< x and Ymin ~< Y" On the other hand, for c ~ 1, 1 - 
Xmi n = ( 1  - -  { 7 ) / ( 1  - -  Y m i n )  ~ ( 1  - -  ¢ ) / / ( 1  - -  y )  = 1 - -  X. Hence, Xmi n = X, SO 

that h i = (hmin) i for all i. Similarly, l, = (lmin) j. The uniqueness of the 
positive solution of (1) satisfying ( l l a )  now follows from (3a). • 

We conclude this paper by suggesting the following further related 
matters: 

1. It would be interesting to study the bifurcation diagram of positive 
solutions of Equation (1) as c and a vary from 0 to 1. 

2. It is of interest to investigate the effectiveness of the NSOR. 
3. Additional complexities of the reflections or scattering problem can 

also be considered, such as anisotropic scattering, spatially distributed sources, 
and time dependence. 
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