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Applying Genetic Algorithms for Multiradio
Wireless Mesh Network Planning
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Abstract—Two main issues that are involved in the performance
of multichannel multiradio wireless mesh networks (WMNs) are
channel assignment (CA) and multichannel routing (MCR). The
joint CA and MCR problem has been proven to be NP-hard. In
this paper, we propose to apply genetic algorithms for the CA
problem and tackle MCR using linear-programming techniques.
Because CA and MCR tend to interact with each other, to reflect
such an interplay property, we evaluate the fitness value of a
chromosome (certain CA configuration) in our genetic algorithms
(GAs) by computing the linear objective function. Therefore, we
successfully decouple the two problems and obtain an optimized
CA configuration with a corresponding MCR schedule in poly-
nomial time at the WMN planning stage. We demonstrate the
detailed genetic evolution processes for three WMNs with different
deployment constraints, which serves as a useful guideline on cus-
tomizing WMNs under various requirements. Simulation results
show that the proposed approach effectively increases the network
capacity.

Index Terms—Genetic algorithm (GA), IEEE 802.11, linear
programming (LP), multiradio wireless mesh networks (WMNs),
network planning.

I. INTRODUCTION

DUE TO the physical attenuation and fading effects of ra-
dio signal propagation, the wireless capacity is bounded,

no matter how much bandwidth is allocated [10]. In multi-
hop wireless networks, the capacity is further reduced due
to intraflow and interflow interferences [12]. Under limited
physical capacity, the effective throughput performance that
is produced by the link and routing layers plays an important
role. Wireless mesh networks (WMNs) are a class of multihop
wireless networks that are built on immobile nodes (called
mesh routers) interconnected through wireless links. Among
these mesh routers, some can also access the Internet (called
gateway mesh routers or Internet gateways), as shown in Fig. 1.
WMN is a promising network architecture used for last-mile
broadband Internet access, enterprise wireless backbone, and
community Internet sharing, particularly in places where wired
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infrastructures are not easily deployable. Fig. 1 illustrates an
example WMN that serves as the wireless Internet backbone.1

Emerging research works on WMNs investigate the possibil-
ity of utilizing multiple channels and equipping mesh routers
with multiple radios to increase the network capacity. Multiple
nonoverlapping (orthogonal) physical channels enable parallel
noninterfering transmissions. However, in most practical cases,
the number of equipped radios at each mesh router is less
than the number of available orthogonal channels. To exploit
all available channels, techniques for allocating appropriate
sets of channels to mesh routers while maintaining reasonable
network connectivity are necessary and referred to as channel
assignment (CA) mechanisms. The resulting multichannel net-
work topology after performing some CA mechanism directly
affects the routing strategy, which we refer to as the multichan-
nel routing (MCR) problem. As pointed out in [8], CA and
MCR are two main issues in multichannel multiradio (MCMR)
WMNs. The joint CA and MCR design has been proven
to be an NP-hard problem. Several previous works attempt
to maximize network throughput by devising CA algorithms
(possibly combined with time-divided transmission scheduling)
[5], [15], [19], [23]. However, these proposals mainly focus on
minimizing interfering links that are theoretically defined by
protocol interference model without considering actual traffic
relaying loads/needs distributed over wireless links.

As indicated in [20], WMN capacity is highly related to links
with more relaying traffic. Fortunately, the survey in [2] reveals
that WMN traffic is infrequently changing and can be measured
based on some profiling techniques [7], [17]. In addition, WMN
traffic distribution is typically skewed, because the majority
of data packets are destined for or originated in the Internet
through gateway mesh routers [11]. The aforementioned traffic
characteristics permit several WMN optimization models, such
as [3], [4], [16], [21], and [22], which were proposed to enhance
network performance. Under the constraint of a limited total
number of radio interfaces, the optimization tool that was used
in [3] and [16] is linear programming (LP), whereas [22] is a
tree-based heuristic algorithm. On the other hand, the authors
in [4] and [21] perform genetic algorithms (GAs) to optimize
routing and transmission scheduling. However, [21] does not
impose a constraint on the radio number, and [4] focuses on
single-channel environments without the need to address the
CA problem.

In this paper, we target on IEEE 802.11–based MCMR
WMNs with three different resource constraints (defined in

1We will revisit the WMN architecture and elaborate on the graph notations
in Section II-A.
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Fig. 1. Example of an infrastructure WMN as the wireless backbone for Internet access and the corresponding network architecture in graph representation.

Section II). Because the joint CA and MCR problem is
NP-hard, we do not intend to tackle the whole problem using
one single optimization tool. Instead, we observe that CA in
MCMR WMNs is a discrete optimization problem that can
suitably be modeled by GA.2 In contrast, the MCR problem,
which is involved in dispatching network flows, can be opti-
mized by LP formulations. To reflect the interaction property
of the CA and MCR problems, we define the fitness value of a
chromosome in GA as the value of a linear objective function.
In this manner, we successfully decouple the two problems and
obtain an optimized CA configuration with a corresponding
MCR schedule in polynomial time at the WMN planning stage.
Another contribution that has been made in this paper is that we
demonstrate the detailed genetic evolution processes for three
WMNs with different deployment constraints, which serves
as a useful guideline on customizing WMNs under various
requirements.

The remainder of this paper is organized as follows. In
Section II, we define three types of WMNs that we plan to
optimize, and we also present LP formulations for the MCR
problem. Section III provides preliminary knowledge on GAs,
which prepares the readers for better comprehension of the
following sections. In Sections IV–VI, we detail the encoding,
crossover, and mutation operations contained in GAs for three
types of WMNs, respectively. Section VII reports the simulative
results and performance comparisons. Finally, we conclude this
paper in Section VIII.

II. NETWORK ARCHITECTURE AND

LINEAR FORMULATION

A. Network Architecture

The left side of Fig. 1 illustrates an example operational mesh
network. As defined in [2], the network that was constructed by

2The adoption of GA for addressing the CA problem in this paper is because
GA is a type of heuristic technique that is ideal for handling discrete variables.
Our performance results also demonstrate that GA is quite promising for
solving complex discrete models that are involved in MCMR WMNs. However,
GA may not be the only choice for dealing with such a problem.

(stationary) mesh routers above the buildings is called an in-
frastructure mesh, whereas the network that was formed by
(mobile) mesh clients inside each building is referred to as a
client mesh. In this paper, we target on the infrastructure mesh
network and view the client mesh as an aggregate entity that
contributes to the user traffic demands at each mesh router.
For brevity, when we mention WMN in this paper, we refer
to the infrastructure mesh architecture. Some mesh routers can
access the Internet, called gateway mesh routers (or simply
gateways). One or multiple gateways may exist and are shared
by all mesh routers. Each mesh router is equipped with one or
multiple radio interfaces. Multiple nonoverlapping (orthogonal)
channels are supported in the network. Together, we define the
WMN under study as a MCMR WMN.

We attempt to optimize the network capacity under limited
hardware resource constraints at the WMN planning stage.
Three types of WMNs with different resource constraints are
defined as follows.

• A type-I WMN represents the network where the num-
ber of radio interfaces equipped at each mesh router
is, respectively, upper bounded. This is the case when
WMN deployment occurs in a community where vol-
unteers for hosting the mesh routers already have their
own computing devices to act as the mesh routers. Due
to inherited variances in computational and communi-
cations capabilities that are possessed by mesh routers,
the maximum numbers of radios that are supported by
distinct mesh routers should be different and separately
defined.

• A type-II WMN epitomizes the network where the total
number of radio interfaces that are used by all mesh routers
is upper bounded. This is the case when all mesh routers
have equally powerful capabilities and are possibly made
available by the same service provider to deploy a WMN
with limited radio resource. In these types of WMNs, the
number of radios at each mesh router can be adjusted
according to relaying traffic needs and are expected to
have better capacity performance than type-I WMNs due
to such flexibility.
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• A type-III WMN exhibits the network where the total
number of radio interfaces that are used by all mesh routers
is upper bounded and the gateway location is undeter-
mined. This is the most flexible type among the three. In
the previous two types, we assume wired gateways whose
locations are predetermined. Nevertheless, with the ad-
vent of various cutting-edge communications technologies
such as Worldwide Interoperability for Microwave Access
(WiMAX) and Long-Term Evolution (LTE), wireless gate-
ways that can access the Internet become quite feasible.
Without the hassle of wired cabling, we further relax the
gateway location constraint and attempt to also optimize
gateway placement in our type-III GA computations.

To facilitate mathematical modeling, we represent the exam-
ple network in the form of a graph G = (V,E), where node
set V contains all mesh routers, and edge set E includes all
wireless links. As depicted in Fig. 1, right, edge eij[k] indicates
the wireless link from node vi to node vj over radio channel k.
We allow heterogeneous gateways that possess different In-
ternet access capacities. In this figure, nodes v1 (with gate-
way capacity B1) and v2 (with gateway capacity B2) act
as gateway mesh routers, where B1 > B2. Define �ci as the
channel Boolean vector that describes the radio configuration at
node vi. Supposing that K nonoverlapping (orthogonal) chan-
nels are available in the system, let �ci = (ci[1], ci[2], . . . , ci[K]),
where

ci[k] =

{ 1, if vi has a radio interface
operating on channel k

0, otherwise.
(1)

Taking mesh nodes in Fig. 1 for example, channel vector �c1 =
(1, 1, 0) indicates that node v1 is equipped with two radio inter-
faces that operate on channels 1 and 2, respectively. Similarly,
channel vector �c9 = (0, 1, 0) expresses that node v9 is equipped
with one radio that operates on channel 2.

B. Linear Formulation

The determination of channel vector �ci, where 1 ≤ i ≤ |V |,
for the previously defined three types of WMNs is based on
GA computations and will be elaborated in Sections IV–VI,
respectively. Once channel vector �ci is given, the corresponding
radio configuration is determined, and we can perform our
routing optimization based on the LP model. Our goal is to
maximize the network throughput by wisely distributing all
user traffic demands among available wireless links (with lim-
ited capacities). Several assumptions and definitions that were
made in the LP model are provided as follows.

• All user traffic is destined to or originated in the Internet.
Each mesh router vi is associated with an uplink load
upper bound uu

i , a downlink load upper bound ud
i , an

uplink load lower bound lui , and a downlink load lower
bound ldi . These parameters can be set based on traffic
profiling techniques [7], [17] or, perhaps, user-paid prices.

• Define subset V g ⊆ V of mesh routers as Internet gate-
ways that do not generate user traffic and subset V h ⊆ V

of mesh routers as user hosts with uplink and downlink
traffic demands, where V = V h ∪ V g .

• Define data rate rij[k] as the capacity of link eij[k], which
is obtainable using a channel-probing measurement such
as the approach presented in [1]. Due to link asymmetry, it
is not necessary that rij[k] = rji[k].

• We allow both symmetric and asymmetric gateways. For
each gateway router vm ∈ V g , let Bm denote the gateway
capacity if vm is symmetric (with capacity shared by both
uplink and downlink flows). For an asymmetric gateway
router vm ∈ V g , use Bu

m and Bd
m to represent the uplink

and downlink gateway capacities, respectively.
• Define �cij as the connectivity vector that indicates

the connection status between nodes vi and vj , where
�cij = (cij[1], cij[2], . . . , cij[K]), and cij[k] = ci[k] × cj[k].
For some channel k, the two nodes can only be connected
if both ci[k] and cj[k] are true (i.e., both nodes have radios
that operate on channel k).

• We adopt the protocol interference model and define
set IEk

ij as the set of links in the interfering range of
edge eij[k], where IEk

ij = {epq[k]| link epq[k] interferes
with link eij[k]}. In this paper, we define the interfering
range to include all links within two hops of edge eij[k].

Based on the aforementioned parameters, we now describe
the variables that will be computed in our LP model as follows.

• Define λu
i as the actual uplink traffic load that was deliv-

ered from node vi and, similarly, λd
i as the actual downlink

traffic load that is destined to node vi.
• Define xu

ij[s,k] as the actual uplink traffic that was gener-
ated by source node vs over wireless link eij[k] and, sim-
ilarly, xd

ij[d,k] as the downlink traffic that was forwarded
to destination node vd over wireless link eij[k]. Moreover,
we define xij[0,k] as the aggregate traffic load on wireless
link eij[k], where xij[0,k] =

∑
vs∈V h(xu

ij[s,k] × cij[k]) +∑
vd∈V h(xd

ij[d,k] × cij[k]).
• For each gateway router vm ∈ V g , we define the aggregate

uplink/downlink traffic through vm to be gout
m /gin

m , where
gout

m =
∑

vs∈V h gout
s,m, and gin

m =
∑

vd∈V h gin
d,m.

Our ultimate goal is to maximize the mesh network capacity
such that the traffic that flows in/out of the set of gateways is
the largest, without violating the traffic requirement (upper and
lower bounds) of each mesh node. Consequently, the objective
function f can be written as

f = Maximize
∑

vm∈V g

(gout
m + gin

m) (2)

subject to the constraints that were formulated as follows.

1) General Constraints

λu
i ≥ lui , λu

i ≤ uu
i , λd

i ≥ ldi , λd
i ≤ ud

i

xu
ij[s,k] ≥ 0, xd

ij[d,k] ≥ 0∑
λu

i =
∑

vm∈V g

gout
m ,

∑
λd

i =
∑

vm∈V g

gin
m.
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2) Gateway Constraint⎧⎨
⎩

gout
m + gin

m ≤ Bm, if uplink and downlink share
the bandwidth

gout
m ≤ Bu

m, gin
m ≤ Bd

m, otherwise.

3) Link Contention Constraint

∑
epq[k]∈IEk

ij

(xpq[0,k]/rpq[k]) ≤ 1. (3)

Table I summarizes the notations that were used in LP
constraints and flow conservation equations. Note that we
maximize the network throughput by enabling simultaneous
transmission/receiving over noninterfering channels. The re-
sulting traffic distributions that were computed by our LP model
may split traffic loads over multiple paths (through multiple
gateways) for a single flow. Such multipath forwarding with
multigateway association behavior can result in better balanced
capacity share and be realized by exercising certain traffic
engineering mechanisms, as indicated in [14].

III. GENETIC ALGORITHM PRELIMINARIES

GA is a class of computational mechanism that was inspired
by natural evolution, a biological process in which stronger
(better) individuals are likely to survive in a competitive envi-
ronment [6], [9]. GA encodes a potential solution to a specific
problem on a chromosome-like data structure.3 A chromosome
is represented by a string of values (genes) to indicate a set
of discrete variables (parameters). A fitness value that is as-
sociated with each chromosome is used to reflect the degree
of goodness for solving the problem. In a broader usage, GA
is a population-based model that exercises selection, crossover
(recombination), and mutation operators to generate new sam-
ple points in a search space. During each cycle of genetic
evolution, chromosomes with higher fitness values have better
chance of surviving in the subsequent generations, emulating
the survival-of-the-fittest phenomenon in nature.4 The basic
framework and general applications of GA are outlined in [13]
and [18].

In this paper, we formulate a chromosome as one possi-
ble radio and channel configuration in a MCMR WMN. The

3Suppose that substring str = (1, 3) denotes the radio and channel config-
uration on some mesh node v that indicates two radio interfaces that bind to
channels 1 and 3, respectively. Following the same rule on generating substrings
for all mesh nodes in a WMN, the GA encoding process basically combines
all substrings to form a full string, called a chromosome, that represents the
complete radio and channel configuration for the target WMN. More detailed
examples can be found in Sections IV-A–VI-A.

4In each evolution cycle, the selection routine acts as the process of dupli-
cating chromosomes with quantities proportional to their fitness values. For
example, in the roulette wheel selection procedure in Fig. 2, chromosome q1
is duplicated three times due to its larger occupancy ratio (better fitness value).
As a result, P (t) contains three copies of q1 (biologically better chromosome).
Based on P (t), the crossover operation recombines certain chromosomes
(determined by probability pc) to produce a new offspring generation. Finally,
the mutation operation performs on individual genes (with a small probability
pm) to imitate the infrequent yet inevitable event of biological genes mutating
(genetic changes) in living creatures.

TABLE I
SUMMARY OF NOTATIONS THAT WERE USED THROUGHOUT THIS PAPER

relationship of essential building blocks, including selection,
crossover (recombination), and mutation operators, in a cycle
of genetic evolution is illustrated in Fig. 2. We define the
maximum number of evolution cycles (computational runs)
as T . At arbitrary time t, 0 ≤ t < T , Q chromosomes (possible
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Fig. 2. Genetic evolutions that we adopt in finding the best radio and channel configuration.

solutions) are contained in the population pool P (t). For any
population pool, we denote the ith chromosome as qi associated
with a fitness value fi, and the (string) length of each chromo-
some is represented by L. After generating the initial population
P (0) with Q randomly chosen chromosomes (Q = 6 in Fig. 2),
we perform the roulette wheel selection procedure. The roulette
wheel procedure is a proportionate-selection mechanism that
emulates the behavior of shooting darts on a roulette wheel
whose space is divided in proportion to the fitness values of
chromosomes, as depicted in Fig. 2. Fitness is defined as the
value of our LP objective function, given a certain radio and
channel configuration specified by a chromosome. Randomly
generate a number di from the range (0,

∑Q
j=1 fj) Q times.

Apparently, the chromosomes with larger occupancy ratios will
more frequently be selected (with higher probabilities). For
all three types of WMNs under investigation, we adopt the
same roulette wheel procedure as the selection mechanism.
Detailed operations of the roulette wheel selection procedure
are provided in Algorithm 1.

Algorithm 1: Roulette wheel selection procedure at time t

1: sum = 0;
2: for (i = 1; i ≤ Q; i + +) do
3: sum = sum + fi;
4: Randomly generate Q numbers d1, . . . , dQ from the range

(0, sum)
5: for (i = 1; i ≤ Q; i + +) do
6: index = 0;
7: for (j = 1; j ≤ Q; j + +) do
8: index = index + fj ;
9: if (index ≥ di) then
10: Chromosome qj is selected into population

P (t);
11: break;

After performing the roulette wheel selection procedure,
the crossover operation5 comes into play. A probability pc

is defined for selecting a subset of chromosomes to generate
offspring chromosomes in the crossover operation, where pc

is typically set between 0.6 and 1.0 [18]. In the mutation
operation,6 a small probability pm (typically less than 0.1) is
used to control the likelihood of altering an individual gene
after completing the crossover operation. For the three types of
WMNs, the required crossover and mutation processes are dis-
tinct, which will be, respectively, elaborated in Sections IV–VI.
In addition, due to different resource constraints, the encoding
scheme also varies in the three types of WMNs. A summary of
notations that were used in our GA computations is provided
in Table I.

Note that a number of variations with structural modifica-
tions to GA building blocks in the evolution cycle are possible.
Depending on the desired performance and acceptable compu-
tation time, researchers may design their own GA-based evolu-
tion mechanisms. In this paper, our goal of GA computations
is to produce an optimized radio and channel configuration
for the CA problem. Given Q chromosomes, T maximum
allowable evolution runs, and t(LP ) consumed time in LP
computations for calculating the fitness value of each chromo-
some, our GA computational complexity can be approximated
by Q × T × t(LP ). With the easy availability of current low-
cost yet fast-speed small computers, such computation time is
quite acceptable at the WMN planning stage. After the WMN
has been deployed, the adjustment of radio configuration is
not desirable, but adaptations of routing traffic distributions are
possible by executing LP recomputations from time to time.

5The crossover operation is utilized to generate offspring chromosomes (new
sample points) by performing certain genetic shuffling on parent chromosomes.
These offspring chromosomes share genetic similarities with their parents but
form a different generation.

6The mutation operation attempts to bring solutions out of local optimal
points of the search space. Similar to the biological gene alteration process,
the GA mutation operator manipulates each gene for all chromosomes in P (t).
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Fig. 3. Encoding process, random generation of a feasible chromosome, and the corresponding radio and channel configuration in a type-I WMN, with K = 3.

IV. WIRELESS MESH NETWORKS WITH THE PER-NODE

RADIO NUMBER CONSTRAINT (TYPE I)

In a type-I WMN, the maximum number of radio interfaces
that can be allowed at each mesh router is restricted. This case
generally occurs when WMN deployment takes place in a com-
munity where volunteers for hosting the mesh routers already
have their own computing devices with varying computational
and communications capabilities. Recall that K nonoverlap-
ping (orthogonal) channels can be utilized in the system. For
any mesh node vi, vi ∈ V , we define parameter ni to denote the
maximum number of radio interfaces allowed at node vi, where
1 ≤ ni ≤ K. This ni parameter is referred to as the per-node
radio number constraint, and the values of n1, n2, . . . , n|V | are
given as inputs in our type-I GA computations.

A. Integer-Encoding Process

Fig. 3 shows a sample type-I WMN that comprises nine mesh
nodes (v1, v2, . . . , v9) with respective radio number constraints
(n1 = 2, n2 = 2, n3 = 1, . . . , n9 = 2). For any mesh node vi,
vi ∈ V , define substring stri as the encoding of some feasible
radio and channel configuration at node vi. Substring stri

contains ni digits with nonnegative integer values in the range
[0,K]. Each digit with value k represents a radio interface that
operates on channel k, where k = 0, 1, 2, . . . ,K. When k takes
on the value 0, it implies that the radio interface is not used. For
example, when str1 = (1, 3), as shown in Fig. 3, it indicates
that mesh node v1 is equipped with two radio interfaces that
operate on channels 1 and 3, respectively. To achieve feasible
radio and channel encodings for any type-I mesh router vi, the
following three general rules need to be followed.

• It is not necessary to use up all ni radios, but at least
one radio that binds to some valid channel (with nonzero
value) should exist. In other words, substring stri =
(0, 0), with both digits set to 0, is an infeasible encoding
for mesh node vi.

• To avoid cochannel interference, all nonzero digits should
take on different values. In particular, a feasible encoding
will not bind any two radios equipped at mesh node vi

to the same channel. That is, encoding substrings stri =
(1, 1), stri = (2, 2), and stri = (3, 3) are all infeasible for
node vi.

• Because the order of arranging radios is irrelevant, we
view substrings (1, 3) and (3, 1) as the same encoding.
To avoid duplicating options, we only include substrings
with digit values arranged in incremental order. As a result,
substring str1 = (1, 3) is included in the pool of feasible
encodings for node v1, whereas str1 = (3, 1) is regarded
as infeasible and excluded from the pool.

Consequently, for any mesh node vi, the total number of
feasible radio and channel configurations, based on the afore-
mentioned rules, can be derived by computing CK

1 + · · · +
CK

ni
=

∑ni

j=1 CK
j . Taking node v1 in Fig. 3 for example, there

are
∑n1

j=1 CK
j =

∑2
j=1 C3

j = 6 feasible combinations for sub-
string str1 encodings, including (0, 1), (0, 2), (0, 3), (1, 2),
(1, 3), and (2, 3). Once all feasible substring encodings are
available, we randomly combine these substrings to form a
chromosome with length L =

∑|V |
i=1 ni, as shown on the lower

left of Fig. 3.

B. Initial Population Formation

For each constructed chromosome q, the type-I GA obtains
the fitness value f based on LP calculations. If f is solvable
with a positive returned value, then the chromosome q is
selected into the initial population pool P (0). Otherwise, the
current chromosome q is dropped, and another chromosome is
constructed for selection consideration. This process continues
until either Q chromosomes have successfully been selected or
the maximum M chromosomes have been tested, where M ≥
Q. When the process terminates, if the size of P (0) is zero
(none of the constructed M chromosomes have positive fitness
values), then the type-I GA declares No_Solution. Otherwise,
if the size of P (0) is nonzero but smaller than Q (less than Q
feasible chromosomes have been selected), then the type-I GA
simply keeps duplicating the latest discovered feasible chromo-
some until P (0) contains exactly Q chromosomes. The formed
initial population P (0) then acts as the very first generation that
kicks off the subsequent evolving steps, as shown in Fig. 2.

C. Crossover and Mutation Operations

Two fundamental operations that are involved in the evo-
lution process are crossover and mutation. The purpose of
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Fig. 4. Type-I crossover operation on a pair of parent chromosomes and type-I mutation operation on a given chromosome (with the shaded parts being the
modified genes).

crossover operation is to generate offspring chromosomes (new
sample points) by performing certain genetic recombination
on parent chromosomes. These offspring chromosomes share
genetic similarities with their parents but form a different gen-
eration. In our GA model, we define a probability pc and select
�(Q · pc)/2� pairs of parent chromosomes from the current
population P (t) that is output from the roulette wheel selection
procedure. All chromosomes in P (t) are randomly selected
with equal probability and cannot repeatedly be selected. For
any selected pair of parent chromosomes, we adopt the two-
point crossover operation, as illustrated on the left side of Fig. 4.
To avoid scrambling the different radio number constraints that
are imposed on type-I mesh routers, we limit the crossover
points to occur only at the joints of any two adjacent substrings
in a chromosome, denoted as p̂1, p̂2, . . . , p̂|V |−1. The two-
point crossover operator randomly generates two distinct cutoff
points p̂a and p̂b, where 1 ≤ a < b ≤ |V | − 1 and switches the
digits before p̂a (here, a = 2) and after p̂b (here, b = 5) of
the parent chromosomes to form offspring chromosomes. The
created offspring chromosomes then replace their parents in
population P (t). Chromosomes that were not selected for the
crossover operation remain in P (t).

After the crossover operation, GA enters the mutation phase.
The purpose of performing mutation is to avoid solutions being
stuck in local optimal points of the search space. In a type-I
WMN, we view each substring in a chromosome as a single
gene. Similar to the biological gene alteration process, the
GA mutation operator examines each substring (gene) for all
chromosomes in P (t). Define a small probability pm as the
likelihood of a gene to mutate. If a substring (gene) is deter-
mined to mutate, then it will be replaced with a new substring
that was randomly chosen among all other feasible encodings.
As illustrated in Fig. 4, right, substring str1 = (1, 3) mutates to
a different but feasible substring (gene) str1 = (2, 3), which
is randomly selected from the table of feasible encodings at
node v1, as summarized in Fig. 3, upper left. When the mutation
operation completes, a new population P (t + 1) is now formed.

Before the newly generated population further evolves, GA
updates the fitness values of all Q chromosomes (possible
solutions) contained in P (t + 1). For any chromosome qi in
P (t + 1), GA computes the associated fitness value fi based
on the LP model. In case LP returns No_Solution for qi, GA
simply sets fi = 0 (indicating the infeasibility of qi). Chromo-
somes with fitness values set to 0 will be filtered out by the

roulette wheel selection procedure in the next iteration. When
the fitness updating completes, population P (t + 1) proceeds,
and the evolving process starts over again. Algorithm 2 pro-
vides the detailed pseudocode on our crossover and mutation
operations for type-I WMN planning.

Algorithm 2: Type-I crossover and mutation operations for
a given population P (t).

1: // Crossover operation
2: Define crossover points p̂1, p̂2, . . . , p̂|V |−1 at the joints of

any two adjacent substrings in a chromosome;
3: Randomly select �(Q · pc)/2� pairs of parent chromo-

somes from P (t);
4: for (each pair of parent chromosomes) do
5: Randomly generate two crossover points p̂a and p̂b,

with 1 ≤ a < b ≤ |V | − 1;
6: Switch the digits before p̂a and after p̂b of the parent

chromosomes to form two offspring chromosomes;
7: Replace the parent chromosomes with their offspring

chromosomes in P (t);
8: // Mutation operation
9: for (i = 1; i ≤ Q; i + +) do
10: for (each substring in qi) do
11: Randomly generate a number x from (0, 1);
12: if (x ≤ pm) then
13: Replace the current substring with a new

substring that was randomly chosen from
all other feasible encodings;

14: // Now, a new population P (t + 1) is formed and requires
postprocessing before entering the next iteration

15: for (i = 1; i ≤ Q; i + +) do
16: Compute the fitness value fi for chromosome qi

in P (t + 1) based on the LP model;
17: if (LP returns No_Solution) then
18: fi = 0;

Ultimately, the obtained best chromosome (with the highest
fitness value) represents an optimized radio and channel config-
uration, and the mapping of a chromosome onto the correspond-
ing network setting can be found on the right side of Fig. 3. For
the obtained best chromosome in a type-I WMN, we can easily
transform the chromosome into corresponding channel vectors
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Fig. 5. Encoding process, random generation of a feasible chromosome, and the corresponding radio and channel configuration in a type-II WMN, with K = 3.

that were used in our LP model for all mesh routers. Taking
node v1 in Fig. 3 for example, str1 = (1, 3) translates into
channel vector �c1 = (1, 0, 1), indicating two radios that operate
on channels 1 and 3, respectively. In this manner, the obtained
best chromosome can be turned into optimized channel vectors
(�c1,�c2, . . . ,�c|V |) for all type-I mesh routers. These channel
vectors are then fed back into our LP model to compute a high-
throughput MCR schedule.

V. WIRELESS MESH NETWORKS WITH THE TOTAL RADIO

NUMBER CONSTRAINT (TYPE II)

In a type-II WMN, we relax the per-node radio number
constraint but impose an upper bound on the sum of radio
interfaces that were used by all mesh routers, referred to as
the total radio number constraint. This is generally the case
when all mesh routers have equally powerful capabilities and
are possibly provided by the same service organization for
WMN deployment with restricted radio resource. Recall that
K nonoverlapping (orthogonal) channels are available in the
system. We define parameter N to denote the maximum num-
ber of total radio interfaces that are allowed by the network
provider, where |V | ≤ N ≤ K · |V |. Without the per-node ra-
dio number restriction, the number of radios at the respective
mesh router can be adjusted according to their relaying traffic
demands. Consequently, type-II WMNs are a more flexible
type of deployment model and expected to produce better
capacity performance than type-I WMNs. Parameter N is a
given argument in our type-II GA computations.

A. Binary-Encoding Process

Fig. 5 shows a sample type-II WMN that contains nine mesh
nodes (v1, v2, . . . , v9). Define substring stri as the encoding
of some feasible radio and channel configuration at node vi.
Because the per-node radio number constraint ni no longer
exists, we let the encoding be represented by a bit string with
fixed length K. In particular, substring stri is a string of values
in binary form that contains K b. For example, bit string str2 =
(1, 1, 0) is used to indicate that mesh node v2 is equipped with
two radios that operate on channels 1 and 2, respectively. To
achieve feasible substring encodings for any type-II mesh router
vi, the following general rule needs to be followed.

• At least one radio that binds to some valid channel should
exist for a mesh node. This condition implies that at least
one among K b in a substring should be set to true (value

of 1). In other words, stri = (0, 0, 0), with all three digits
(bits) set to 0, is an infeasible encoding for node vi.

Consequently, for any mesh node vi, the total number of fea-
sible radio and channel encodings can be derived by computing
2K − 1 (excluding the one with K 0s). Because all substrings
have the same length of K b, for any mesh node in Fig. 5, there
are 2K − 1 = 23 − 1 = 7 feasible combinations for substring
encodings, including (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0,
1), (1, 1, 0), and (1, 1, 1). We may notice that the substring here
directly translates to the channel vector that was used in our LP
model. Once all feasible substring encodings are available, we
randomly combine these substrings to form a chromosome with
length L = K · |V |, as shown on the lower left side of Fig. 5.

B. Initial Population Formation

Because the total radios used by all type-II mesh routers
cannot exceed the given parameter N , a randomly constructed
chromosome is not necessarily a feasible radio configuration.
Therefore, for any constructed chromosome q, the type-II GA
first checks if the total number of 1s contained in q exceeds N .
If yes, chromosome q is discarded, and another chromosome
is constructed for consideration. Otherwise, the type-II GA
obtains the fitness value f based on LP calculations. If f is
solvable with a positive returned value, then the chromosome q
is selected into the initial population pool P (0). Otherwise, the
current chromosome q is dropped, and another chromosome is
constructed for selection consideration. This process continues
until either Q chromosomes have successfully been selected
or the maximum M chromosomes have been tested, where
M ≥ Q. When the process terminates, if the size of P (0) is
zero (none of the constructed M chromosomes are feasible),
then the type-II GA declares No_Solution. Otherwise, if the
size of P (0) is nonzero but smaller than Q (less than Q feasible
chromosomes have been selected), then the type-II GA simply
keeps duplicating the latest discovered feasible chromosome
until P (0) contains exactly Q chromosomes. The formed initial
population P (0) then acts as the very first generation that kicks
off the subsequent evolving steps, as shown in Fig. 2.

C. Crossover and Mutation Operations

Crossover (recombination) and mutation are two key op-
erations that are involved in the population-evolving process.
At the crossover stage, the purpose is to generate offspring
chromosomes (new sample points) by performing certain
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Fig. 6. Type-II crossover operation on a pair of parent chromosomes and type-II mutation operation on a given chromosome (with the shaded parts being the
modified genes).

genetic shuffling on parent chromosomes. These offspring chro-
mosomes share genetic similarities with their parents but form a
different generation. In our GA model, we define a probability
pc and select �(Q · pc)/2� pairs of parent chromosomes from
the current population P (t) that is output from the roulette
wheel selection procedure. All chromosomes in P (t) are ran-
domly selected with equal probability and cannot repeatedly
be selected. For any selected pair of parent chromosomes,
we adopt the two-point crossover operation, as illustrated on
the upper part of Fig. 6. Define crossover points to occur
between any two adjacent bits in a chromosome, denoted as
p̂1, p̂2, . . . , p̂L−1, where L = K · |V |. The two-point crossover
operator randomly generates two distinct cutoff points p̂a and
p̂b, where 1 ≤ a < b ≤ L − 1 and switches the bits before
p̂a (here, a = 5) and after p̂b (here, b = 19) of the parent
chromosomes to form offspring chromosomes. The created
offspring chromosomes then replace their parents in population
P (t). Chromosomes that were not selected for the crossover
operation remain in P (t).

Next, the mutation operation is individually applied to each
chromosome in P (t). The mutation exercise attempts to bring
solutions out of local optimal points of the search space. In a
type-II WMN, we view each bit in a chromosome as a single
gene with binary values (0 or 1). Define a small probability pm

as the likelihood of a gene to mutate. The type-II GA mutation
operator randomly alters each bit (gene) with a low probability
pm for all chromosomes in P (t). If a bit (gene) is determined
to mutate, it flips between values of 1 and 0. As illustrated on
the lower part of Fig. 6, the first bit of str4 and the second
bit of str6 mutate to 1 from 0. When the mutation operation
completes, a new population P (t + 1) is now formed.

For any chromosome qi in P (t + 1), the type-II GA exam-
ines if the total number of 1s contained in qi exceeds parameter
N . If yes, GA sets the associated fitness value fi = 0. Other-
wise, GA computes fitness value fi based on the LP model. In
case LP returns No_Solution for qi, GA sets fi = 0. Chromo-
somes with fitness values set to 0 will be filtered out by the
roulette wheel selection procedure in the next iteration. When
the fitness updating completes, population P (t + 1) proceeds,
and the evolving process starts over again. Algorithm 3 provides
the detailed pseudocode on our type-II crossover and mutation
operations.

Algorithm 3: Type-II crossover and mutation operations for
a given population P (t).

1: // Crossover operation
2: Define crossover points p̂1, p̂2, . . . , p̂L−1 between any two

adjacent bits in a chromosome;
3: Randomly select �(Q · pc)/2� pairs of parent chromo-

somes from P (t);
4: for (each pair of parent chromosomes) do
5: Randomly generate two crossover points p̂a and p̂b,

with 1 ≤ a < b ≤ L − 1;
6: Switch the digits (bits) before p̂a and after p̂b of

the parent chromosomes to form two offspring
chromosomes;

7: Replace the parent chromosomes with their offspring
chromosomes in P (t);

8: // Mutation operation
9: for (i = 1; i ≤ Q; i + +) do
10: for (j = 1; j ≤ L; j + +) do
11: Randomly generate a number x from (0, 1);
12: if (x ≤ pm) then
13: if (bit bj in chromosome qi == 0) then
14: bj = 1;
15: else
16: bj = 0;
17: // Now, a new population P (t + 1) is formed and requires

postprocessing before entering the next iteration
18: for (i = 1; i ≤ Q; i + +) do
19: if (# of 1s in chromosome qi > N ) then
20: Let the fitness value fi for chromosome qi in

P (t + 1) = 0;
21: else
22: Compute the fitness value fi for chromosome qi

in P (t + 1) based on the LP model;
23: if (LP returns No_Solution) then
24: fi = 0;

The obtained best chromosome (with the highest fitness
value) represents an optimized radio and channel configuration,
and the mapping of a chromosome onto corresponding network
setting can be found on the right side of Fig. 5. In a type-II
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Fig. 7. Encoding process, random generation of a feasible chromosome, and the corresponding radio and channel configuration in a type-III WMN, with K = 3.

WMN, a chromosome directly translates into corresponding
channel vectors used in our LP model. Consequently, the ob-
tained best chromosome represents optimized channel vectors
for respective type-II mesh routers. The channel vectors are
then fed back into our LP model for computing high-throughput
routing traffic distributions.

VI. WIRELESS MESH NETWORKS WITH THE TOTAL

RADIO CONSTRAINT AND UNKNOWN

GATEWAY LOCATION (TYPE III)

A type-III WMN inherits the total radio number constraint
from its type-II counterpart while further relaxing the prede-
fined gateway location constraint. This is the most flexible but
complex deployment model among the three types of WMNs.
Except for configuring radio and channel settings for all mesh
routers, we attempt to simultaneously optimize the gateway
placement and demonstrate that GA can perform complex
optimization that is involved in multiple discrete variables. By
placing gateways at appropriate locations, a type-III WMN has
a better chance of balancing network traffic and, thus, produce
higher system throughput than the previous two types. Recall-
ing the set of gateway nodes V g in our LP model, we denote the
number of available gateways as |V g| (cardinality of set V g).
Parameter N (total radio number constraint) from the type-II
deployment model and the number of supported gateways |V g|
are both given arguments in our type-III GA computations.

A. Binary-Encoding Process

Fig. 7 depicts a type-III WMN with nine mesh routers
(v1, v2, . . . , v9) and two supported gateways with undeter-
mined locations. The encoding process for radio and channel
configuration is the same as the process that was adopted
in a type-II WMN (see Section V-A). In addition, in a
type-III WMN, we define gateway substrings, denoted as
gstr1, gstr2, . . . , gstr|V g |, to indicate the IDs of mesh routers
that act as the gateways in binary form. With a total of |V | mesh
routers in the network, we encode a gateway substring using y
b, where y = �log2|V |�. Because all mesh routers are gateway
candidates, each gateway substring can take on |V | different
values. To indicate a mesh node vi that acts as a gateway,
the type-III GA sets the (decimal) value of the corresponding
gateway substring to j, where j = i mod 2y . Although a total
of 2y binary combinations are possible for a gateway substring,

some values are considered invalid when we do not have that
many mesh routers (i.e., |V | < 2y) for placing gateways. In
particular, a feasible gateway substring encoding should satisfy
the following rule.

• The (decimal) value j of a gateway substring must indicate
a location with a valid mesh router ID. In other words, the
inequality 0 ≤ (j − 1) mod 2y ≤ |V | − 1 should hold for
any valid gateway substring with value j.

For example, in Fig. 7, because there are nine mesh routers,
feasible gateway substring encodings include (0, 0, 0, 1), (0,
0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0,
1, 1, 1), (1, 0, 0, 0), and (1, 0, 0, 1), whereas other substring
encodings, such as (1, 1, 0, 0) and (1, 1, 1, 1), are infeasi-
ble encodings (invalid gateway substrings). The type-III GA
appends the gateway substrings at the end of a chromosome.
Once all feasible channel and gateway substring encodings
are available, we randomly combine the substrings to form a
chromosome with length L = K · |V | + y · |V g|. As shown on
the lower left of Fig. 7, the randomly generated chromosome
contains gstr1 = (0, 0, 0, 1) and gstr2 = (0, 0, 1, 0), indicating
that gateways need to be placed at mesh routers v1 and v2.

B. Initial Population Formation

For any constructed chromosome q, the type-III GA exam-
ines if either of the following conditions occurs.

• The total number of 1s that were contained in q, excluding
gateway substrings, is more than N (violating the total
radio number constraint).

• There exist duplicate gateway substrings that point to the
same location (mesh router ID) among gstr1, gstr2, . . . ,
gstr|V g | in chromosome q.

If yes, the current chromosome q is discarded, and another
chromosome is constructed for consideration. Otherwise, GA
obtains the fitness value f based on LP calculations. In case f
is solvable with a positive returned value, the chromosome q
is selected into the initial population pool P (0). Otherwise, the
current chromosome q is dropped, and another chromosome is
constructed for selection consideration. This process continues
until either Q chromosomes have successfully been selected
or the maximum M chromosomes have been tested, where
M ≥ Q. When the process terminates, if the size of P (0) is
zero (none of the constructed M chromosomes are feasible),
then the type-III GA declares No_Solution. Otherwise, if the
size of P (0) is nonzero but smaller than Q (less than Q
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Fig. 8. Type-III crossover operation on a pair of parent chromosomes and type-III mutation operation on a given chromosome (with the shaded parts being the
modified genes).

feasible chromosomes have been selected), then the type-III GA
keeps duplicating the latest discovered feasible chromosome
until P (0) contains exactly Q chromosomes. The formed initial
population P (0) then acts as the very first generation that kicks
off the subsequent evolving steps, as shown in Fig. 2.

C. Crossover and Mutation Operations

At the crossover phase, certain genetic recombination on
parent chromosomes is performed to generate offspring chro-
mosomes. These offspring chromosomes share genetic similar-
ities with their parents but form a different generation. In our
GA model, we define a probability pc and select �(Q · pc)/2�
pairs of parent chromosomes from the current population P (t).
All chromosomes in P (t) are randomly selected with equal
probability and cannot repeatedly be selected. For any se-
lected pair of parent chromosomes, we adopt the two-point
crossover operation, as illustrated on the upper point of Fig. 8.
Define crossover points to occur between any two adjacent
bits in a chromosome, denoted as p̂1, p̂2, . . . , p̂L−1, where L =
K · |V | + y · |V g|. The two-point crossover operator randomly
generates two distinct cutoff points p̂a and p̂b, where 1 ≤ a <
b ≤ L − 1 and switches the bits before p̂a (here, a = 11) and
after p̂b (here, b = 22) of the parent chromosomes to form
offspring chromosomes. The created offspring chromosomes
then replace their parents in population P (t). Chromosomes
that were not selected for the crossover operation remain in
P (t).

Then, the type-II GA mutation operator randomly alters each
bit (gene) with a low probability pm for all chromosomes in
P (t). If a bit (gene) is determined to mutate, it flips between
values of 1 and 0. As illustrated on the lower part of Fig. 8,
the first bit of str3 and the second bit of str7 mutate to 1 from
0. When the mutation operation completes, a new population
P (t + 1) is now formed.

For any chromosome qi in P (t + 1), the type-III GA inspects
if either of the following situations occurs.

• The total number of 1s that are contained in q′i surpasses
parameter N , where q′i = qi, excluding gateway substrings
gstr1, gstr2, . . . , gstr|V g |.

• There exist one or more gateway substrings, among
gstr1, gstr2, . . . , gstr|V g |, that point to infeasible loca-

tions (invalid mesh router IDs) as a result of performing
crossover and mutation operations.

If yes, GA sets the associated fitness value fi = 0. Otherwise,
GA computes the fitness value fi based on the LP model. In
case LP returns No_Solution for qi, GA sets fi = 0. Chromo-
somes with fitness values set to 0 will be filtered out by the
roulette wheel selection procedure in the next iteration. When
the fitness updating completes, population P (t + 1) proceeds,
and the evolving process starts over again. Algorithm 4 provides
the detailed pseudocode on our type-III crossover and mutation
operations.

Algorithm 4: Type-III crossover and mutation operations for
a given population P (t).

1: // Crossover operation
2: Define crossover points p̂1, p̂2, . . . , p̂L−1 between any two

adjacent bits in a chromosome;
3: Randomly select �(Q · pc)/2� pairs of parent chromo-

somes from P (t);
4: for (each pair of parent chromosomes) do
5: Randomly generate two crossover points p̂a and p̂b,

with 1 ≤ a < b ≤ L − 1;
6: Switch the digits (bits) before p̂a and after p̂b of

the parent chromosomes to form two offspring
chromosomes;

7: Replace the parent chromosomes with their offspring
chromosomes in P (t);

8: // Mutation operation
9: for (i = 1; i ≤ Q; i + +) do
10: for (j = 1; j ≤ L; j + +) do
11: Randomly generate a number x from (0, 1);
12: if (x ≤ pm) then
13: if (bit bj in chromosome qi == 0) then
14: bj = 1;
15: else
16: bj = 0;
17: // Now, a new population P (t + 1) is formed and requires

postprocessing before entering the next iteration
18: for (i = 1; i ≤ Q; i + +) do
19: Define q′i = qi excluding gateway substrings;
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Fig. 9. Obtainable system throughput produced by the respective WMN optimization approaches under different network sizes.

20: if (# of 1s in chromosome q′i > N ) ‖ (invalid gate-
way substring occurs) then

21: Let the fitness value fi for chromosome qi

in P (t + 1) = 0;
22: else
23: Compute the fitness value fi for chromo-

some qi in P (t + 1) based on the LP
model;

24: if (LP returns No_Solution) then
25: fi = 0;

Ultimately, we obtain the best chromosome (with the highest
fitness value), and the mapping of a chromosome onto the
corresponding network setting can be found on the right side
of Fig. 7. In a type-III WMN, a chromosome directly translates
into corresponding channel vectors and gateway location(s)
used in our LP model. Consequently, the obtained best chro-
mosome represents optimized channel vectors and suggested
gateway(s) placement. The channel vectors and gateway loca-
tion(s) are then fed back into our LP model to compute the high-
throughput MCR schedule.

VII. PERFORMANCE EVALUATION

In this section, we conduct experiments using the ns-2 sim-
ulator (version 2.29) with multiradio extension in an IEEE
802.11a networking environment. The two-ray ground inter-
ference model and default transmit power are used, leading

to around a 250-m transmission distance and a 440-m inter-
ference range. The distributed coordination function request-
to-send/clear-to-send four-way handshaking is turned on. We
denote our three GA-based optimization mechanisms for
type-I, type-II, and type-III WMNs as GA I, GA II, and
GA III, respectively. We set the population size Q = 20, maxi-
mum number of tested chromosomes M = 100 in forming the
initial population P (0), maximum allowable number of evolv-
ing iterations T = 300, crossover probability pc = 0.9, and
mutation probability pm = 0.02. For comparison, we also im-
plement the following three other WMN planning approaches:
1) decremental interface management (DIM) [16]; 2) particle
swarm optimization (PSO) [23]; and 3) Hyacinth [22]. DIM
performs the optimization based on LP computations under
the same total radio number constraint (parameter N ) as our
GA II, whereas PSO and Hyacinth execute optimization under
the same per-node radio number constraint as our GA I. For
type-III WMNs, to the best of our knowledge, GA III is the
first work to simultaneously optimize radio configuration and
gateway placement under the constraints of totally used radios
and supported gateways, and thus, no adequate target is avail-
able for comparison. In the following paragraphs, we separately
describe the designs of three comparative approaches.

The idea of DIM is to initially equip each mesh router with
K radios and gradually remove unnecessary or least useful
radio interfaces until the total radio number constraint is met.
In the first run of LP calculations, several wireless links may be
discovered to bear zero routing traffic, and thus, corresponding
radios can be removed. In the following runs, when all links
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bear nonzero traffic, DIM evaluates each radio and removes the
least useful radio interface one by one until the total number of
used radios becomes no greater than N [16]. In the LP model,
we assume that gateways do not generate traffic. For other mesh
hosts that generate traffic, we set the user traffic lower bound to
L = 0.2 Mb/s and the user traffic upper bound to U = 10 Mb/s
for both uplink and downlink flows. In addition, symmetric
gateways with a capacity of B = 100 Mb/s and symmetric
wireless links with a data rate of R = 12 Mb/s are used in the
simulations.

PSO encodes a possible radio and channel configuration in
a particle (analogous to a chromosome in GAs). Rather than
directly dealing with mesh nodes, PSO utilizes a conflict graph
that transforms a wireless link into a corresponding node. In
the conflict graph, links that interfere are interconnected by
edges. Suppose that a total of |E| wireless links exist in the
original graph. PSO randomly chooses a channel (from 1 to K),
e.g., k, to construct a particle, with all |E| digits set to value
k, implying all links using channel k. The initial population
P (0) then contains Q randomly constructed particles as the first
generation to start the subsequent evolving iterations. A fitness
value that is associated with a particle is defined as the inverse
of interference level that is produced by the corresponding
radio configuration. PSO quantifies the interference level as the
total number of interfered links in the conflict graph. In the
end of each iteration, PSO globally updates the best particle
gBest and locally updates the best particle pBest in the current
population P (t). When entering a new iteration, PSO performs
a crossover operation on every particle by exchanging one
(randomly chosen) digit with gBest and another (randomly
chosen) digit with pBest. In case the particle after the crossover
operation becomes invalid (violating the per-node radio number
constraint), the particle is restored to the original setting. No
mutation operation is carried out in PSO [23]. In the simula-
tions, we set the interference range at two hops around each
link for constructing the conflict graph in PSO, the population
size Q = 20, and the maximum allowable number of iterations
T = 300 as we do in GA-based approaches. After obtaining the
best radio configuration, PSO performs LP computations for the
routing schedule.

In Hyacinth, multiple spanning trees that were rooted at
respective gateway mesh routers are constructed and called
the Hyacinth architecture. Based on the tree structures, each
mesh router has exactly one parent node through up radio
interface and, possibly, multiple child nodes through down
radio interfaces. To avoid the ripple effect, which is produced
by changing channels over links, each mesh node in Hyacinth
follows the channel set by its parent over the up interface and
can only change the channels used by its children over down
interfaces. When a node joins the network, it favors the tree
with the shortest path (minimum hops) to the gateway node and
sets the channel following its parent [22]. Suppose that α is the
ratio of interference range to the transmission distance. A mesh
node in Hyacinth selects the least used channel (with the most
residual channel capacity) within α hops for the down interface
to communicate with a child node on the premise of satisfy-
ing the per-node radio number constraint. If the constraint is
violated, only the channels that were used by existing radios

can be selected. In the simulations, we assume that the global
network topology and residual link capacities are obtainable by
Hyacinth.

We set up m × m grid networks of different sizes (from 2 ×
2 up to 6 × 6, with two scenarios generated for each network
size), in which each mesh node is separated by an equal distance
of 200 m.7 The numbering rule for all mesh routers is displayed
in Fig. 9, lower left. Ten scenarios with corresponding parame-
ter settings, as shown in Fig. 9, are simulated. Except for GA
III, gateway positions are pregiven. To saturate the network, we
generate constant-bit-rate traffic, with the sending rate set to 24
Mb/s. The aggregate system throughput produced by different
mechanisms under the ten scenarios is included on the lower
right of Fig. 9. Our GA-based approaches perform better than
other approaches by two to three times on the average. Because
tree-based architecture leads to single-path routing without
effectively exploiting multiple channels, Hyacinth yields the
lowest throughput under most scenarios. For PSO, the perfor-
mance is slightly better than Hyacinth due to the multipath data
delivery enabled by LP-based traffic distributions. However,
because PSO is independent of routing traffic demands and
equally treats each mesh routers, the throughput improvement is
quite limited. The DIM mechanism addresses this drawback by
allocating more bandwidth resource to links with more relaying
traffic, avoiding those links (closer to gateways) to become the
traffic bottleneck, hence achieving better performance than PSO
and Hyacinth. However, by performing radio removal one by
one, DIM often reaches a local optimum in the solutions space,
because the removed radio cannot be plugged back, leading to
less throughput achieved compared with GA-based strategies.
Moreover, as shown in Fig. 9, DIM reaches its computational
limit when the network size grows to 4 × 4 and cannot produce
meaningful solutions beyond that.

Focusing on a 4 × 4 grid network (the maximum network
size that DIM can support), we simulate another nine sce-
narios, with the corresponding parameter settings summarized
in Fig. 10. In scenarios 1–3, one gateway node is available,
whereas in scenarios 4–6 and 7–9, two and three gateways
are supported, respectively. The system throughput results, as
shown in Fig. 10, lower right, provide similar performance
insights to the results that were implied in Fig. 9. To further
investigate the design implications, Fig. 11 displays the result-
ing radio and channel configurations that were computed by
respective strategies under scenarios 3, 5, and 8 in a 4 × 4
grid network. Due to the gateway placement flexibility, GA III
always performs best, whereas PSO tends to use the least ra-
dios, because only one channel can be assigned to each wireless
link. When the evolving process in PSO fails to produce better
particles that satisfy the per-node radio number constraint, the
solution will be stuck in a local point, resulting in an undesir-
able radio configuration and even yielding less throughput than

7In this paper, we target on moderate-size community WMN planning.
For a regular community WMN (that contains tens of mesh routers), our
GA-based mechanisms work properly. For very large scale WMNs (that consist
of hundreds of mesh routers or more), directly applying GA-based algorithms
on the whole network is possible but not efficient. We will explore the large-
scale WMN planning scalability issues and report possible findings in our future
work.
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Fig. 10. Nine simulated scenarios with the corresponding parameter settings under respective approaches for planning a 4 × 4 mesh network and the resulting
aggregate system throughput versus different scenarios under the respective WMN optimization approaches.

Fig. 11. Display of the resulting radio and channel configurations produced by the respective WMN optimization approaches when one gateway (scenario 3),
two gateways (scenario 5), and three gateways (scenario 8) are available among mesh routers.
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Hyacinth (scenario 8). Among the three GA-based approaches,
GA III tends to generate the most network capacity with fewer
required total radios. Based on the aforementioned results, we
demonstrate that a load-aware WMN optimization should judi-
ciously distribute radio and channel resources among wireless
links in a way that matches their traffic demands.

VIII. CONCLUSION

In this paper, we have focused on establishing a high-
capacity MCMR WMN. Two major problems that pertain to the
performance of MCMR WMNs are CA and MCR. We proposed
GA-based techniques for CA and LP formulations to obtain the
MCR schedule. The interplay of CA and MCR was modeled
by connecting the fitness value of a chromosome with the value
of linear objective function. At the WMN deployment stage,
our approach can compute an optimized CA configuration with
the corresponding MCR schedule in polynomial time. Through
detailed presentations of genetic evolutions under three dif-
ferent resource constraints, we have demonstrated that GA is
quite promising for solving complex discrete models involved
in MCMR WMNs. Simulation results showed that GA-based
techniques deliver pretty good WMN planning solutions.
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