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Bayesian Structure-Preserving Image Contrast
Enhancement and Its Simplification
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Abstract—In this paper, an efficient Bayesian framework is
proposed for image contrast enhancement. Based on the image
acquisition pipeline, we model the image enhancement problem
as a maximum a posteriori (MAP) estimation problem, where
the posteriori probability is formulated based on the local
information of the given image. In our framework, we express the
likelihood model as a local image structure preserving constraint,
where the overall effect of the shutter speed and camera response
function is approximated as a linear transformation. On the other
hand, we design the prior model based on the observed image and
some statistical property of natural images. With the proposed
framework, we can effectively enhance the contrast of the image
in a natural-looking way, while with fewer artifacts at the same
time. Moreover, in order to apply the proposed MAP formulation
to typical enhancement problems, like image editing, we further
convert the estimation process into an intensity mapping process,
which can achieve comparable enhancement performance with
a much lower computational complexity. Simulation results have
demonstrated the feasibility of the proposed framework in
providing flexible and effective contrast enhancement.

Index Terms—Contrast enhancement, maximum a posteriori
(MAP) estimation.

I. INTRODUCTION

APTURING images under poor illumination or inappro-

C priate camera settings may generate images of inadequate
contrast. Up to now, plentiful algorithms have been proposed
to improve the visual quality of poorly illuminated images [1]-
[29]. Among these algorithms, histogram equalization (HE) [1]
has been widely used and has been thought of as the ancestor
of many histogram-based contrast enhancement algorithms.
The principle of the HE algorithm is to use the cumulative
distribution function as an intensity mapping function to
extend the effective dynamic range of the original image. Even
though the HE algorithm is adaptive and efficient in image
enhancement, it may generate undesired defects, like overly
enhanced results, noise amplification, and loss of fine details.
After HE, plentiful variants have been proposed for contrast
enhancement. For example, [2]-[7] aimed for mean-preserving
histogram equalization. In [2], the author divided the original
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histogram into two subhistograms and applied the equalization
process over each subhistogram for mean-preserving. In [3]
and [4], the original histogram is divided in a similar way
based on a theoretical threshold value, rather than the intensity
mean used in [2]. In [5]-[7], the original histogram is further
divided into multiple subhistograms based on certain criteria
for mean-preserving equalization. In [5], the separation
procedure defined in [2] is applied to each subhistogram
recursively. In [6], the original histogram is divided into
multiple histogram based the location of local maxima in the
histogram. Basically, these mean-preserving HE algorithms
can effectively suppress the over-enhancement problem, but
may sometimes restrain the degree of contrast enhancement
due to the inclusion of the mean-preserving constraint.

On the other hand, the authors in [8]-[13] claimed that
the over-enhancement problem in histogram equalization is
usually due to some extremely high peaks in the histogram. In
their approaches, the shape of the histogram is modified before
the equalization process. In [8], a simple clipping operation
is applied for the adjustment of histogram shape. In [9], the
histogram shape is modified by using a nonlinear transforma-
tion function. In [10], the authors formulated the histogram
modification problem as an optimization problem and some
prior information about the histogram shape is included. In
[11], the author modified the cumulative distribution function
for the control of the enhancement level. In [12] and [13],
the authors formed histogram bins and optimally redistributed
the bins within the available dynamic range. Even through
these shape modification methods may also effectively deal
with the over-enhancement problem, they neglect the local
image information that could be very helpful for contrast
enhancement.

To include local information, a few histogram-based ap-
proaches look for adaptive histogram equalization (AHE),
which relies on localized image data [14], [15]. Although these
AHE methods can better enhance fine details, they usually
suffer from the over-enhancement problem and may amplify
the blocking artifacts for compressed images.

Besides histogram-based methods, retinex-based algorithms
are also popular for contrast enhancement. Retinex-based
approaches aim to remove from an image the influence of the
luminance component. In [16] and [17], the authors estimated
the reflectance component of a given image by calculating
the ratio between the original image data and its low-pass
filtered version. The estimated reflectance component is then
adjusted by a nonlinear transformation to achieve contrast
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enhancement. Unlike [16] and [17], the approaches in [18] and
[19] modify the luminance component. In [18], the estimated
luminance component is modified by a gamma function. In
[19], the authors proposed a two-stage scheme, which first ap-
plies a windowed inverse sigmoid function for dynamic range
compression, and then applies a gamma function for mid-
tone frequency enhancement. These retinex-based approaches
usually offer impressive enhancement results. However, halo
effects may appear around strong edges due to the imperfect
estimation of the luminance component. Besides, noise com-
ponent in dark areas may also get dramatically amplified.

Unlike the above methods, some other algorithms focus
on frequency-domain processing. Due to its compatibility
to existing image compression standards, processing in the
DCT domain has attracted great attention. The strategy of
most DCT-domain approaches is to scale the DC and AC
coefficients adaptively. For example, in [20], the scaling factors
are related to the root of the magnitude of DCT coefficients.
In [21], the authors first defined a contrast measure in the
compressed domain. The contrast measure between successive
bands of AC coefficients is then scaled for enhancement. Lee
[22] proposed a similar approach for AC coefficients adjust-
ment, but in an adaptive way for every image block. In [23],
a parametric intensity transfer function is adopted to adjust
the DC coefficient. After that, an adaptive scaling mechanism
is applied to the processed image for local contrast preserva-
tion. Even though these DCT domain-based approaches may
effectively enhance image contrast, they usually suffer from
undesired blocking artifacts, which may seriously degrade the
visual quality of the processed image.

On the other hand, some approaches treat contrast en-
hancement as an optimization problem [24]-[28]. The main
advantage of these optimization-based approaches is their
flexibility in including various kinds of desired properties
for the enhanced images. For example, in [24] and [25], the
authors aimed to find an optimal intensity mapping function
for image enhancement so that the entropy of the processed
image reaches its maximum while the deviation of the mean
intensity value reaches its minimum. In [26], the authors
focused on finding a mapping function that produces an
image realization with maximal signal variation. In [28], for
each image region, the authors found a local optimal linear
transformation to retain the local image structure during the
enhancement process. In their algorithm, the finding of the
scaling and offset parameters of the linear transformation is
formulated as an optimization problem, with the inclusion of
some prior information about the scaling parameter. Although
these optimization-based approaches can effectively enhance
the visual quality of the processed image, their computational
complexity is usually high for typical applications.

Even though these aforementioned approaches deal with the
image enhancement problem from various aspects, most of
them do not take into account the image acquisition process,
which directly influence the visual quality of the captured
images. Besides, most contrast enhancement algorithms do not
consider the statistical properties of natural images. In this
paper, we propose a Bayesian framework to take into account
both issues. In our framework, we design the likelihood model
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Fig. 1. Flow of image acquisition process.

of the Bayesian framework based on a few factors that may
influence the quality of the captured images, like shutter speed
and camera response function (CRF). With proper simplifi-
cation, we express the overall effect of shutter speed and
CREF as a local image structure preserving constraint. On the
other hand, we design the prior model based on the observed
image and some statistical property of natural images. With
the proposed likelihood model and prior model, our framework
can effectively enhance the contrast of the image in a natural-
looking way, while properly suppressing undesirable artifacts
and noise at the same time. Moreover, since the proposed
Bayesian framework is a high dimensional optimization pro-
cess, which is very time-consuming, we further propose a
simplified Bayesian framework that can achieve comparable
performance but with much lower computation complexity.
In this paper, we first present the concept of the proposed
Bayesian framework in Section II. A few simulation results
are demonstrated to verify the feasibility of the proposed
framework. In Section III, we further present the simplified
Bayesian framework, together with some simulation results.
Finally, in Section IV, conclusions are drawn.

II. PROPOSED BAYESIAN FRAMEWORK
A. Image Acquisition Pipeline

Since the design of our framework is partially based on
the image acquisition pipeline, we first review the imaging
process. As illustrated in Fig. 1, we show a simplified process
flow of the imaging pipeline based on the model in [30]. The
camera shutter controls how long the CCD or CMOS sensor
is exposed to the irradiance E. If the exposure period is At
and the sensor irradiance at a pixel is E, the total energy X
recorded at that pixel is

X =E x At. (1)

The CCD or CMOS sensor produces electrical signals
proportional to the sensor exposure X. These electrical signals
are sampled and quantized by the analog-to-digital converter
(ADC) to generate digital signals. Usually, the ADC output
is further remapped to fit for certain purposes, like gamma
correction. Typically, the overall effect of the image sensor,
ADC, and the remapping function can be integrated and
approximated as a nonlinear transfer function g( ), named the
CRF. With this approximation, the digital value D at a pixel
can be expressed as

D = g(X) = g(E x Ar). 2

In general, in the capturing of an RGB color image, different
color channels may have different CRF functions. To simplify
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the problem, we assume the CRF functions for all three
color channels are roughly the same. Indeed, some camera
manufactures may tend to have different CRF functions for
their cameras. Under such a situation, the colors of the
enhanced images would be somewhat different from the colors
in the well-illuminated images captured by the real cameras.
However, since our major focus is the improvement of the
luminance contrast, we still adopt the same-CRF assumption
in our algorithm to simplify the problem. In the following
deductions and simulation, we convert an RGB image into an
HSI format and focus on the I (intensity) component only.
The pixel-wise relationship in (2) can be further extended
to model the relation between the digital values over an image
patch and their corresponding irradiance values. Here, we

denote d, as the 1-D vector representation of the digital values

over an image patch and E, as the 1-D vector representation
of the corresponding irradiance values. Over a local patch, the
nonlinear mapping in (2) can be approximated as a first-order
mapping function, as long as the values of X within the patch

do not span a very wide range. That is, we approximate J, as
do~a-Ej+b-1 3)

where 1 is a 1-D vector that has the same dimension as Ez
and has all elements equal to 1. If subtracting the local mean

from 2@ and E,, we have

-

dy—dpm-1~a-(Ey—Epp-1) (4)

where dem and E;, are the mean of the elements in d,

and Eg, respectively. Equation (4) implies that there exists
a collinear property between (dg dom 1) and (E[ E;p- 1)
With this collinear property, we propose the following con-
straint:

| E¢c =E¢m-11-| de —den- 11 = (E¢ —E¢m-1)o(de —dgm-1)
)

where “| |’ denotes the 1, norm and “e” denotes the inner

product operator. This equation indicates that the image struc-

tures of E; and d, would be quite similar for most local
patches in the given image.

On the other hand, for the same sensor irradiance E,
different camera settings may produce images of different
visual quality, as illustrated in Fig. 2. In this example, with
different shutter speeds, we obtain one dimly exposed image
d(x,y) and one brightly exposed image f(x,y). Since the
local image structures of these two images come from the
same sensor irradiance E(x, y), an image patch d; on d(x, y)
and its counterpart patch f; on f(x, y) should share a similar
structure. That is, we have

| fo=fem 11 de =dem- 11 % (fo= fom-Do(de —den-1) (6)
where _?( and 25 denote the 1-D vector representations of f
and d, respectively.

However, for a smooth image patch, the collinear constraint

degenerates. In this case, the value of d;, —dym- 1 is
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Fig. 2. Camera settings versus image quality.
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approximately zero and any realization of }g can satisfy the
equality in (6). To deal with this problem, we further modify
the constraint in (6) as

|}Z - fl,m ' T
~ (ff - fe,m .

where ¢ is a small constant value.

To verify the applicability of (7), we tested eight image
pairs. In Fig. 3(a), we show two of these pairs. For each image
pair, pictures of the same scene with two different camera
settings are captured to get different luminance levels. For
each image pair, by treating a 3x3 local patch in one image

1+C 1) (de _dim'

as fg and its counterpart in the other image as d;, we compute
the value of S(f,, d [), which is defined as

S(f[ 40 )_m Som V46 T de—dem Ve =i fom e 1o(d e~
| Fe=fem

d,_,,,-T+c»T) . (8)

e 1 de—den-T+e1]

In (8), we normahze the numerator term over

\fo—fom1 + c- 1 | -] de —dyl +c- 1 | to deal with
images of different sizes or of different bit-lengths. In

Fig. 3(b), we show the histogram of S(f,, d,) for one
image pair. As expected, the histogram shape is roughly an
exponentially decreasing function peaked at zero. In Table I,
we list the mean and standard deviation of the histogram

S(fy, 23) for each of the eight image pairs. This experiment
demonstrates that (7) is indeed a feasible constraint to link
images of different exposures.

B. Bayesian Framework

In this paper, given a poorly exposed image d, we aim
to infer a well-exposed image f by maximizing a properly
designed posterior probability function p(f/d). Mathemati-
cally, we have

f*=arg max p(fld) ©))
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TABLE 1 N
MEAN AND STANDARD DERIVATION OF S(f,, d¢)

Mean | Standard Deviation
Image pair 1 | 0.2431 0.2265
Image pair 2 | 0.2808 0.3150
Image pair 3 | 0.2146 0.2249
Image pair 4 | 0.2875 0.2937
Image pair 5 | 0.3261 0.2590
Image pair 6 | 0.1281 0.1168
Image pair 7 | 0.2655 0.2577
Image pair 8 | 0.1875 0.2054

or  ff=arg mjle{P(dlf)p(f)}- 10)

In (10), p(d|f) is the likelihood model that represents the
relationship between the observed image d and the desired
image f. p(f) is the prior model that describes some expected
statistical properties of the desired image. In our approach, we
construct the likelihood model based on the aforementioned
constraint in Section II-A. That is

p| fyocexp{—we - X[l fio=fim 14¢ 1]+ [ die—dim 1 +c1]

Fie—fim THc1) 0 (die —dim 1+ DI7).
(11)

In (11), i denotes the pixel index, d;, is the 1-D vector
representation of the p x p image patch centered at pixel i,

fie¢ is the 1-D vector representation of the p x p desired
image patch centered at pixel i, f;, and d;,, are the mean of

the elements in f;, and d;¢, and w, is a weighting factor to
control the influence of the likelihood model. Moreover, r is a
parameter for the shape control of the likelihood model. With
(11) we aim to reconstruct an image f whose local structures
are similar to that of the observed image d. In our algorithm,
the actual size of the observed image patch is 3 x 3 and the
value of r is empirically chosen to be 1.8.

As mentioned above, the use of the constant ¢ in (11) is to
deal with flat regions. However, this constant term may also
affect the degree of the enhancement level. Consider two edge
intensity profiles in Fig. 4, where the black profile indicates a
mean-subtracted input profile d while the red profile indicates
the desired mean-subtracted profile jAf Here, we denote the
dynamic range of d and f as [dmin, dmax] and [ fin, fimax,
respectively. If the constant term c is set to 0, the relationship
between d and ]AC would be JA‘ ~ a - d for some positive value
o, with

f max f min
dmax dmin

Please note that both dpi, and fni, are negative. With the
inclusion of c, the range of o becomes

} 12)

o < min{

9

] Smax Simin 1 _ _ .
o< mln{dmmc? dmin+c}’ if —dpax < ¢ < —dmin
Jmax 1 > .
o< —dnfux -, if ¢ > —dmin
Jmin 1 < —
o< g, if ¢ < —dpnax-

13)
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Fig. 4. Illustration of enhancement level.

Hence, by changing the value of ¢, the maximally allowed
level of contrast enhancement is changed.

On the other hand, the prior model p(f) of our Bayesian
framework is designed to satisfy some statistical properties of
a well-exposed image f. Here, we design the image prior to
satisfy two objectives: to enhance the visibility of true image
details and to prevent the amplification of image noise. In our
approach, we decompose the image prior into the product of
two components: the enhancement prior p.(f) and the natural
image prior p,(f). That is, we have

P(f) = pe(f)pa( ) (14)

The role of p.(f) is to enhance the visibility of image details,
while the role of p,(f) is to suppress noise amplification.
Here, with a Markov random field model, we define p.(f) as

Pe(f) o exp(we - »_(wi - (V2 f)*)).

1

15)

In (15), w, is a weighting factor to control the influence of
the prior p.(f) and w; is a data-dependent gain function that
will be explained later. Besides, V? represents the Laplacian
operator and V2 f; is the Laplacian response of the desired
image f at pixel i. This prior definition prefers a realization
of f with a strong Laplacian response. Since image details
are highly correlated with the Laplacian response, the intro-
duction of p.(f) can effectively enhance image details. Even
though the Laplacian operation may cause undesirable ringing
artifacts around strong edges, these ringing artifacts can be
properly suppressed by the structure-preserving constraint in
(11) and the natural image prior p,(f). In our system, the
Laplacian filter has a 3 x 3 kernel, with the central coefficient
being 1 while the other coefficients being —1/8.

In (15), the weight w; is defined as

|V2d,-|) iy 4 p g
- exp(— ,B>0.
A P

w; = exp(— (16)
Here, A and B are two controlling parameters. V2d; is the
Laplacian response of the original image at pixel i. At a pixel
with a small Laplacian response and a small intensity mean,
we assign a large value of w;, and vice versa. This design
is to provide weaker enhancement for salient features in the
observed image d while providing stronger enhancement over
tiny features, especially over these features in dark regions.
On the other hand, in the design of p,(f), we adopt the field
of expert (FoE) prior proposed in [31] which has the following
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form to model the pdf of a noise-free natural image:

N
Pa(f) ocexpw, - > > log¢(J! fe,;ez)

keS' z=1

a7)

with

BT foo = 11+ 50T fo T (18)

In (17), w, is a weight that controls the influence of the
prior p,(f), the clique Cj includes n x n pixels centered at
pixel k, fcx denotes the local image data over the clique Cy,
JI' is a filter of size n x n, and J! f¢, is the inner product
between the filter kernel and the local image data. Besides,
N is the number of filters used in the modeling of p,(f).
S’ is a set containing all the center pixels of the n; x n
cliques that fully overlap with the image support. Finally, o,
is a positive parameter that makes ¢ a proper distribution. A
major property of the FoE prior is its use of the Student’s
t-distribution to describe the statistical distribution of noise-
free natural images. Since ringing artifacts and image noise do
not satisfy the characteristics of noise-free natural images, we
can effectively suppress undesirable noise with the inclusion
of the FoE prior. Besides, except w,,, all filters and parameters
defined in (17) and (18) are learned from natural images. The
training data of the FoE model were taken from 50 images
in the Berkeley segmentation database. The FoE model was
trained based on 2000 randomly cropped image regions with
the width and height three times that of the cliques. More
details about the learning of the FoE prior can be found in
[31].

C. Bayesian Contrast Enhancement

Substituting the aforementioned likelihood model and prior
model into the negative logarithm of (10), we get the following
optimization formula for contrast enhancement:

~

j =argmin(C(f)  with
c(f)=we- 30 Fie —fim 1411 Idig —dip 1+¢ 1 |-
(Fiv —fim 1+¢ 1) o (dig —dim 1+ DY
e S (V) = e S log 4 i)

keS’ z=1
= wZ'CZ(f)_we'Ce(f)_wn Cn(f)
(19)

In (19), we aim to find a realization of f whose local structure
is similar to that of the original image, but with enhanced
contrast. By changing the parameter setting, we can achieve
different levels of contrast enhancement. In fact, (19) can also
be interpreted as a regularized image restoration formulation,
with the first term being a fidelity metric that measures the
similarity between the original data and the restored data
while the remaining terms being a regularizer that defines
the behavior of the solution. Here, we model the relationship
in an indirect way that avoids the need to exactly specify
the unknown camera settings, like shutter speed and camera
response function. Moreover, we include two kinds of prior
information to provide improved enhancement results. Here,

Fig. 5. Enhancement results with different settings of w;, w,, and w,.
(a) Original image. (b) Reconstructed image without the likelihood model
Cy(f). (c) Reconstructed image without the enhancement prior C,(f).
(d) Reconstructed image without the natural image prior C,(f). (e) Recon-
structed image with all C(f), C.(f), and C,(f). (f) Enlarged red rectangular
region in (d). (g) Enlarged red rectangular region in (e).

for convenience, we name our approach as Bayesian structure-
preserving image contrast enhancement (BSPICE) algorithm.
Moreover, we adopt the algorithm developed by Schmidt et al.
[34] to find the optimal solution of (19).

D. Simulation Result of BSPICE Algorithm

In this section, we will show some simulation results of
the BSPICE algorithm. In Fig. 5, we illustrate the effect of
the proposed likelihood model and prior models. The first
case is to discard the likelihood model C,(f) during the
reconstruction process. For the case, the enhancement process
relies only on the prior knowledge C.(f) and C,(f). Under
such situation, the enhancement process is similar to the
combination of a high-frequency component and a smoothed
image, as shown in Fig. 5(b). In the second case, we discard
the enhancement prior C.(f) and only keep the other two. For
this case, with the influence of the natural image prior C,(f),
the enhancement process is similar to an image smoother, as
shown in Fig. 5(c). In the third case, we discard the natural
image prior C,(f) while keeping the other two. In this case,
the enhancement result becomes more noisy, as shown in
Fig. 5(d) and (f). For reference, we also show the enhancement
results based on all three models in Fig. 5(e) and (g).

Moreover, in the construction of the constrained optimiza-
tion problem in (19), the likelihood model C,( f) is constructed
from the view point of image acquisition pipeline. Since the
image acquisition process is independent of image contents,
the deduced model can be successfully applied to various
kinds of images. On the other hand, the natural image prior
C,(f) is trained from 50 natural images in the Berkeley
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(®)

Fig. 6. Comparison of enhancement results with different ¢ values.
(a) Original image. (b) Enhanced image with ¢ = 2. (c) Enhanced image
with ¢ = 3.

TABLE I
DEFAULT PARAMETER SETTINGS OF THE BSPICE ALGORITHM

Parameter | wy W, wy, c A B r
Value 7 10 | 100 | 1.5 | 15 | 150 | 1.8

segmentation database. In our experiments, this natural image
prior can be well applied to various kinds of images. Finally,
the Laplacian operation used in the enhancement prior C,(f)
is a popular methodology that can be used to enhance various
kinds of images. Since all these three models in the constrained
optimization problem are not image-dependent, the proposed
BSPICE algorithm is expected to work well even for untrained
images.

In the above experiments, we have demonstrated the in-
fluence of Cy(f), C,(f), and C.(f). In Fig. 6, we further
demonstrate the influence of the parameter c¢ of the likelihood
model over the degree of contrast enhancement. As expected,
when the value of ¢ is increased, the degree of contrast
enhancement is lowered.

In Figs. 7 and 8, we compare the enhancement results of
several image enhancement algorithms. Here, we pick the
original histogram equalization algorithm, the bi-histogram
algorithm (BHE) in [4], the DCT-based method in [23], and
the multi-scale retinex (MSR) method in [17]. Actually, for
the DCT-based approach in [23], the authors proposed three
variants for contrast enhancement, with the short names TW-
CES-BLK, DRC-CES-BLK, and SF-CES-BLK, respectively.
The main difference among these three variants is the use
of different intensity mapping functions for the adjustment
of the DC component. In our simulation, the parameters in
these algorithms were set to the default values suggested
by the authors [4], [17], [23]. For a fair comparison with
these algorithms, we fix the parameter setting of our BSPICE
algorithm to the default values as listed in Table II.

As shown in Figs. 7 and 8, the proposed BSPICE method
provides effective and natural-looking enhancement results for
two different cases. In comparison, the results of HE are
overly enhanced; the results of BHE are somewhat restricted
due to the use of the mean-preserving constraint; the results
of TW-CES-BLK, DRC-CES-BLK, and SF-CES-BLK may
include apparent blocking artifacts. Besides, since the intensity
mapping function for DC image modification in [23] is not
content-dependent, some image features may not get properly
enhanced. On the other hand, some undesirable ringing arti-
facts may become apparent in the results enhanced by MSR,
like the area around the crest lines in Fig. 7(g).

Fig. 7. Comparison of enhancement results. (a) Original image. (b) His-
togram equalization. (c) Bi-histogram equalization method [4]. (d) TW-CES-
BLK [23]. (e) DRC-CES-BLK [23]. (f) SF-CES-BLK [23]. (g) MSR [17].
(h) Proposed method.

Fig. 8. Comparison of enhancement results. (a) Original image. (b) His-
togram equalization. (c) Bi-histogram equalization method [4]. (d) TW-CES-
BLK [23]. (e) DRC-CES-BLK [23]. (f) SF-CES-BLK [23]. (g) MSR [17].
(h) Proposed method.

Besides subjective evaluation, we also do the comparison
based on three kinds of objective quality assessments: discrete
entropy E,,, Brenner’s measure (F},) [26], and the measure of
enhancement (EME) [35]. These three measures are defined
as

255

Enp ==Y p(L)log, p(L)
L=0

(20)
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TABLE III
DISCRETE ENTROPY Ej,

Image 1 | Image 2 | Image 3 Image 4
(Fig. 7) | (Fig. 8)
HE 6.43 6.93 6.48 6.88
BHE 6.47 7.24 6.65 6.92
TW-CES-BLK 6.94 7.58 7.21 7.39
DRC-CES-BLK 6.53 6.99 6.82 6.90
SF-CES-BLK 6.53 7.19 6.96 7.10
MSR 6.94 7.52 7.39 7.20
BSPICE 7.44 7.47 7.30 7.20
For=Y ) ((x, y) = I(x+2, ) 1)
x oy
and
I &y ..
EME=——Y% "% "20In &l (22)
kiky mink.l T €on

=1 k=1

In the above definitions, p(L) is the normalized histogram
bin count at level L and I(x, y) is the intensity value of the
image at (x,y). In (22), con is a small constant to avoid
division-by-zero and the input image / is broken up into k;
by k, nonoverlapping blocks. For the block with the indices
(k, D), Ifaxx, @and I, indicate its maximum and minimum
intensity values, respectively. In our experiment, the block size
is chosen to be 8 x 8 and con is chosen to be 0.0001. Among
these metrics, the discrete entropy is used to evaluate the
uniformity of the intensity histogram; the Brenner’s measure
is used for sharpness assessment; and the EME value is an
approximation of the averaged contrast in the image. Generally
speaking, an image with higher values of E,,, Fy,,, and EME
would have better visual quality. In Tables III-V, we sum-
marize the assessment results over four different images. We
can find that the MSR algorithm and our BSPICE algorithms
produce higher values of E,,, Fj and EME in most cases.
This is reasonable since both approaches perform contrast
enhancement in a local, adaptive manner. Nevertheless, the
proposed BSPICE algorithm generates fewer ringing artifacts
and less color shift if compared with the MSR algorithm.

In the above experiments, we have adopted the default
parameter setting listed in Table II for performance evaluation.
Actually, in practical applications, we may want to fine-tune
these parameters based on image contents or user preference.
In Table VI, we list a few empirical rules as the guideline
of parameter selection. In our BSPICE algorithm, to simplify
the control of parameters, we fix w,, w,, r, and B while
allowing wy, ¢, and A to vary based on image contents or user
preference. In Fig. 9, we show two examples of enhancement
results based on the default setting and the fine-tuned setting,
respectively. For the upper image in Fig. 9(c), we choose
we=7,c=1.5, and A =20. For the lower image, we choose
wy=7,¢c=1.2, and A =20.

In the proposed BSPICE algorithm, we obtain the enhanced
image based on the optimization of (19). It would be interest-
ing to see what would happen if we apply the optimization of
(19) once again over the already enhanced image. In Fig. 10,
we show two examples of enhancement results in which we

7/
(®) ©

Fig. 9. Enhancement results with different parameter settings. (a) Original
image. (b) Default settings. (c) Fine-tuned settings.

TABLE IV
BRENNER’S MEASURE Fj, (UNIT: 100)

Image 1 | Image 2 | Image 3 Image 4

(Fig. 7) (Fig. 8)
HE 56.12 48.57 88.66 32.17
BHE 21.51 32.41 34.13 30.98
TW-CES-BLK 26.74 30.10 38.63 28.85
DRC-CES-BLK 16.18 17.66 29.70 24.15
SF-CES-BLK 17.00 19.59 31.05 25.24
MSR 86.99 36.56 65.26 44.53
BSPICE 70.80 36.34 43.30 35.84

TABLE V
EME VALUE

Image 1 | Image 2 | Image 3 | Image 4

(Fig. 7) (Fig. 8)
HE 18.53 41.50 81.11 45.03
BHE 62.84 35.69 75.40 42.54
TW-CES-BLK 83.46 19.16 48.57 19.36
DRC-CES-BLK 85.43 19.02 49.52 19.89
SF-CES-BLK 82.68 19.19 48.53 19.88
MSR 96.39 21.23 68.12 28.09
BSPICE 99.36 40.01 81.61 47.58

TABLE VI

EMPIRICAL GUIDELINES FOR PARAMETER ADJUSTMENT

Parameter | Description

wy A small wy is preferred for low-SNR images.
The suggested range for wy is 1-10.

w, A larger value of w, is required for poorly
illuminated images. The default value for w, is
10.

w, A large value of w, is required for a noisy image
or an under-exposed image. The default value for
wy, is 100.

c A parameter to control enhancement degree. A
smaller value of ¢ is preferred for a poorly
illuminated image. The suggested range for ¢ is
1-3.

A A smaller value of A causes weaker enhancement
for salient features while stronger enhancement
over tiny features. The suggested range for A is
10-40.

B A smaller value of B causes weaker enhancement
for features in the bright regions while stronger
enhancement for features in dark regions. The
default value for B is 150.

r A small value of r is preferred for low-SNR
images. The default value for r is 1.8.
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@ M)

Fig. 10. Enhanced images after repeatedly applying the BSPICE algorithm.
(a) Original image. (b) One-time enhancement. (c) Two-time enhancement.
(d) Four-time enhancement.

apply the BSPICE algorithm several times based on the default
parameter setting. These two examples show that the images
may get somewhat overly enhanced as we repeatedly apply the
BSPICE algorithm to the enhanced image. This phenomenon
is expectable since the default parameter setting that is suitable
for low-contrast images may not work well for images of
higher contrast.

III. SIMPLIFIED BSPICE ALGORITHM

In Section II, we present a Bayesian framework for contrast
enhancement. However, since we need to estimate M x N
unknown variables for an M x N image, directly solving (19)
would be extremely time-consuming. In this section, we fur-
ther propose a simplified Bayesian framework to greatly alle-
viate the computational complexity of the BSPICE algorithm.

First, from the viewpoint of image acquisition, the relation-
ship between f; and d; can be described by a simple mapping
function. See Fig. 2 for example, f; and d; would roughly
satisfy the following equation:

fi= g(%g‘l(di» = G(dy) (23)

h

where g~!( ) represents the inverse of the camera response
function. This equation indicates that the relationship between
f; and d; can be expressed in terms of a mapping function
G( ), which is highly related to the camera response function.
Second, with the use of the structure-preserving constraint in
the BSPICE algorithm, we expect the original data d; could
be roughly related with the enhanced data f; in terms of a
mapping function, in spite of the fact that the optimization of
(19) is actually a pixel-wise process. To test this supposition,
we check the joint distribution Dist(f;, d;) over a few image
pairs. Take the original image in Fig. 11(a) as an example, we
show its BSPICE-enhanced image in Fig. 11(b). In Fig. 11(c),
we show the joint distribution Dist( f;, d;) between these two
images. In this figure, the value of Dist(f;, d;) is represented
in pseudocolors, with blue color for smaller values, yellow
color for middle values, and red color for large values. This
figure demonstrates that the relationship between f; and d;
can be roughly approximated by a single mapping function.
We have tested a few other image pairs and have reached the
same conclusion.

(2 (b)

Fig. 11. (a) Dimly exposed image. (b) BSPICE-enhanced image. (c) Joint
distribution.

Based on the above observation, we assume that the rela-
tionship between a poorly exposed image d and the enhanced
image f can be represented by a monotonically increasing
intensity transfer function 7. That is, if d; and f; denote the
intensity value at pixel i of d and f, respectively, we have

fi=T(d) (24)
with 7’(d;) > 0. Even though the transfer function T
can be defined for any value of d;, actually we only care
about the 256 discrete values of d; for an 8-bit imaging
system. That is, we focus only on the finding of the set
T = {T(0), T(1), ..., T(255)}. Moreover, the monotonically
increasing constraint can be expressed as a system of linear
inequality equations

T(L)—T(L —1)>0, where L €{1,2,...,255}. (25)

By combining (19), (24), (25), and the discrete transfer func-
tion assumption, we get the following constrained optimization
formulation for enhancement:

A

T =arg mTin{C(T)} with
M) =we- S0 fi —Fim 141 1| dis ~di T 4]
- (}i,z = fim 1+c T) ° (:ii,é —d;n 1 +CT))’
e S (VL) -w, - S S log (I f:et0)

keS’ z=1
(26)
subject to
fi=T(d) 27)
0<T(L) <255 (28)
and
T(L)—T(L—-1)>0 29)

with L €{0,1,...,255} and T(=1) = 0.

By solving (26) with the constraints in (27)—(29), we can
obtain the optimal T for contrast enhancement.
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A. Efficient Solver for the Optimization Problem

The introduction of intensity transfer function greatly re-
duces the number of unknown variables from M x N variables
in (19) down to 256 variables in (26). To solve the con-
strained optimization formula defined in (26)—(29), we adopt
the projection methodology for the optimal solution [32]. The
basic concept of the projection-based algorithm is to project
an unfeasible solution into the constraint set via a proper
projection operator I1. In our approach, the whole procedure
for the optimal solution T is summarized as follows.

1) k=0.

Initialize the set T° = {T'(0)°, T(1)°, ..., T(255)°} as
T(LY =L, forL=0,1,...,255.
2) Update T by the iterative algorithm

T(LY* = T(LY* + i - Sa(T)| =g+

for L=0,1,...,255.
3) If the set T¥*! violates the constraint in (28) and (29),
we refine T*! as

(30)

Tk+1 — H[Tk+1]. (31)

4) We iteratively perform Steps 2 and 3 until the stopping

criterion is satisfied.

In our simulation, the algorithm stops when any of the
following criteria is satisfied:

1) the change of the cost function value between two

successive steps is smaller than the preset threshold;

2) the norm of the search direction is smaller than the preset

threshold;

3) the difference between the updated solution and current

solution is smaller than the preset threshold.

Moreover, in our simulation, the threshold values in all
cases are empirically set to 107, This threshold value would
determine the number of iterations. A larger threshold value
usually leads to faster convergence.

In the proposed process, T(L)* is the feasible solution
obtained at the kth step, u is the step size which is obtained
by the backtracking line search algorithm [34], S;(T) is the
search direction at T* which is highly related to the cost
function C(T) in (26), and IT is the operator that projects
the original infeasible solutions T**! into the constraint set 2
defined by the intersection of (28) and (29).

Same as the BSPICE algorithm, the algorithm [34] is
adopted for the solution update in (30). However, some other
iterative algorithms can also be used for solution update. In
[34], the gradient direction for the algorithm is defined as

aC(T) _ aC(f) ofi
(8T(L)> Ip=+ = Z (3fi|f=Tk(d)> (L)

aC(f)
= zl: (E}fif|f=Tk(d)> -8[d; — L] .

In (32), f; denotes the intensity value of the desired image
f at pixel i, and f = T*(d) denotes the transformation of the
observed image d based on the intensity transfer function TX.
Besides, §[n] is the delta function defined as

{4 138

(32)

Moreover, %}ﬂ | =1#(q) 1s the partial derivative of C(f) with
respect to the pixel value f;.

To design a suitable projection operator IT for the optimiza-
tion problem, we convert T into the gradient domain, where
the monotonically increasing constraint in (29) can be easily
verified. Here, the gradient of T is defined as

VT(L)=T(L) — T(L — 1) (33)

where L € {0, 1,2,...,255} and T(—1) = 0. In the gradient
domain, the monotonically increasing constraint in (29) is
equivalent to

VT(L)>0  where L €{0,1,2,...,255). (34)

On the other hand, the dynamic range constraint in (28) is
reformulated as

255 255
(T - T(L—1)=) VI(L)=255. (35
L=0 L=0

In our projection operator IT, we first convert TF!into the
gradient domain to get VT**!. The gradient VT**! is projected
onto the non-negative domain to get VT*! that satisfies the
monotonically increasing constraint in (34). VT**! is further
projected onto the constrained dynamic range domain to get
VT’fjrl that satisfies the dynamic range constraint in (35). In
detail, we define VT**! as

k+1 : k+1l >
VT(L)'= {VT(%? if’v;f(Lv)Zl(lLi 0 Ofor L=0.1,....255
(36)
which is a Euclidean projection of VT**'onto the constraint
set in (34) [33]. On the other hand, the conversion from VT**!

to VT¥! is formulated as a constrained least-squares problem

255
VTH! = arg Vn%ikr}l {5 Z wy - [VT(L)S = vT(L)*'?) (37)
++ L:0
subject to
255
D VT =255 (38)
L=0
and
VT(L*' =0, if VI(LY*' =0 (39)
VT(L)M! >0, if VT(L)**! > 0.

The formulation of (37)—(39) is to find a modified gradient
solution VX = (VT 1(0), VT, ..., VTX1(255)) that
minimizes the weighted Euclidean distance between VT**!
and VTX! while satisfying the constraints defined in (38)
and (39) at the same time. Moreover, if there are M nonzero
elements in VT**! and the set S, = {S.(1), $:(2), ..., S:(M)}
denotes the collection of these nonzero elements, an interesting
result can be obtained if we intentionally set the weight wy,
in (37) to be

(VTLyHM-!
0, if VT(L)&! =0.

(T, s.0m) @ ol
wy = |:1:| s if VT(L)_‘_+ #0 (40)



840 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 6, JUNE 2012

Initialization

k=0; T ®={0,1,....255}

I
v

Update T *
Based on Eq. (30)

o) !

Does T*' satisfy the
constraints in (34) & (35)?
Get the modified T 5

Yes based on Fq. (33), (36), (41), (42)

No

Apply T 1 {0 the original image  d
to enhance the image

y

Fig. 12. Flow chart of the S-BSPICE algorithm.

With this setting, it can be shown that the solution of the
constrained least-squares problem in (37)—(40) becomes

VTHI(L)
255

> V()

J=0

VTR (L) =255 - forL=0,1,...,255. (41)

Finally, after the computation of VTf:l, the refined T¥*!

can be obtained by integrating the values of VT 1. That is

L
T(LY*! = Z VTHI(j) forL=0,1,...,255.
J=0

(42)

In summary, we propose a simplified algorithm that itera-
tively updates the set T = {T'(0), T(1), ..., T(255)} as follows.

1) k=0.

Initialize the set TO = {T(0))°, T(1)°, ..., T(255))°} as
T(LY =L, forL=0,1,...,255.
2) Update T¢ = {T(0)%, T(1), ..., T(255)} by (30) for
L=0,1,...,255.
3) If the set T¥*! violates the constraint defined in (28) and
(29), we refine TF! as follows.
a) Calculate VT**! as defined in (33).
b) Calculate VT*!, as defined in (36).
¢) Calculate VT*!, as defined in (41).
d) Calculate the refined T¥*!, as defined in (42).

4) Repeat Steps 2 and 3 until the stopping criterion is

satisfied.

For the sake of convenience, the above procedure is named
the S-BSPICE algorithm, which stands for the simplified
BSPICE algorithm. For better understanding of the proposed
algorithm, we also plot its process flow in Fig. 12.

B. Simulation Result of S-BSPICE Algorithm

In this section, we show some comparisons of the proposed
S-BSPICE algorithm with a few existing algorithms. In the

(@

(b)

©

(d

Fig. 13. Simulation results for S-BSPICE when iterations proceed.
(a) Original image, and the processed images (b) after two iterations,
(c) after six iterations, and (d) after the stopping criterion is satisfied (left
image: 13 iterations, right image: 14 iterations).

following simulation, the parameter settings of the S-BSPICE
algorithm are basically the same as that in the BSPICE
algorithm, except that the value of w, is 50, and the value
of wy is 1.9. Here, w, are assigned a smaller value due to the
assumption of the global mapping function T.

Differently from the BSPICE algorithm, the S-BSPICE
algorithm is inherently an iterative process. In Fig. 13, we
demonstrate the simulation results of the S-BSPICE algorithm.
It can be easily seen that the enhancement performance gets
improved as the iterations proceed.

Moreover, with S-BSPICE, the image quality usually gets
improved up to a certain level in only a few iterations, long
before the stopping criterion is reached. In our algorithm, an
early-stopping strategy is evoked when the mean square error
between two successive images is smaller than 8. In Fig. 14,
we show two examples of early stop. This early-stopping
strategy makes the S-BSPICE algorithm even more efficient
in practical applications.

Figs. 15-17 demonstrate some simulation results of the
S-BSPICE algorithm, in comparison with that of the HE
algorithm, the BHE algorithm in [4], the DCT-based methods
in [23], and the MSR algorithm in [17]. We can find that the
proposed S-BSPICE algorithm provides impressive enhance-
ment results, but with fewer artifacts. Moreover, even though
the S-BSPICE algorithm actually performs global adjustment,
it achieves enhancement performance comparable to that of
local-adjustment approaches, like the MSR algorithm and the
BSPICE algorithm.

In Tables VII-IX, we also summarize the objective assess-
ment results over three different images Figs. 15-17. We can
find that, in these cases, the S-BSPICE algorithm and the
S-BSPICE algorithm with early-stopping produce similar E,,,
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(a)

(b)

Fig. 14. Simulation results for S-BSPICE with early-stopping strategy.
(a) Original image, and processing images (b) with early-stopping (left image:
three iterations, right image: three iterations), (c) after the stopping criterion
is satisfied (left image: 101 iterations, right image: 13 iterations).

TABLE VII
DISCRETE ENTROPY Ej,

Fig. 15 | Fig. 16 | Fig. 17

HE 6.53 6.88 6.54
BHE 7.24 6.92 6.59
TW-CES-BLK 7.32 7.39 5.44
DRC-CES-BLK 7.41 6.90 6.49
SF-CES-BLK 7.29 7.10 6.35
MSR 7.22 7.20 6.50
BSPICE 7.13 7.20 6.71
S-BSPICE (reach 7.19 6.92 6.76
the stopping crite-
rion)
S-BSPICE (early- 7.10 6.89 6.61
stopping)

TABLE VIII

BRENNER’S MEASURE F},. (UNIT: 10°)

Fig. 15 | Fig. 16 | Fig. 17
HE 129.81 32.17 102.12
BHE 142.55 30.98 53.36
TW-CES-BLK 212.20 28.85 8.54
DRC-CES-BLK 167.03 24.15 13.45
SF-CES-BLK 171.69 25.24 12.78
MSR 221.39 44.53 13.55
BSPICE 207.49 35.84 29.07
S-BSPICE 126.54 20.92 32.48
(reach the stop-
ping criterion)
S-BSPICE (early- | 126.34 23.02 25.94
stopping)

Fpr, and EME values. This verifies the applicability of the
early-stopping strategy in accelerating the original S-BSPICE
algorithm.

It is also interesting to compare the simulation results of
the BSPICE and S-BSPICE. Since BSPICE is basically a
local processing, we can find that the processed results of
BSPICE in Figs. 15-17 are better than that of S-BSPICE.
However, since the dimensionality of the S-BSPICE algorithm
is much smaller and only some simple operations, like clipping
and rescaling, are involved, the execution time of S-BSPICE

18 \r“.:
(i A

Fig. 15. Comparison of enhancement results. (a) Original image. (b) His-
togram equalization. (c) Bi-histogram equalization method [4]. (d) TW-CES-
BLK [23]. (e) DRC-CES-BLK [23]. (f) SF-CES-BLK [23]. (g) MSR [17].
(h) BSPICE. (i) S-BSPICE (early-stopping, three iterations). (j) S-BSPICE
(nine iterations, stopping criterion is satisfied).

TABLE IX
EME VALUE

Fig. 15 | Fig. 16 | Fig. 17
HE 22.50 45.03 52.73
BHE 91.91 42.54 13.23
TW-CES-BLK 111.98 19.36 3.19
DRC-CES-BLK 114.77 19.89 4.37
SF-CES-BLK 112.33 19.88 4.18
MSR 130.46 28.09 4.38
BSPICE 134.41 47.58 7.59
S-BSPICE 118.35 41.13 8.06
(reach the stop-
ping criterion)
S-BSPICE (early- | 127.74 28.20 6.62
stopping)
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Fig. 16. Comparison of enhancement results. (a) Original image. (b) His-
togram equalization. (c) Bi-histogram equalization method [4]. (d) TW-CES-
BLK [23]. (e) DRC-CES-BLK [23]. (f) SF-CES-BLK [23]. (g) MSR [17].
(h) BSPICE. (i) S-BSPICE (early-stopping, three iterations). (j) S-BSPICE
(13 iterations, stopping criterion is satisfied).

algorithm is a lot faster than BSPICE. In Table X, we list the
comparison of execution time between BSPICE and S-BSPICE
with early-stopping, together with the MATLAB implemen-
tation of the HE algorithm, the Bi-histogram equalization
algorithm in [4], and the DCT-based methods in [23]. All
algorithms are implemented using MATLAB on a desktop PC
with an Intel Core i3 2.93 GHz CPU. Since the MSR simu-
lation in our experiment is based on the PhotoFlair software
developed by TruView Imaging Company whose source code
is not available, the execution time of MSR is not included
in Table X. As expected, the proposed BSPICE requires
a much longer computation time. On the other hand, the
S-BSPICE algorithm spends slightly longer computation time
than the other algorithms, but with the tradeoff of improved
visual quality.

a5 \ Fa
1 4 _— A 4 A
! I\ 1 \
= & &
@ © ®
7 4
‘jf

Fig. 17. Comparison of enhancement results. (a) Original image. (b) His-
togram equalization. (c) Bi-histogram equalization method [4]. (d) TW-CES-
BLK [23]. (e) DRC-CES-BLK [23]. (f) SF-CES-BLK [23]. (g) MSR [17].
(h) BSPICE. (i) S-BSPICE (early-stopping, four iterations). (j) S-BSPICE
(six iterations, stopping criterion is satisfied).

TABLE X
COMPARISONS OF EXECUTION TIME FOR DIFFERENT
ALGORITHMS (UNIT: SECONDS)

Image Image in Image in Image in
Fig. 15 Fig. 16 Fig. 17

Approach (342 x 256) (300 x 200) (256 x 248)
HE 0.45 0.41 0.39
BHE 0.51 0.37 0.40
TW-CES-BLK 1.43 1.03 1.09
DRC-CES-BLK 1.77 1.07 1.01
SF-CES-BLK 1.43 1.21 1.04
BSPICE 1919.23 810.53 326.04
S-BSPICE (early 4.17 2.77 3.58
stopping) (three iterations) | (three iterations) | (four iterations)

IV. CONCLUSION

An efficient Bayesian framework for image enhancement
was proposed in this paper. Unlike previous approaches, the
proposed method considers the issues that may influence the
visual quality of the captured image, including shutter speed
and camera response function. Besides, statistical properties of
nature images are also included in the algorithm for natural,
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less-noise enhancement results. The benchmark image quality
measures, including the discrete entropy, Brenner’s measure
and EME value, indicate the superiority of the proposed
method. Moreover, to fit the requirement of practical appli-
cations, we further simplify the estimation process into an
intensity mapping process. Simulation results of the simplified
method verify the feasibility of the proposed algorithm in the
task of image enhancement.
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