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Abstract The market leaders of Cloud Computing try to
leverage the parallel-processing capability of GPUs to provide
more economic services than traditions. As the cornerstone of
enterprise applications, database systems are of the highest
priority to be improved for the performance and design
complexity reduction. It is the purpose of this paper to design
an in-memory database, called CUDADB, to scale up the
performance of the database system on GPU with CUDA. The
details of implementation and algorithms are presented, and the
experiences of GPU-enabled CUDA database operations are
also shared in this paper. For performance evaluation purposes,
SQLite is used as the comparison target. From the experimental
results, CUDADB performs better than SQLite for most test
cases. And, surprisingly, the CUDADB performance is
independent from the number of data records in a query result
set. The CUDADB performance is a static proportion of the
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total number of data records in the target table. Finally, this
paper comes out a concept of turning point that represents the
difference ratio between CUDADB and SQLite.

Keywords GPU - CUDA - SQLite - In-Memory Database

1 Introduction

Cloud computing is currently the hottest information process-
ing technology and it enables location-independent comput-
ing, whereby shared servers equipped with resources,
software, and data to computers and other devices on demand.
Market leaders of this business, including Amazon Elastic
Cloud Computing, Rackspace, or Microsoft Azure, originally
provides headless on-demand computing through the provi-
sion of virtual servers (Amazon Elastic Compute Cloud http://
aws.amazon.com/ec2/, Rackspace Hosting http://www.rack
space.com/index.php, Micsoft Azure, http://www.microsoft.
com/windowsazure/windowsazure/. If users need a Web site
or database system, they can get one by contacting the cloud
computing provider, and run the service on in minutes.
Although cloud computing provides more economic solu-
tions than transitions, it is not a panacea for all kind of
application requirements. For example, bandwidth con-
straints can make it impractical to move the vast input and
out data sets used in high-performance computing over the
internet. Service providers also featured little about how to
serve computationally intensive applications in parallel
without additional capital expense and administrative com-
plexity. These limitations drive the trends of general purpose
programming on GPU techniques such as CUDA (an
acronym for Computer Unified Device Architecture).

A graphics processing unit (GPU) is a specialized micro-
processor that offloads and accelerates graphics rendering from

@ Springer


http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.rackspace.com/index.php
http://www.rackspace.com/index.php
http://www.microsoft.com/windowsazure/windowsazure/
http://www.microsoft.com/windowsazure/windowsazure/

910

Inf Syst Front (2012) 14:909-924

Table 1 Functions supported by CUDADB

Function Name

Corresponding SQL Language Example

Selection Query
Selection Query and Sorting Data

Selection Query and Data Grouping operations
(SUM, MAX, MIN, COUNT, AVQG)
Data Insert

SELECT store name FROM Store Information WHERE Sales>1000
SELECT store_name, Sales, Date FROM Store Information ORDER BY Sales
SELECT store_name, SUM(Sales) FROM Store_Information GROUP BY store_name

INSERT INTO Store Information (store name, Sales, Date) VALUES

(‘Los Angeles’, 900, ‘Jan-10-1999")

Data Insert According to Selection Query

INSERT INTO Store_Information (store_name, Sales, Date) SELECT store_name,

Sales, Date FROM Sales_Information WHERE Year(Date)=1998

Data Update

UPDATE Store InformationSET Sales=500 WHERE store name=‘Los Angeles”

AND Date="Jan-08-1999”

Data Delete

DELETE FROM Store Information WHERE store name=‘“Los Angeles”

the central processor. Modern GPUs are very efficient at
manipulating computer graphics, and their highly parallel
structure makes them more effective than general-purpose
CPUs (Wikipedia, http://en.wikipedia.org/wiki/Graphics pro
cessing_unit). General-purpose processing on the GPU,
known as GPGPU is currently an active research area since
GPUs are widely available and continue to improve in
performance faster than CPUs. CUDA is a parallel computing
architecture developed by NVIDIA (nVIDIA, http://www.
nvidia.com/content/global/global.php; Lindholm et al. 2008;
Wynters 2011). CUDA plays the role of computing engine in
NVIDIA GPU. Software developers can access it through
variants of programming languages (Wikipedia, http://en.
wikipedia.org/wiki/CUDA; Qihang et al. 2008; Ziyi et al.
1062; Manavski et al. 2007). There is a growing interest of
employing NVIDIA’s CUDA framework to solve certain
problems or enhance system performance based on its parallel
data processing capability (Nickolls et al. 2008; Rodrigues et
al. 2008; Schatz et al. 2007; Zhang et al. 2011; Chengen and
Xu) .Yutaka Akiyama leads projects of large-scale bioinfor-
matics applications on multi-node on GPU environment
(Akiyma). They has built many efficient DNA sequencing
algorithms and system based on CUDA framework. Yuan et
al. (2010) employed CUDA to improve the simulation
performance for surgical tissue deformation. Based on the

Fig. 1 Row-major GPU
Memory v.s. Column-major
data structure

successful stories of prior works, it comes out the idea of this
paper to implement an in-memory database system on CUDA-
enabled GPU environment to simplify the development and
enhance the performance of data intensive applications.
Databases are the workhorses of enterprises today. Search-
ing useful information from databases is a computational
challenge from day to day. Database vendors, such as
Microsoft, Oracle, IBM, and SAP are seeking CUDA-
enabled GPUs for scalable solutions. Before getting simple
and feasible solutions, researchers and database vendors tried
to reduce the solution complexity by porting in-memory
database on GPUs with CUDA. In contrast to database system
which employed a disk storage mechanism, an in-memory
database (IMDB; also main memory database or MMDB) is a
database system primarily relies on main memory or computer
data storage. In recent years, there are already several
commercial IMDB products on the market, such as Oracle’s
TimesTen, IBM’s Solid DB, SAP’s In-Memory Computing
Engine, and Sybase’s Adaptive Server Enterprise. IMDB
stores data on volatile memory devices, and thus lacks of
durability portion of ACID (atomicity, consistency, isolation,
durability) properties (Wikipedia, http://en.wikipedia.org/
wiki/In-memory database). Most of those IMDB products
on the market try to implement the whole relational database
management system into the main memory, and hope to

Column0 Column1 Column?2

— 0 L 2 0 1 2 3
Column
0
— 3 - Coll;mn
- Column
2
=
° T 111

Row-major Data Table

@ Springer

Column-major Data
Table


http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://www.nvidia.com/content/global/global.php
http://www.nvidia.com/content/global/global.php
http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/wiki/In-memory_database
http://en.wikipedia.org/wiki/In-memory_database

Inf Syst Front (2012) 14:909-924

911

0 1 2 3

Column0

Column 1

Column 2

thread0 thread1 thread2 thread3

push pop
- -

stacks i i

Fig. 2 Process of selection query

Table 2 Algorithm of selection query

bring the benefits of using GPUs to consumers. It
increases much complexity to develop an IMDB with full set
of RDBMS functions. In addition, due to the competition
between vendors, researchers cannot get the technical
information or experiences about how to implement IMDB
or improve the IMDB performance. Thus, it would be a good
starting point and easier to implement an IMDB than the entire
relational database on GPU. This also naturally escapes from
the performance bottleneck of data transferred between CPU
and GPU.

Recently, increased attention has been given on rede-
signing traditional database algorithms for fully utilizing
the available architectural features and for exploiting

Begin
declare stack_d[][];
declare top_d[];

postTrans(QueryData);

switch(token of postfix) {
case operand:

}

end

Algorithm SelectionQuery_SetSelectFlag(QueryTable, QueryData, selected_flag )
Input: QueryTable // the data set to be queried
QueryData //data selection criteria

Output: selected_flag //an array of flags denoting the selected records of QueryTable

//Use cudaMallocPitch API to allocate a 2D array
cudaMemoryAlloc2DArray(stack_d, stack_size);

//Use cuaMalloc API to allocate a temporary stack for QueryData transformation
cudaMmeoryAlloc(top_d, topPointer_size);

/Itransform the QueryData from the prefix form to the postfix one.

for i=1 to 2*numberOfOperand-1 do

switch(operator) {
//Select items in a specified column of the QueryTable

case “>": selectGreater_kernelProgram(
QueryTable, stack_d, top_d, selected_flag,
column_index);

//Sselect items in the specified column of the QueryTable

case “<”: selectSmaller_kernelProgram

//Match items in the specified column of the QueryTable

case selectEqual_kernelProgram

case LogicOperator_AND:
call select AND_KkernelProgram
case LogicOperator_OR:

call selectOR_KkernelProgram
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parallel execution possibilities, minimizing memory and
resource stalls, and reducing branch miss predictions (Ailamaki
et al. 2001; Manegold et al. 2000; Meki and Kambayashi
August 2000; Rao and Ross 1999; Ross 2002). Also, many
researchers show that GPU performs well than GPU does for
database operations. N. Govindaraju., et al. implemented
several SQL operations on NVIDIA GeForce FX 5900 without
CUDA framework (Govindaraju et al. 2004). The results
demonstrated that performance of SQL operations on GPU is
about 2 times faster than the one on CPU. They also designed
several GPU-based join algorithms and achieved performance
improvement of 2-7X over their optimized CPU-based
counterparts (Bingsheng et al. 2008). P. Bakkum and K.
Skadron accelerates SELECT queries and share the experi-
ences of GPU implementation of SQLite command processor
(Ross 2002; Bakkum and Skadron 2010). In addition to SQL
database applications, P. Ferraro, et al., use CUDA to
implement query-by-humming on GPU (Ferraro et al.
2009). Their design allows to retrieve a hummed query in
a database of MIDI files, with good accuracy, in a time up
160 times faster than other comparable systems. S. Ding,
et al. investigate a new approach to build web search
engines and other high-performance information retrieve
systems (Shuai et al. 2009). The experimental results for
their prototype GPU-based system on 25.2 million web
pages show promising gains in query throughput.

Each results of prior works gets impressive performance
improvement on GPU, but most of these studies focus on
specific problem domains or implement primitive query
operations for SQL database. As a cornerstone of enterprise

Table 3 Algorithm of greater process in selection query

applications, developers cannot benefit from database with
partial SQL operation implementation. It is the goal of this
paper to help the efficiently development of database
applications on GPU with CUDA. This paper contributes the
design and implementation of a IMDB, called CUDADB, on
GPU using CUDA programming model. The experimental
results show that the designed IMDB get better performance
than most commonly used SQLite database. Besides, some
learned experiences are also shared in this paper.

The remainder of the paper is organized as follows. Section
2 surveys some related works and briefly introduce the
backgrounds used in the paper. Section 3 describes design
issues which should be considered carefully while implemen-
tation a database on GPU with CUDA. Section 4 depicts the
implementation details of the proposed IMDB. Section 5
presents the experiment results and analysis. And finally,
conclusions feature in Section 6.

2 Background
2.1 CUDA overview

CUDA is an extension to C based on a few easily-learned
abstractions for parallel programming, coprocessor offload,
and a few corresponding additions to C syntax. CUDA gives
developers access to the virtual instruction set and memory of
the parallel computational elements in CUDA GPUs. There
are several advantages over traditional GPGPU using graphics
APIs, and they are scattered reads, shared memory, faster

column)

top // the top position of the stack
/I for each running thread.
begin
top[idx]++;
stack[index][top[idx]] =1;
else

stack[index][top[idx]] =0;
end

Algorithm SelectGreater_kernelProgram (dataTable, stack, top, selected_flag,

Input: dataTable //the target data table in the GPU memory
stack // the stack of operators of the query criteria

column // the column index of the data table. Assign one unique column index

Output: selected_flag //an array of flags denotes which record is selected

for idx = 1 to (the size of data table) // for each parallel running thread

if (dataTable[column] [idx] > value) then
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Table 4 Algorithm of AND process in selection query

Algorithm select AND_kernelProgram (dataTable, stack, top, selected_flag)
Input: dataTable // the data table in the GPU memory

stack // the stack of operators

top // the top position of the stack
Output: selected_flag // an array of flags denotes which record is selected
begin

for index = 1 to (the size of data table) // for each one of parallel running threads
stack[index][ top[index]-1] = stack[index][ top[index]-1] &

stack[index][ top[index]];
top[index]- -;

end

downloads and read backs, and full support for integer and
bitwise operations (Wikipedia, http://en.wikipedia.org/wiki/
CUDA). Besides, it also provides building blocks, such as
parallel data processing, such as parallel prefix-sum, parallel
sort and parallel reduction for parallel data processing
algorithms. The prefix sum (also known as the scan) is an
operation on lists in which each element in the result list is
obtained from the sum of the elements in the operand list up
to its index (Shubhabrata et al. 2007). There are two kinds of
prefix sum, exclusive prefix sum and inclusive prefix sum. In
exclusive prefix sum, the first element in the result array is
identity (0 for following operation) and the last element of
the operand array is not used; whereas inclusive prefix sum,
all elements in operand array are used. In next section, we
will explain how to use prefix sum to calculate the position
of selected data and use the proposed algorithm to sort all
elements in the data table.

2.2 SQLite overview

SQLite is an ACID-compliant embedded relational data-
base management system implemented in a C library with

0 1 2 3 4 5 6 7 8 9
[ol1]ofof1]o[1]ofo]o]

Flags of selected

records
Pre-fix sum [oJofl1]l1]1]l2]2]3][3]3]
0 t1 t2 3 t4 t5 t6 t7 t8 t9
Data table
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¢—‘~L—'w——-'
Result table E
0 1 2

Fig. 3 Process of moving data queried to the result table

relative small footprint, and popularly used by modern
hand-held mobile devices, such as Apple and HTC smart
phones. In contrast to other database, SQLite is integrated
with client applications, and can be access by the same
application process (Wikipedia, http://en.wikipedia.org/
wiki/SQLite). D. Richard Hipp designed SQLite and
implemented most of the SQL-92 standard for SQL in year
2000 (Owens). It has biding for a large number of
programming languages, and is well suited to embedded
systems such as Apple’s i0S, Symbian OS, Nokias’
Maemo, Google’s Android, RIM’s BlackBerry and so on.
Due to the population usage of SQLite, it is treated as the
comparison target of the performance evaluation of our
IMDB implementation on GPU.

3 Design issues
3.1 Primitives
CUDA would be the best choice if developers plan to

design and implementation IMDB on GPUs. However,
CUDA has some limitations which will restrict the IMDB

Unsorted data

lolsl7]le[s|lal3|2]1]o0]

Index before sorting IO|1|2|3|4|5|G|?|3|9|

l2(3[a|ls[e[7]8]9]
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Index after sorting

Fig. 4 Modified algorithm of parallel sorting
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implementation on GPU. Also, it is not straight forward for
developers to use libraries provided by CUDA to sort or
compare values in a data table. Here are some primitive
issues and suggestions for developers.

(M

@

Limited registers and shared memory: The number of
registers and shared memory in multi-processor (SM)
of GPU is finite. One MP is the basic unit to dispatch
several threads. The number of registers and share
memory used by threads dominate how many threads
can be issued in one block.

Divergent branch: The cost of branching within one
Warp could be expensive, if threads run on different
execution path because they should be serialized by
the thread scheduler of the GPU.

Table 5 Algorithm of data sorting

)

“4)

®)

The overhead of data transfer between CPU and
GPU is large: The bottleneck of GPU-based
applications is the data transferred back and
forward between GPU and CPU. In the initial stage, all
data and tables are loaded to GPU memory to minimize
the overhead.

Non-coalesced global memory access: Multiple global
memory access is grouped into on memory access if
the access pattern of half warp is sequential. If the
access pattern is not sequential, GPU should issues as
many concurrent memory access as possible.

CUDPP modification: CUDPP is a serial and efficient
library in CUDA environment. There are several basic
algorithms are included in it. For instance, parallel
prefix sum and parallel sorting algorithm are imple-

Output: sortedTable
begin

sortdata_index[index]=index;

sortdata_index[index]=index;

sortdata_index );

Algorithm DataSorting (dataTable, sortedTable, selected_flag, key)
Input: dataTable (the result Table of Selection Query)

key(a column number for sorting key-value pairs)

cudaMmeoryAlloc (sortdata_input, number of records queried);
cudaMmeoryAlloc (sortdata_output, number of records queried);
cudaMmeoryAlloc (sortdata_index, number of records queried);
copy the data of key column from dataTable to sortdata_input[]

for index=1 to number of records queried do in parallel
cudppSortModfied (sortdata_output, sortdata_index,
sortdata_input, number of elements);

/lcudppSort default: ASC. we use cudpp_option_forward by default.

mvSort_kernelProgram (sortedTable, dataTable,
number of elements, sortdata_index );

copy the data of key column from dataTable to sortdata_input[];
for index=1 to number of records queried do in parallel
cudppSortModfied (sortdata_output, sortdata_index,

sortdata_input, number of elements);

mvSort_kernelProgram (sortedTable, dataTable, number of elements,

//copy data from dataTable according to sortdata_index

@ Springer
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Table 6 Algorithm of moving data after sorting

sortdata_index )

Begin

end

Algorithm mvSort_kernelProgram (sortedTable, dataTable, number of elements,

Input: dataTable (the starting address of data table in the GPU memory)
sortdata_index (an array of index denote the original address of records.)
Output: sortedTable (a table with sorted data according to the sortdata_index)

for columnldx = 0 to (the number of columns) do
for index = 1 to (the number of records queried) do in parallel
sortedTable[columnldx][ index] =
sortedTable[columnldx][ sortdata_index[index]];
stack[index][ top[index]-1] = stack[index][ top[index]-1] &
stack[index][ top[index]];

mented in the CUDPP library (Harris 2008; Garland et
al. 2008). Unfortunately, those algorithms in CUDPP
support 1-D array as input and another 1-D array as
output, but are not suitable for sorting elements in data
table column by column. We modified the sorting
function, and declare an additional parameter of 1-D
array initialized with sequential and ascending numbers.
By moving both data and the index value of the
additional parameter to corresponding position, a
sorted data set could be presented by the index
array whose elements point to data values in a
sequential order.

3.2 Scope of CUDADB implementation

The scope of this paper is to design and implement a
IMDB support SQL-92 standard of SQL. The following
table shows the major functions which cannot be
executed in parallel on CPUs, and are supported in
CUDADB (Table 1).

Unsorted data L;l;l;lfj:ljJ:le;l;‘

l

0o 1 2 3 4 5 6 7 8 9

sorted data ‘1‘1|2‘2‘3[3‘4‘5|5‘5‘
!
Flags of o 1 2 3 4 5 6 7 8 9
segmentation ‘0‘0|1‘0‘1[0‘1‘1|0‘0‘
Scan

Fig. 5 Setting flags of segmentation Scan

4 System implementation

Conventional database systems use tree structure, such as
B-Tree, to manage data or indices. The searching or sorting
algorithms are optimized in sequential computation envi-
ronment, but are obviously not suitable or cannot be used
directly for parallel computer architectures. (Atallah et al.
1989; Suri et al. 2006; Haboush and Qawasmeh 2011) To
fully utilize computing power of GPUs and reduce the
opportunity of coalesced memory access, CUDADB uses
two dimensional column-major arrays for continuous
memory access. Each data in the 2-D arrays is stored in
column major, and each column is mapped to a corresponding
row of a GPU memory table. Figure 1 shows the relationship
between column-major data structure and GPU memory.
Based on the column-major data structure.

4.1 Selection query

How Selection Query works is explained in this section.
The functions in bold type are not CUDA programming

Flags of 0 1 2 3 4 5 6 7 8 9
segmentation [0‘0‘1‘0‘1‘0‘1‘1]0‘0‘

Scan
!

nnnnnnnnnn

!

2 3 4 5 6 7

R RLELLED

g 9

COUNT

Fig. 6 Process of COUNT function
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Table 7 Data Table and

Result Set Table

group value
1 145
1 254
2 645
1 399
2 645

Table 8 Algorithms of Data Group

@ Springer

interfaces, and are just used for clearly describing each step
of the algorithm. In addition, because the implementation
details are similar for most of the proposed functions, such
as selectGreater kernelProgram, selectSmaller kernel-
Proam and selectEqual_kernalProgram, here we just show
the steps of selectGreater kernalProgram. After getting
condition parameters, the process compares each record
column by column. Assume that there exists a record in

Algorithm DataGroup (resultOfSelect, QueryData, number of data queried)
Input: resultOfSelect (a data table of Selection Query result)

Output: sortedTable
/loutput: QueryData

begin

cudaMmeoryAlloc(sort_idata, number of data queried);
cudaMmeoryAlloc(sort_odata, number of data queried);
cudaMmeoryAlloc(sort_index, number of data queried);
cudaMmeoryAlloc(grp_idata, number of data queried);
cudaMmeoryAlloc(grp_odata, number of data queried);
cudaMmeoryAlloc(flag_d, number of data queried+1);
cudaMmeoryAlloc(grp_icnt, number of data queried);
cudaMmeoryAlloc(grp_ocnt, number of data queried);

for index=1 to number of records queried do in parallel

sort_index [index]=index;

copy the data of group from data Table to sort_idata;

cudppSortModfied(sort_odata, sort_index, sort_idata, number of elements);

setGrpInput_kernelProgram(grp_idata, flag_d, sort_odata, resultOfSelect)

/1 set the flag for segmentation scan and data of the aggregate functions

switch(QueryData ->funcOp){

case DB_SUM:

segmentationScan.op = CUDPP_ADD; break;
case DB_AVG:

segmentationScan.op = CUDPP_ADD; break;
case DB_MIN:

segmentationScan.op = CUDPP_MIN; break;
case DB_MAX:

segmentationScan.op = CUDPP_MAX; break;

default:
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Table 8 (continued)

switch(QueryData ->funcOp){

default:

end

cudppSegmentedScan(grp_odata, grp_idata, flag_d, number of elements);

if (QueryData->funcOp==DB_COUNTII QueryData->funcOp==DB_AVG){

for index=1 to number of records queried do in parallel
grp_icnt [index]=1;

segmentationScan.op = CUDPP_ADD;
cudppSegmentedScan(grp_ocnt, grp_icnt, flag_d, number of elements);

case DB_COUNT:
mvGrp_kernelProgram;
break;

case DB_AVG:
mvGrpAVG_KkernelProgram;
break;

mvGrp_kernelProgram;
break;

return the result Table of DataGroup

each column matching one of the condition parameters
respectively. Then, the record is selected and then set as “1”
to the corresponding position of a flag array. After the
matching process, we check the flag array, and copy these
records marked as “1” to another result table. To parallelize
the Selection Query operation, a dedicated thread is
assigned to a record. All threads run in parallel, and each
thread compares all columns with the assigned records
iteratively.

To guarantee the integrity of selection operation, the
“AND” operation has higher execution priority than the
“OR” operation. Before processing the Selection Query
operation, the original prefix notation has to be transformed
into postfix notation. As shown in Fig. 2, one stack is used
by threads for each record while transforming prefix
notations into postfix notations. The GPU scheduler is
responsible for keeping the serialized condition for all
execution paths especially when branches within the same
block occurred. Because the cost of branch execution paths
is expensive, host computer also have to be responsible for
the partial flow control to avoid divergence branches. After
the computation, the value of the bottom element in the

stack is selected. The selected record will be moved to
another 2-D result array and transmitted to the host. Once
the 2-D result array comes out, the final stage will be the
sorting processing of the values in the result array.

Sorting elements of the result array could be easily
implemented by using the cudppScan function provided by
the CUDPP library (Shubhabrata et al. 2007). The cudppS-
can performs a prefix sum operation on the flag array in
GPU memory and outputs an array of corresponding
position. The details of the design of Selection Query are
articulated in Tables 2, 3 and 4.

Figure 3 shows the algorithm of moving original data
records to the result table. Assume we have a 10-record
table, and each record is associated with a thread
respectively. In Fig. 3, t0~t9 means threads with tread ID
[0]~thread ID(Qihang et al. 2008). Each thread of thread
ID[i] checks two values, one is in the flags of selected
records and the other one is in the result array of pre-fix
sum function. If the value in the flag array of selected
records is “1”, it means that the value of corresponding
address in the result array of pre-fix sum function is the
new position of selected record in result table.
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Table 9 Algorithm of AVG process in Data Group

Algorithm mvGrpAVG_kernelProgram (resultTable, sort_odata, grp_odata,
grp_ocnt, flag, number of data queried)
Input: sort_odata (group data)
grp_odata (result of the aggregate function, SUM)
grp_ocnt (number of elements in each group)
flag (the fist position of data in each group)
Output: resultTable (result of Data Group)
begin
for idx = 1 to idx=number of data queried do in parallel
if(flag[idx]=1){
resultTable[columnO][resultindex] = sort_odata[idx-1]
resultTable[column1][resultIndex] = grp_odata[addr-1]/grp_ocnt[addr-1];
}
if (threaded=0) {
resultTable[columnO][number of data queried]=sort_odata[number of data
resultTable[column1][number of data queried] = grp_odata[number of data
queried -1] / grp_ocnt[number of data queried -1];
}
end

queried -1];

4.2 Sorting data

After selection query, the entire result table can be sorted
according to a key column identified by user. This entire
process is commonly called sorting key-value pairs. As
shown in Fig. 4, the index of data denoting the original
position is necessary for sorting key-value pairs. As we
mentioned in previous sections, by modifying the
cudppSort function, two 1-D arrays are used as the input
parameters. The outputs of the modified cudppSort
include a sorted array and an index array specifying the
position of the original data array. Tables 5 and 6
illustrates the implementation details of Sorting Data on
GPU. Values of address[i] in the index array means that
the i™ element of the original array was moved to address
[i] after sorting (Figs. 5 and 6).

4.3 Data grouping

In conjunction with the aggregation function, the Data
Grouping is used to group the result set among several
columns. Taking the following table as example, the left part
of Table is the original data table, and the right part is result set
table after executing Data Group operations (Table 7).

@ Springer

In the beginning, data scattered irregularly over the data
table. In order to divide data into several groups, the entire
table has to be sorted based on the identification of each
column. After the sorting process, the data of the same
group are gathered together in one table. Then, we can use
cudppSegmentationScan function provided by the CUDPP
library to calculate the aggregation function. Flags will be
set to dedicate the starting address of every group according
to sorted columns.

Every address[i] and address[i-1] is checked by the
thread with thread ID[i]. If the values in address[i] and
address[i-1] are not equal, the flag of address[i] will be set
in flag array. The flag array is an input of cudappSegmen-
tationScan. There are several algorithms of cudppSegmen-

Table 10 Hardware configuration

CPU Intel Core 2 Quad Q6600 (2.4 GHz, four core)

Motherboard ASUS P5E-VM-DO-BP, Intel® X38 Chipset
RAM Transcand DDR-800 2 G

GPU NVIDIA 9800 GT 512 MB (GIGABYTE OEM)
HDD WD 250 G w/8 MB buffer
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Table 11 NVIDIA 9800GT specification Table 13 Sample Test Data

Core Name GeForce 9800 GT (G92) Column 1 Column 2 Column 3
Number of Multi-Processor 16 2 50 598

Number of Registers 8192 (per SIMD processor)

8 KB (per SIMD processor)

8 KB (per SIMD processor)

Shader: 1.751 GHz, Core: 700 MHz
900 MHz

16 KB (per SIMD processor)

512 MB GDDR3

Constant Cache

Texture Cache

Processor Clock Frequency
Memory Clock Frequency
Shared Memory Size

Device Memory Size

tationScan can perform. We implemented SUM, COUNT,
MAX, MIN and AVG which included in the most of data
base. We can directly implement SUM, MAX and MIN
using sum, min, and max algorithms provided by cudppSeg-
mentationScan. As for the COUNT function, we need an
additional array with all values set as ‘1° in it. The output of
cudppSegmentationScan with sum algorithm performed on
this array will be the result of the COUNT function. Finally,
the result of AVG can be calculated through divide SUM by
COUNT. The basic concept of Data Grouping was listed in
Tables 8 and 9.

4.4 Data updating, deleting and insertion

The idea of data update is trivial. There is a flag array
used by Selection Query to denote the selected records.
By using the same flag array, each record with marked
notation in the flag array will be updated in parallel
automatically by every thread. Like Data Update, the
flag array is used to specify which data is selected to be
deleted. Because the remaining data should be moved
from original table to new table, the flag are reversed to
denote the reserved data. The reserved data are moved
from the original table to the result table. Finally, the
original table was freed from memory and replaced by
the result table. Again, the idea of inserting data is also
easy to implement. New data is transmitted to GPU
memory and inserted to the position next to the last
records of data table. Similar to the design of data
insertion, based on the flag array of selection query,
selected data are inserted to the result table.

Table 12 Software Configuration

oS Open SUSE with version 11.1 (32bit version)

GPU Driver Version  185.18.14
CUDA Version 2.2

GNU Compiler gecdl

5 Experimental analysis
5.1 Experimental setup

In our experiment, a 4-core CPU and GeForce 9800 GT is
used for performance evaluation and comparison. The
detail of hardware configuration information is described
as following (Tables 10, 11 and 12).

Detail of GPU specification is depicted as the following
table. There are 8 SP (Stream Processor) included in each
MP (multi-processor). Each SP can process one single
precision floating pointer calculation. With ideal condition,
the GPU can processes 8x16=128 single precision floating
pointer calculations simultaneously.

The software environment for the performance evalua-
tion is as following.

5.2 Experimental analysis

In the performance evaluation experiments, we log the
execution time for both CUDADB and SQLite in-
memory database by adding fixed number of data
records for each test run. To simplify the evaluation
and skip the duplicate test runs, the test cases of
Selection, Data Grouping, and Insert Data by Selection
Query are exercised for performance analysis. The
comparison between CUDADB and SQLite is made
based on the conditions of total number of records and
number of records in a query result set. Finally, we try
figure out the “turning point” for data tables with
variant numbers of data records for both CUDADB and
SQLite.

Comparison of Insertion
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Fig. 7 Execution time comparison of insertion operation
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Comparison of Selection Query

GPUDB
————— SQLite memory DB

excution time(ms)
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0

0
2100
2200
2300
2400
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No. records queried

Fig. 8 Execution time comparison of selection
5.2.1 The pattern of test data

For performance estimation, the experiments use the test
data provided by official SQLite benchmarks. There are
three columns in the data table. The data in first column of
each record is a unique random number between 1 to total
number of records. The second column is the group number
which will be the number of 1 to 100. The last column of
our test data is a random number from 1 to 65535. The
following is an example of test data which is belong to
group 50. All the experiments are tested for 50 times, and
the averages of result data are used for the performance
comparisons and discussions (Table 13).

5.2.2 Performance comparison

Insertion In Fig. 7, we can see the insertion function of
CUDADB suffered from the overhead of transferring data
form host memory to GPU memory, although the difference
between execution times of two systems is about 20 ms to
120 ms. Average increased execution time for CUADB is
65.512 ms for each test run by adding 5000 records
respectively. Because we expand twice times of the table

Comparison of Data Grouping
16
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Fig. 9 Execution time comparison of data grouping
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Comparison of InsertBySelect Query
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Fig. 10 Execution time comparison of data insert

size for each time when the 2-D array is full. The
expanding overhead takes another 10.453 ms in average.

Selection query As showed in Fig. 8, CUDADB takes
2.598 ms in average to complete a Selection Query operation.
The execution time of CUDADB is stable and independent to
the total number of target data records. The performance of
SQLite memory DB is better than CUDADB when the
number of target data records is less than 1700 which is the
turning point of the Selection Query operation.

Data grouping In Fig. 9, the execution time of CUDADB
increases smoothly when the total number of target data
records goes from 500 to 2500. We believe that the root cause
of the increased execution time is the sorting processing time
before executing the aggregation function. Of course, the
number of records queried also affects the execution time of
processing the aggregate functions. We will have further
discussion about this issue in later sections. The results show
that CUDADB performs better when the number of target data
records is larger than 600 (Fig. 10).

Data insert according to selection query Similar to the

evaluation results of Selection Query and Data Grouping,
the execution time of CUDADB is almost independent

GPU Computation Time of Data Group
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Fig. 11 GPU execution time of data group
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Fig. 12 GPU computation time
of selection query
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from the number of target data records. The two special
cases of 1,100 and 2,100 records for CUDADB are caused
when the inserted data exceed the data table size. The table
size expands twice times of the original one to accommo-
date all data records.

5.2.3 Analysis of GPU computation time of data grouping

There are two steps included by Data Grouping process.
One is Selection Query, and the other one is Sorting Data
and aggregate functions calculation. We evaluated the
computation time of kernel programs which run on GPU
to analyze the performance. At first, we evaluated the
variation of GPU execution time by increasing the number
of records queried from 2,500 records to 10,000 records
and total number of data is 100,000 records in the data
table. As we can see in Fig. 11, the more records queried,
the more GPU time for Data Grouping step.

There are two jumps at 4,500 and 8,500 records queried.
Prefix sum algorithm and sorting algorithm implemented by
CUDPP increase 2 in the power of n threads each time
while the number of threads is not enough. The case of
4500 exceeds the power degree of 4096. It needs to issue
twice number of threads which will take more execution
time than the case of 4096.

We evaluated the GPU computation time of Selection
Query in Data Grouping process respectively with total
number of 100 K, 200 K, 300 K, 400 K, and 500 K records
in data table. As showed in Fig. 12, GPU computation time
of Selection Query is independent from the number of
records queried. According to our implemented methods,
one thread is designate on one record for execution
selection query process. Due to the restriction of hardware,
compiler will issue the maximum number of threads that
the hardware can sustain by evaluating registers or shared
memory usage of kernel program. Selection Query oper-

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%
Persentage of Table Size

ations perform stably. The total execution time is a portion
to the total number of target data records, but is
independent from the number of data records in result sets
(Fig. 13).

Finally, we evaluated the total GPU time of Data
Grouping. The proportion of number of date records in a
result set to the total number of records in data table is
small, so the impact of numbers of records in result set to
the GPU execution time is pretty small.

5.2.4 Evaluation of turning points

It is interesting in the evaluation of turning points between
CUDADB and SQLite. A turning point stands for the ratio
of the number of data records in a result set to the total
number of records in a target table. As shown in Fig. 14,
each data line indicates the relationship of the SQL
operation, and turning points. For example, the red line
represents the turning points between CUDADB and
SQLite. It also implies the performance differentiation
between CUDADB and SQLite for the implementation of
each SQL operation. CUDADB performs better in update
and insert operations than the select and sort operations.

GPU computation time for group (size
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Fig. 13 Total GPU computation time of data grouping
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Fig. 14 Turning points of GPU DB and SQLite memory DB

Table 14 shows the turning point ratio of between our
CUDADB implementation and SQLite is from 0.16 to 2.06.

6 Discussion and conclusion

Table 14 Turning Point ratio
of each SQL operations

*Implementation Limitations

Most of our implementations are based on CUDA
functions, The CUDADB is implemented by re-design
the API signatures by adding additional data structures
and parameters, and by re-wrapping the structures and
calling sequences of CUDA function calls. Hence, the
implementation is restricted to support integer type due
to the same constraints of CUDA functions. In
addition, there will be several issues which will affect
the result of our implementation for changes of each
version. For example, the CUDA function 'cudppSort'
behaves different in version 1.0a, and 1.1. There
should have minor implementation changes for each
version. Besides, in current version of CUDADB,
parallel string data query, join query, and concurrent
data query are not supported.
= Potential CUDADB Applications

It is much different from the performance of GPUs
of general purpose computers and handsets. It is not
expected to deploy our proposed algorithms in hand-
held devices. Instead, the result of our proposed IMDB
algorithm will inspire those scientific computing

applications to change from the file bases to the
database paradigms. Take our previous ocean data
extraction project as an example, all data are stored in
large volume of files, and it takes very long time to
extract right data out from those files (Chang and
Cheng). Another good example is the employment of
CUDADB for the peer to peer applications (Jung
2010). The proposed CUDADB mechanism indeed
helps to speed up the performance of data extracting
processing. It would be a new trend for distributed
supercomputing infrastructures to join GUPS together to
deliver high-performance computations. It is also the
purpose of this paper to have the CUDADB implemen-
tation. Some applications with large data set, such as
molecular simulations and our previous study on ocean
data extraction/simulation of scientific computing, are
suitable for such environment. GPUGRID.net is another
example for this (GPUGRID, http://www.gpugrid.net/).
The CUDADB tries to enhance the performance of
these application by utilizing the idea of in-memory
database because the dispatched database size of each
volunteer are suitable for in-memory computing after the
data decomposition processing of the server.
= Conclusion

Modern GPU indeed brings remarkable improvement
for the performance of data intensive applications. In this
paper, we first survey the background of existing main
memory data base and CUDA programming model.
Then, the implementation of CUDADB is introduced.
The performance evaluation and comparison between
CUDADB and SQLite are also discussed. The experi-
mental results show that the execution time of CUDADB
operations is independent from the number of data
records in a result set, and increase smoothly in a specific
ratio to the total number of records in the target data table.
From the performance analysis, the turning points can be
treated as the differences between CUDADB and SQLite
for each SQL operations. The idea of turning point can
also be used by developers to design GPU-enabled
database applications in the future. Generally speaking,
the more records in the result set, the more execution time

Function name

Ratio of No.of records in result set
to the total No. of data records (%)

Selection Query

Selection Query and Sorting Data
Selection Query and Data Grouping operations
Data Insert According to Selection Query

Data Update
Data Delete

1.926%
2.061%
0.491%
0.784%
0.161%
0.784%
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SQLite operations will take. CUDADB performs well,
and the ratio is about 0.161% to 2.061% for different
functions.
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