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a b s t r a c t

Greenhouse gas (GHG) emissions have exacerbated global warming, and consequently are the focus of
worldwide reduction efforts. Reducing emissions involves accurately estimating GHG emissions and the
uncertainty associated with such estimates. The uncertainty of GHG emission estimates is often assessed
using the 95% confidence interval. Given a small sample size and non-normal distribution of the
underlying population, the uncertainty estimate obtained using the 95% confidence interval may lead to
significant bias. Bootstrap confidence interval is an effective means of reducing bias. This work presents
a procedure for estimating the uncertainty of GHG emission estimation using bootstrap confidence
intervals. Numerical simulation is performed for GHG emission estimates under three distributions
(namely normal, log-normal and uniform) to find the 95% confidence intervals and bootstrap confidence
intervals. Finally, the accuracy and sensitivity of the uncertainty of various interval estimations are
examined by comparing the coverage performance, interval mean and interval standard deviation.
Simulation results indicate that the bootstrap intervals are more applicable than the 95% confidence
interval given non-normal dataset and small sample size. Moreover, when sample size n is less than 30,
the bootstrap confidence interval has a smaller interval length with a smaller deviation than that of the
classical 95% confidence interval regardless of whether the data distribution is normal or non-normal.
This study recommends a sample size greater than or equal to 9 for estimating the uncertainty of
emission estimates. When the sample size n exceeds 30, either the normality-based 95% confidence
interval or bootstrap confidence intervals may be used regardless of whether the data distribution is
normal or non-normal. A case study of carbon stock from Taiwan demonstrates the feasibility of the
proposed procedure.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Global warming caused by anthropogenic greenhouse gas
(GHG) emissions has contributed significantly to global climate
change. The Intergovernmental Panel on Climate Change (IPCC)
predicts global temperatures will rise between 1.8 �C and 4.0 �C by
2100. The United Nations Framework Convention on Climate
Change (UNFCCC) was held in 1992 to control GHG emissions and
to reduce its influence on climate change. The Kyoto Protocol was
developed under the UNFCCC to address global warming in 1997.
The Kyoto Protocol mandates industrialized countries to reduce
GHG emissions by 5.2% relative to 1990 emission levels by 2012.

Variability refers to the heterogeneity of values within a pop-
ulation and is an inherent property of either the system or of
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nature, and not of the analyst. However, uncertainty refers to lack of
knowledge regarding the true value of a quantity. Uncertainty
depends on the state of analyst knowledge, which in turn depends
on the quality and quantity of applicable data, as well as knowledge
of underlying processes and inference methods (IPCC, 2006; Zheng
and Frey, 2004). Reducing emissions initially involves accurately
estimating GHG emissions and associated uncertainties. Uncer-
tainty of emission estimates is an essential component of
a complete and transparent emission inventory (IPCC, 2000). The
IPCC has developed and refined guidance on quantifying uncer-
tainty in National GHG emission inventories, including Good
Practice Guidance and Uncertainty Management in National
Greenhouse Gas Inventories (IPCC, 2000), Good Practice Guidance
for Land Use Change and Forestry (IPCC, 2003), and IPCC Guidelines
for National Greenhouse Inventories (IPCC, 2006). These guidelines
defined the uncertainty range to express uncertainties regarding
the estimated GHG emissions. If the ranges of uncertainty are small,
then analytical methods can achieve acceptable accuracy (IPCC,
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2006). However, if the ranges of uncertainty are large, analytical
methods can produce errors. The bootstrap simulation, an alter-
native to the conventional approach, was mentioned in Section
3.2.2.2 of IPCC (2006) when the relative range of uncertainty or the
standard deviation of the mean is large. Uncertainties in invento-
ries arise through at least three different processes (IPCC, 2000):

1. Uncertainties arising from definitions (e.g. incomplete
meaning, unclear or incorrect definition of an emission or
uptake);

2. Uncertainties arising from natural variability of the processes
that produce an emission or uptake;

3. Uncertainties arising from the assessment methods including:
(i) measurement uncertainties; (ii) sampling uncertainties; (iii)
uncertainties from incompletely described reference data; and
(iv) expert judgment uncertainties; (v) uncertainties from
model or method description and equations.

Uncertainties regarding emission estimates in GHG owing to
sampling error can be quantified in terms of their mean or other
statistics by using the 95% confidence interval of the true emission
(IPCC, 2006). The confidence interval is defined in terms of the
2.5th and 97.5th percentiles of the sampling distribution for
uncertainty in a statistics (e.g. sample mean). The statistical liter-
ature outlines many probability density functions that frequently
represent specific real world data. Some of these functions, such as
normal, log-normal and uniform distributions, are considered for
representing variability in activity data and emission factor data
(IPCC, 2006).

Emission estimates are obtained by multiplying an appropriate
emission factor by an activity data representing the extent of the
emission generating activity. The approaches, such as classical
statistical methods, expert judgment and the recommendations of
IPCC, can be utilized to estimate uncertainty in the emission factor
or activity data (IPCC, 2006). A sufficiently large dataset allows for
direct use of classical statistical methods to estimate uncertainty.
When empirical data are lacking or not considered fully represen-
tative for all causes of uncertainty, uncertainty must be estimated
based on expert judgment or other methods recommended by
IPCC. Uncertainty in a statistic (e.g. sample mean) attributable to
random sampling error can be described using a sampling distri-
bution. Sampling distributions are used to obtain confidence
intervals for the parameters of a distribution. A confidence interval
for a parameter is a measure of knowledge regarding the value of
the parameter (Zheng and Frey, 2004). The 95% confidence interval
for the true mean obtained using the classical statistical method
relies on the central limit theory and large sample size. Therefore,
when the number of emission data is relatively small and the
emission data distribution is non-normal, the 95% confidence
interval of the emission estimates obtained using the classical
statistical method may result in significant bias.

An alternative method for quantifying uncertainty in the mean,
or any statistic, owing to sampling error is the bootstrap simulation
(Efron, 1979). Bootstrap simulation has been used to quantify
uncertainty in emission factors and inventories for a variety of air
pollutants, including GHGs, hazardous air pollutants (HAPs), and
criteria pollutants. Examples of quantification of emissions factor
uncertainty using bootstrap are Frey and Bammi (2002) and Frey
and Li (2003). Examples of quantification of uncertainty in inven-
tories based on bootstrap uncertainty estimates of emission factors
are Frey and Zhao (2004) and Zhao and Frey (2004b). Furthermore,
bootstrap simulation was used to develop an approach for quanti-
fying both the uncertainty and variability of estimates of hazardous
air pollutant (HAP) emissions from power plants (Frey and Rhodes,
1996). For instance, bootstrap simulation was applied to the cell
burner wall-fired dataset for estimating uncertainty in NO2 emis-
sions per Btu (Rhodes and Frey, 1997). Bootstrap simulation
produces paired parameter estimates to represent regarding the
distribution parameters. Similar work has been performed for
highway vehicle emissions (Kini and Frey, 1997). A previous study
demonstrated the feasibility of using bootstrap simulation to
quantify uncertainty and variability for a selected example of NOx
emissions from coal-fired power plants (Frey and Zheng, 2002).
Furthermore, the methods for bootstrap estimation of confidence
intervals for emission factorswith complete and censoreddatawere
applied to urban scale emission inventories (e.g., Frey and Zhao,
2004; Zhao and Frey, 2004b). Additionally, an unbiased method
based on Maximum likelihood estimation (MLE) and bootstrap
simulation can quantify the inter-unit variability and uncertainty in
statistics such asmean for censored datasets of an air toxic emission
factor (Zhao and Frey, 2004a). The effectiveness of this method was
assessed by applying it to synthetic data with various degrees of
censoring, sample sizes, coefficients of variation and detection
limits, and by using various parametric distributions such as log-
normal, gamma, and Weibull. According to those results, the unbi-
ased method based on MLE and bootstrap simulation can robustly
and reliably quantify the variability and uncertainty of censored
datasets under variable conditions as outlined above.

Maximum likelihood estimation (MLE) and the bootstrap
method are applied to extensive empirical emission factor data for
combustion sources to quantify inter-unit variability and uncer-
tainty in mean emissions for selected air toxics (Zhao and Frey,
2006). The largest range of uncertainty in the mean obtained for
the external coal combustion benzene emission factor using 95%
confidence interval was �93% to þ411%. However, the detailed
accuracy and sensitivity analyses for various bootstrap confidence
intervals related to the uncertainty of estimates of GHG emission
are rarely discussed. The accuracy and sensitivity analysis are
fundamental and essential for numerical methods such as the
bootstrap method and analysis ensures the estimation is
reasonable.

This work aims to propose a methodology for quantifying the
uncertainty of emission estimates using four bootstrap confidence
intervals and to evaluate the performances of the proposed esti-
mation methods by analyzing the accuracy and sensitivity of the
confidence intervals of emission estimates. A case study of carbon
stock from Taiwan is presented to illustrate the application of the
proposed procedure. The robustness of bootstrap simulation can
ensure reasonably accurate estimation of uncertainty.

2. Classical and bootstrap confidence intervals

To illustrate the utilization of the classical and bootstrap confi-
dence intervals, the general definitions are presented in this
section.

2.1. Classical confidence interval

A (l � a) 100% confidence interval for an unknown parameter
(e.g. population mean) is an interval calculated from the sample
data, such that (l � a) 100% of the intervals will enclose the true
parameter value. For example, a 95% confidence interval is an
interval with 0.95 probability to enclose the true parameter.
Suppose that fx1; x2;/; xng is a random sample drawn from
a normal populationwith unknownmean m and unknown variance
s2, then a (l � a) 100% confidence interval for the true mean can be
constructed as follows:

x� ta=2
sffiffiffi
n

p (1)
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where x is the sample mean, s is the sample standard deviation, n is
the sample size, and ta=2 is the value corresponding to an upper-tail
area of a/2 in the t distribution with n � 1 degrees of freedom.
Relative to other methods of constructing a confidence interval (e.g.
bootstrap simulation method), the 95% confidence interval for the
mean obtained by Eq. (1) is referred as the “classical confidence
interval” in this study.

When the sample size n is sufficiently large (i.e., n � 30),
according to the Central Limit Theorem, sample mean (x) is
approximately normally distributed regardless of the distribution
of the sampled population. For small samples, the sampling
distribution of x depends on the particular form of the relative
frequency distribution of the population being sampled, and the
sample standard deviation s may not be a satisfactory approxima-
tion to the population standard deviation (Mendenhall and Sincich,
2007). As a result, utilizing classical method (i.e., Eq. (1)) to
construct a 95% confidence interval for the population mean based
on a small sample may lead to a bias. Meeden (1999) has verified
that when sampling from a skewed population with small sample
sizes, the usual confidence intervals for the mean have poor
coverage properties.

It is notable that length of the confidence interval (i.e., the
difference between the two endpoints of interval) indicates the
precision of the interval estimates of the parameter from sample
data. Moreover, in the definition of confidence interval, the confi-
dence interval length is associated with confidence level. For fixed
Fig. 1. Simulation procedure for BCa confidence interval of un
sample size, higher confidence level generally produces a larger
interval length, and shorter interval length usually has a lower
confidence level. There is a trade-off between confidence level and
precision of the estimate for the fixed sample size. On the other
hand, for fixed confidence level, the interval length becomes
shorter as the sample size increases. That is, larger sample sizes give
shorter interval length or more precise estimates.

2.2. Bootstrap sampling and the bootstrap confidence interval

Efron (1979, 1982) introduced a non-parametric, but computa-
tionally intensive, estimation method called “bootstrap” for esti-
mating the confidence interval of statistics. Bootstrap is a data-
based simulation method for statistical inference. The main
advantage of the non-parametric bootstrap method is that it does
not rely on distributional assumptions. The bootstrap method thus
can be used to estimate the sampling distribution of statistics (such
as, sample mean) based on the assumption that the sample is
representative of the population from which it is drawn, and that
the observations are independently and identically distributed.
Suppose fx1; x2; :::; xng is a random sample of size n (parent sample)
taken from a process. A bootstrap sample, denoted byfx*1; x*2;.; x*ng,
is then a sample of size n drawn (with replacement) from the
original sample. Hence, there exist a total of nn possible resamples.
Bootstrap sampling is equivalent to sampling with replacement
from the empirical probability distribution function. In practice,
certainty of emission estimates using bootstrap method.



Table 1
Nine combinations of emission parameters with various sample sizes for a normal
distribution.

Mean Standard deviation Sample size (n)

50, 60, 70 6, 9, 12 5, 6, 7,., 30

Table 3
Nine combinations of emission parameters with various sample sizes for a log-
normal distribution.

Mean Standard deviation Sample size (n)

50, 60, 70 15, 20, 25 5, 6, 7,., 30
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usually only a random sample is drawn from the nn possible
resamples, the estimate is calculated for each of these, and the
subsequent empirical distribution is referred to as the bootstrap
distribution of the statistic. Efron and Tibshirani (1993) indicated
that a minimum of approximately 1000 bootstrap resamples is
sufficient to obtain accurate confidence interval estimates.

Suppose a random variable X is used to evaluate process
performance. Although the distribution of X is unknown, the aim is
to estimate some parameter q that characterizes process perfor-
mance, such as amean emission factor. q̂ can be estimated using the

bootstrap sample. The estimate is represented by q
_*

and is called
the bootstrap estimate. The resampling procedure can be repeated
numerous times, say, B times. Moreover, the B bootstrap estimates

q
_*

1; q
_*

2;.; q
_*

B can be calculated from the resamples. Other studies
on bootstrapmethods include Efron and Gong (1983), Gunter (1991,
1992), Mooney and Duval (1993), and Young (1994). Efron and
Tibshirani (1986) further developed four types of bootstrap confi-
dence intervals; namely, the Standard Bootstrap (SB) confidence
interval, Percentile Bootstrap (PB) confidence interval, Bias-
Corrected Percentile Bootstrap (PCPB) confidence interval and
Biased-Corrected Accelerated Percentile Bootstrap (BCa) confi-
dence interval. The formulas used to calculate these intervals are
detailed below:

1 Standard bootstrap (SB). From the B bootstrap estimates

q
_*

1; q
_*

2;.; q
_*

B the sample mean (q̂
�
) and standard deviation

(Ŝq̂
�
) of bootstrap estimates can be obtained as follows.

q̂
* ¼

XB
i¼1

q̂
�
i =B (2)
Ŝq̂
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi XB
i¼1

h
q̂
*

i � q̂
*i 2

!,
ðB� 1Þ

vuut (3)

where B denotes number of bootstrap resamples and q̂
�
i represents

bootstrap estimates.

If the distribution of q̂
�
is approximately normal, the (1 � 2a)

100% SB confidence interval for q is q̂
* � zaŜq̂

�
, where za is the 100

(1 � 2a)th percentage point of the standard normal distribution.

2 Percentile bootstrap (PB). From the ordered collection of

q
_*

1; q
_*

2;.; q
_*

B, the (1�2a) 100% PB confidence interval for q can
be obtained as follows:

h
q*ðaBÞ; q*ðð1� aÞBÞ

i
(4)

* �

where q̂ ðiÞ is the ith value of ordered q̂i , i ¼ 1; 2; :::; B:
Table 2
Three combinations of emission parameters with various sample sizes for
a uniform distribution.

(Lower Bound, Upper Bound) Sample Size (n)

(45,75), (50,70), (55,65) 5, 6, 7,., 30
3 Biased-Corrected Percentile Bootstrap (BCPB). The bootstrap
distributionmay be biased. Consequently, the third approach is
designed to correct this potential bias of the bootstrap distri-
bution (see Efron, 1982 for a complete justification of the

method). First the distribution of q̂
*ðiÞ is used to calculate the

probability,

p0 ¼ Prðq̂*ðiÞ � q̂Þ; ði ¼ 1;2; :::; BÞ (5)

where q̂
*

is the value of q estimated from a random

samplefx1; x2;.xng.

Second, the following quantities are calculated:

z0 ¼ F�1ðp0Þ (6)

PL ¼ Fð2z0 � zaÞ (7)

PU ¼ Fð2z0 þ zaÞ (8)

where Fð:Þ denotes the cumulative standard normal distribution
function.

Then the 100 (1 � 2a)% BCPB confidence interval for q is

obtained as ðq̂*ðPL � BÞ; q̂*ðPU � BÞÞ.

4. Bias-Corrected and Accelerated (BCa) bootstrap. The PL and PU
in PB confidence intervals are revised as

PL ¼ F
�
z0 þ

z0 þ za
1� aðz0 þ zaÞ

�
(9)
PU ¼ F
�
z0 þ

z0 þ z1�a

1� aðz0 þ z1�aÞ
�

(10)

a ¼
XB
i¼1

ðq̂* � q̂
*ðiÞÞ3=6

"XB
i¼1

ðq̂* � q̂
*ðiÞÞ2

#3
2

; (11)

q̂
* ¼

XB
i¼1

q̂
�
i =B (12)

z0 ¼ F�1ð#fq̂*ðbÞ< q̂g=BÞ (13)

where Fð:Þ is the cumulative standard normal distribution function
and za denotes the 100 (1 � 2a)th percentage point of the standard
normal distribution. z0 and a are labeled the bias-correction and
acceleration constants, respectively. Thus the 100 (1 � 2a)% BCa

confidence interval for q is obtained as ½q̂*ðPLBÞ; q̂
*ðPUBÞ	. When z0

and a equal zero, then the BCa method is the same as the percentile
interval method (Efron and Tibshirani, 1993).

The SB confidence interval is easy to calculate but requires
normality assumption on the bootstrap distribution (Efron,1986). If
q̂ is not approximately normal, then the PB confidence interval is
preferable. However, bootstrap distributions obtained using only
a sample of the complete bootstrap distribution may shift higher or
lower than expected (Efron, 1982). The BCPB method was proposed
to correct this potential bias (see Efron, 1982 for a complete justi-
fication of the method). Furthermore, an improved version of the
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Fig. 2. Coverage performance, interval mean and interval standard deviation vs. sample size under normal distribution with (m, s) ¼ (70, 12).
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percentile method called BCa (Efron, 1987) can accelerate the
correction of the estimated error of biased data in the PB confidence
interval. Though no gold standard exists for conclusively identi-
fying whichmethod has the best confidence interval (Zheng, 2002),
Efron and Tibshirani (1993) recommends the BCa confidence
interval for general use, and this study uses this interval for anal-
ysis, particularly for non-parametric problems.

3. Procedure for estimating uncertainty in GHG emission
estimates using bootstrap confidence intervals

IPCC (2000, 2006) guidelines suggest using the 95% confidence
intervals to express the uncertainty of emission estimates. IPCC
(2006) mentioned that in some cases confidence intervals may be
positively skewed because of small sample sizes, skewness of the
underlying population distribution, or both. IPCC (2006) also sug-
gested that numerical methods, such as bootstrap simulation, can
be used instead to obtain the confidence interval in cases where the
uncertainty in the mean is not a symmetric distribution. An
application of bootstrap approaches is to establish good confidence
intervals for estimating uncertainty in GHG inventory. Efron and
Tibshirani (1986) indicated that ‘‘good’’ means that the bootstrap
confidence intervals have relatively accurate coverage perfor-
mances and short average interval lengths in all situations (Chu and
Ke, 2006). This section presents a procedure for constructing BCa
bootstrap confidence intervals to estimate the uncertainty of GHG
emission estimates using simulated data from normal, log-normal,
and uniform distributions. Furthermore, the procedure for
analyzing the accuracy and sensitivity of the bootstrap confidence
interval is explained for various sample sizes, mean and standard
deviations.

3.1. BCa confidence intervals for estimating uncertainty in GHG
emission estimates

The above distributions are commonly used to represent vari-
ability in probabilistic assessment regarding estimation of emission
a b

Fig. 3. Coverage performance, interval mean and interval standard deviation vs. samp
estimate uncertainty (IPCC, 2006). This section sets the distribution
to represent inter-source variation in emissions, such that normal
distribution denoted by N(m, s) of emission estimates is used to
generate population data, where m is the mean of the estimated
emission and s is the standard deviation of the estimated emission.
The simulation procedure for BCa confidence interval using boot-
strap method is shown in Fig. 1
3.2. Analyzing the validity and sensitivity of bootstrap confidence
intervals

The distributions of the inter-source variability emission esti-
mates were set to be normal, log-normal and uniform, respectively,
to generate emission data. Accuracy defines the ability to measure
the true value of the characteristic correctly on average, and
precision refers to the variability in the measurements
(Montgomery et al., 2011). The performances of the various boot-
strap confidence intervals were evaluated using the following three
indices (Chou et al., 2006; Ke et al., 2008; Tong et al., 2008):

1. Coverage performance index: The index represents the
percentage of times that the actual emission falls into the
bootstrap confidence intervals. For example, if 960 confidence
intervals include the actual emission in 1000 bootstrap confi-
dence intervals, then the value of the coverage performance
index is 0.96. Larger performance index value indicates more
accurate bootstrap confidence interval estimates.

2. Interval mean index: The interval length denotes the differ-
ence between the lower and upper limits of the confidence
interval. The interval mean index represents an average
length of N bootstrap confidence intervals. Moreover, smaller
value of interval mean index implies more precise estimation
and better performance of the bootstrap confidence interval
estimates. The appearance of smaller interval means is asso-
ciated with smaller coverage performance, therefore it is
implied a trade-off relationship between precision and
accuracy.
c

le size under uniform distribution with (Lower Bound, Upper Bound) ¼ (75, 45).
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Fig. 4. Coverage performance, interval mean and interval standard deviation vs. sample size under log-normal distribution with (m, s) ¼ (70, 25).
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3. Interval standard deviation index: The index represents the
standard deviation of interval lengths of N bootstrap confi-
dence intervals. A smaller standard deviation implies smaller
estimated variation and better performance bootstrap confi-
dence interval estimates.

The procedure for analyzing the accuracy of bootstrap confi-
dence intervals involves repeating steps 2 to 6 in Fig. 1, N times
(effectiveness increases with N, and hereN¼ 2000) to obtain N sets
of bootstrap confidence intervals. The bootstrap intervals can be
verified using the coverage performance index.

The procedure for analyzing the sensitivity of bootstrap confi-
dence intervals involves repeating steps 2 to 6 in Fig. 1, N times for
various parameter combinations of sample size, mean and standard
deviation. The sensitivity of the bootstrap confidence intervals can
then be analyzed using the coverage performance, interval mean,
and interval standard deviation. The simulation procedure and
results are presented as follows.

Monte Carlo simulation was used to generate normally distrib-
uted emissions samples with various combinations of parameters,
which are listed in Table 1. Similarly, emissions estimates were
generated under log-normal and uniform distributions. Table 2 lists
the combinations of upper and lower bounds of the uniform
distribution. Table 3 lists combinations of emission parameters for
log-normal distributions.

For a normal distribution, each pair of parameters (m, s), where m
and s represent the population mean and standard deviation of
inter-source variability, respectively, a single sample of size n (n¼ 5,
6, ., 30) is first randomly taken from the generated emission data.
Then, B¼ 1000 bootstrap resamples (each is of size n) are generated
from that single sample and the four bootstrap confidence intervals
are computed. The single simulation run is then replicated
N ¼ 2000 times. The three indexes aforementioned are obtained
from 2000 bootstrap confidence intervals for evaluating the accu-
racy and sensitivity of the four bootstrap confidence intervals and
the 95% confidence interval of emission estimates. All simulation
runs are performed using Excel VBA and Matlab.
Table 4
Carbon stock of Japanese cedar in Taiwan.

Cited volume of woody
biomass (V) (m3 ha�1)

Basic wood density of the extracted
wood (D) (tonnes d.m. m�3)

BEF

170.148 0.36 1.23
180.810 0.36 1.23
184.082 0.36 1.23
203.261 0.36 1.23
205.278 0.36 1.23
213.777 0.36 1.23
242.254 0.36 1.23
248.953 0.36 1.23
251.369 0.36 1.23
252.542 0.36 1.23
Figs. 2e4 plot the three indices versus sample size n for three
distributions, namely normal, log-normal and uniform. Classical, SB,
PB, BCPB and BCa in the figures represent classical confidence
interval, standard bootstrap, percentile bootstrap, biased-corrected
percentile bootstrap and bias-corrected accelerated, respectively.
Note that, the scales for the verticalmin andmaxof the intervalmean
and standard deviation in Figs. 2e4 differ because parameters are
different for the three distributions. The coverage performance
improves with increasing sample size n (n ¼ 5, 6,., 30), while both
the intervalmeanandstandarddeviationdecrease. Increased sample
size thus improves estimation precision and accuracy for the four
bootstrap confidence intervals and the classical confidence interval.
Figs. 2e4 indicate that the coverage performance is approximately
0.90 or above for sample size n exceeding nine. Even though all four
methods present a similar trend in terms of coverage performance,
the SBmethod slightly outperforms thePB, BCPB andBCamethods in
terms of normally and log-normally distributed emission estimates.
Additionally, the BCa and BCPB methods marginally outperform the
SB and PB methods in terms of uniformly distributed emission esti-
mates. The small differences in results when comparing these
methods are of little practical significance in the cases explored here.
The classical confidence intervals are close to 95% coverage with
various sample sizes for the normal population case. But for non-
normal cases, the coverage performances of classical confidence
interval are lower than 95% when sample size is small.

The four bootstrap approaches are scrutinized using interval
mean and interval standard deviation. Figs. 2e4b show that all
interval means for the four bootstrap approaches decrease with
sample size n. The differences among the average lengths of the
four bootstrap confidence intervals are negligible. Figs. 2e4c show
that all interval standard deviations for the four bootstrap
approaches decrease with sample size n. The differences among the
interval standard deviations of the four bootstrap confidence
intervals are negligible. Therefore, this study concludes that all the
four bootstrap confidence intervals can be applied to estimate the
uncertainty of emission estimates e regardless of the normality of
the data distribution.
Woody biomass
originates (R)

Carbon fraction of dry matter (CF)
(tonnes C (tonne d.m.)�1)

Carbon stock (C)
(tonnes yr�1)

0.28 0.4903 47.28
0.28 0.4903 50.25
0.28 0.4903 51.16
0.28 0.4903 56.49
0.28 0.4903 57.05
0.28 0.4903 59.41
0.28 0.4903 67.32
0.28 0.4903 69.18
0.28 0.4903 69.85
0.28 0.4903 70.18



Table 5
Confidence intervals for carbon stock of Japanese cedar (tonnes yr�1).

Method 95% confidence interval Interval length

Lower limit Upper limit

Classical 53.53 66.10 12.57
SB 55.21 64.87 9.66
PB 55.31 64.65 9.34
BCPB 55.31 64.65 9.34
BCa 55.29 64.61 9.32
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4. Case study

The proposed methods for estimating uncertainties using
bootstrap confidence intervals are illustrated using a case study
involving the carbon stock of Japanese cedar in Taiwan. The case
study attempts to estimate bootstrap confidence intervals for the
carbon stock of Japanese cedar in Taiwan. The Carbon stock eval-
uation of a forest can be calculated using a multiplicative equation
(IPCC, 2003),

C ¼ ½V� D� BEF	 � ð1 þ RÞ � CF (14)

Where C represents forest carbon stock (tonnes yr�1); V represents
the volume of woody biomass (m3 ha�1); D represents the basic
wood density of the extracted wood (tonnes d.m. m�3); BEF
represents the biomass expansion factor for converting the biomass
of extracted round wood to total above-ground tree biomass,
dimensionless; R represents the average root-to-shoot ratio,
dimensionless; and CF represents carbon fraction of dry matter
(default ¼ 0.5), tonnes C (tonne d.m.)�1.

The cited data for V, D, BEF, and CF in Eq. (14) came from the
Third Survey of Forest Resources and Land Use in Taiwan (Forestry
Bureau, CoA, 1995) and previous studies (Lin et al., 2002; Hsieh
et al., 2010). The carbon stock of Japanese cedar shown in Table 4
can be calculated using Eq. (14) and the cited data.

Based on the construction of the BCa confidence interval, steps
3e6 from Fig. 1 were performed without any distribution
assumption. The remaining three bootstrap intervals (SB, PB and
BCPB) are constructed using a similar procedure. Table 5 lists the
calculation results of the classical confidence interval and four
bootstrap intervals for carbon stock of Japanese cedar. The interval
lengths of the bootstrap intervals are smaller than obtained using
the classical method, indicating that the smaller interval lengths
have better precise for estimating the emission estimate. Therefore,
the uncertainty estimate of carbon stock of Japanese cedar in
Taiwan ranges approximately �4.7 (tonnes yr�1).

5. Conclusions

Classical statistical methods are commonly used for estimating
uncertainties of GHG emission estimates. However, since the
emission data is usually inadequate or its distribution is unknown
or non-normal, classical statistical methods fall short in this
respect, causing significant bias in uncertainty estimation.

This study presents the results of a simulation study examining
the behavior of four 95% bootstrap confidence intervals (namely SB,
PB, BCPB and BCa) together with the classical confidence interval
for assessing the uncertainty of emission estimates. A compre-
hensive simulation for a particular combination of sample size and
parameters is run under each of the possible distributions,
including normal, log-normal and uniform. The accuracy and
sensitivity of the uncertainty for various interval estimations are
examined by comparing three indices: coverage performance,
interval mean and interval standard deviation. Based on the
simulation results, this study concludes that regarding the effect of
sample size, large sample size always results in higher coverage
performance, shorter interval mean, and smaller interval standard
deviation of the bootstrap confidence interval. Increased sample
size improves the estimation precision and accuracy for the four
confidence intervals. Furthermore, the bootstrap intervals are more
applicable than the 95% confidence interval given non-normal
dataset and small sample size. When the sample size n is less
than 30, the bootstrap confidence interval has a smaller interval
length with a smaller deviation than the classical 95% confidence
interval regardless of the normality of the data distribution. A
sample size greater than or equal to 9 and the bootstrap confidence
interval are recommended for estimating the uncertainty of emis-
sion estimates. When sample size n exceeds 30, similar results are
obtained using either the 95% confidence interval or bootstrap
confidence intervals regardless of whether the data distribution is
normal or non-normal (Zheng and Frey, 2004). In practice, the
emission data are difficult to obtain, and their distribution is not
easily determined using the goodness-of-fit test. The proposed
method thus can reduce the estimate bias from limited emission
data. Future studies can focus on smaller samples of less than nine.
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