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Abstract—This paper presents a high-throughput FFT pro-
cessor for IEEE 802.15.3c (WPANs) standard. To meet the
throughput requirement of 2.59 Giga-samples/s, radix-16 FFT
algorithm is adopted and reformulated to an efficient form so that
the required number of butterfly stages is reduced. Specifically,
the radix-16 butterfly processing element consists of two cascaded
parallel/pipelined radix-4 butterfly units. It facilitates low-com-
plexity realization of radix-16 butterfly operation and high
operation speed due to its optimized pipelined structure. Besides,
a new three-stage multiplier for twiddle factor multiplication
is also proposed, which has lower area and power consumption
than conventional complex multipliers. Moreover, a conflict-free
multibank memory addressing scheme is devised to support up
to 16-way parallel and normal-order data input/output. Without
needing to reorder the input/output data, this scheme helps a
high-throughput design result. Equipped with those new perfor-
mance-boosting techniques, overall the proposed radix-16 FFT
processor is area-efficient with high data processing rate and
hardware utilization efficiency. The EDA synthesis results show
that whole FFT processor area is mm , and the power con-
sumption is 42 mW with 90 nm process. The SQNR performance
is 57 dB with 12-bit wordlength implementation.

Index Terms—Fast Fourier transform (FFT), non-conflict
memory addressing scheme, OFDM, radix-16 FFT, WPANs.

I. INTRODUCTION

S INCE the recent decade, the increasing demand for real-
time and high-rate multimedia services has been pushing

the birth of high-rate wireless communication systems. Ultra
wideband (UWB) communication system, for example, can
deliver data rates up to 480 Mb/s at a short distance range of

10 . However, it is not enough to support high data
rate applications of more than 1 Gbps such as high-definition
(HD) streaming content downloads, HD video on demand,
home theater, and etc. To meet the application demands,
IEEE 802.15.3c-2009 standard for high-rate Wireless Per-
sonal Area Networks (WPANs) [1] was ratified recently. In
the standard, there are three PHY modes, i.e., Single Carrier
mode (SC PHY), High Speed Interface mode (HSI PHY), and
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Audio/Visual mode (AV PHY). Except SC PHY, both HSI PHY
and AV PHY are based on OFDM modulations. As is well
known, Fast Fourier transform (FFT) operation is one of the key
operations for OFDM-based communication systems. Besides,
for SC PHY mode, FFT operations are widely employed for
effective channel equalization.
Designs of efficient FFT architectures have been actively in-

vestigated since last decades. Generally, FFT architectures can
be divided into two different categories: pipelined structures (in-
cluding the single-path delay feedback (SDF) architectures [2],
[3], the multi-path delay commutator (MDC) [3], [4], and multi-
path delay feedback (MDF) architectures [12], [18], [23]), and
memory-based architectures [5]–[8], including cached memory
architecture [9]. Pipelined architectures have the advantage of
high throughput, but demand high area cost especially for long-
length FFTs. Memory-based FFT architectures usually contain
one butterfly processing element (PE), memory banks and con-
trol logics. Though they have low area costs, their throughputs
are often limited by the available number of PEs and memory
access bandwidth. Since 802.15.3c standard provides extremely
high data rates up to 2.592 Giga-samples/s for HSI PHY, one
needs to finish 512-point FFT operations within 222.2 ns. FFT
processors with such high throughput are rarely seen in the lit-
erature, due to the stringent specification. The FFT processors
in [10], [11] are targeted either for WLAN or DVB-T applica-
tions with throughput around tens of Mega-samples/s, while the
designs in [12], [13], [18] are targeted for UWB application of
throughput 409.6 Mega-samples/s. There are gigabit FFT pro-
cessors [13], [19], [23] for WPAN applications. Although the
work in [13] can support 802.15.3c application, its 2048-point
FFT architectre is not specifically tailored for 512-point FFT
operation needed by 802.15.3c systems. The work in [23], sim-
ilar to [13], is also a MDF pipelined architecture for WPAN ap-
plications. Though it has high throughput, its outputs are not
in normal order which requires extra re-ordering buffer for its
following stage’s operation, particularly for frequency-domain
channel equalization operations generally conducted in OFDM
systems, like the one [21] our proposed FFT processor is inte-
grated into. The memory-based FFT processor [19] is specifi-
cally designed for 802.15.3c applications. Despite the fact that
it provides normal-order output, it contains too many pipelined
PEs which are not area and power efficent enough.
Since generally a radix- FFT algorithm for -point FFT

requires FFT butterfly operations, higher-radix
FFT algorithms can complete FFT operations with smaller
numbers of FFT stages than the lower-radix algorithms.
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Another benefit of higher-radix FFT operations over the
lower-radix ones is that higher memory access bandwidth can
be more conveniently provided in hardware implementations,
as the bandwidth is proportional to . An improved radix-16
algorithm is proposed in [14] which can reduce the numbers of
twiddle factor operations and lookup-table accesses. A radix-16
algorithm suitable for multiply-and-add instruction is proposed
in [15]. However, those algorithms are mainly devised for the
execution of general-purpose processors.
Owing to the mentioned advantages of a high-radix

memory-based FFT design, this work will design a high-perfor-
mance radix-16 FFT processor which satisfies the mentioned
throughput requirement of 802.15.3c applications. However,
since generally a radix-16 butterfly unit is more complicated
and less flexible than lower-radix ones, this work reformulates
conventional radix-16 FFT algorithm so as to facilitate efficient
and optimized pipelined realization of a radix-16 PE with high
computing power and speed. Further, several performance-en-
hancement techniques are applied to the whole FFT processor
design, including an efficient multiplier structure for twiddle
factor multiplication, schemes of conflict-free memory access
and normal-order FFT output generations.
The rest of this article is organized as follows. In Section II,

design concerns for 802.15.3c FFT processor are examined. In
Section III, a reformulated radix-16 algorithm and its butterfly
structure are analyzed. In Section IV, a high-throughput and
high-speed FFT processor architecture is introduced. Also,
a three-stage multiplier for twiddle factor multiplication is
presented. In Section V, a new conflict-free memory addressing
scheme is presented. In Section VI, block-floating point (BFP)
operations are designed and implemented to achieve high
signal-to-quantization-noise ration (SQNR). The issue of con-
tinuous-flow FFT operation is also addressed. Implementation
results are discussed in Section VII, and a conclusion is made
in Section VIII.

II. DESIGN CONSIDERATION FOR THE 802.15.3C FFT
PROCESSOR

In designing an FFT processor, one can first determine the
required specifications of the target FFT processor as a func-
tion of FFT radix , and then decide the most suitable radix.
Consider a general radix- memory-based FFT architecture as
shown in Fig. 1, which consists of parallel radix- PEs and

memory banks (for simultaneous data access), in order
to provide high throughput operations. It is also assumed that
parallel FFT butterfly operations can be finished in one clock

cycle.
Based on these conditions, one can get the following simple

design constraint for finishing the 512-point FFT operation
within one OFDM symbol period

(1)

where is the operating clock rate of the target FFT processor,
and is equal to 222.2 ns (including 24.69 ns guard interval),
as specified in IEEE 802.15.3c standard [1]. The term
represents the number of radix- butterflies per FFT stage, and
the term is the number of FFT stages, where

Fig. 1. Architecture of a general memory-based FFT processor.

TABLE I
THE HARDWARE RESOURCE REQUIREMENTS OF MEMORY-BASED
FFT PROCESSOR IN REALIZING 512-POINT FFT OF 802.15.3C,

VERSUS FFT RADICES

represents the ceiling function of . The left-hand side of the
inequality corresponds to the number of radix- butterfly oper-
ations per PE needs to compute per OFDM symbol, while the
right-hand side represents the available number of clock cycles
within an OFDM symbol time. The constraint provides a de-
sign guideline for the target FFT processor. One can increase
value to reduce clock rate, at the cost of increased area, and

vice versa. It is a trade-off among speed, area, power and im-
plementation feasibility. In the proposed design, the operating
clock rate for hardware realization is assumed one-eighth the
sample rate, i.e., MHz and . As
a result, the available number of clock cycles is 72.
Based on the design constraint (1), Table I lists the required

numbers of FFT stages, butterfly operations , minimum
number of PEs and complex multipliers, versus FFT radix.
There are two kinds of complex multipliers involved in the com-
putation: non-trivial and trivial complex multipliers. The non-
trivial multipliers are used for twiddle factor multiplications
between FFT stages, while the trivial ones are incurred when
large is used, such as the multiplications with in radix-8
FFT algorithms, where is an integer, and .
As shown, the design based on radix-4 FFT algorithm needs
to process four radix-4 stages and one radix-2 stage. Also, it
requires 16 radix-4 PEs, and total 48 non-trivial complex mul-
tipliers. The radix-8 design needs to execute three radix-8 FFT
stages with four radix-8 PEs, 28 non-trivial and 12 trivial com-
plex multipliers. For radix-16 design, although the required two
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radix-16 PEs leads to higher area cost than the radix-8 design,
we will reformulate conventional radix-16 FFT algorithm so
that the effective number of FFT stages is reduced from three to
two, and the number of radix-16 PEs can be reduced from two
to one (subject to constraint (1)). Thus, a high-throughput and
more efficient radix-16 FFT processor design than the radix-8
or radix-16 designs can be achieved, as will be explained in the
following sections.

III. A REFORMULATED RADIX-16 FFT ALGORITHM AND ITS

BUTTERFLY STRUCTURES

To fully exploit the advantage of a high-radix FFT algorithm
(particularly the radix-16 algorithm in this work), conventional
FFT algorithm is reformulated in a form suitable for efficient
realization of all the function components and overall FFT PE
architecture, as will be detailed in the following.

A. Conventional Radix-16 Algorithm

Given an -point discrete Fourier transform (DFT)

(2)

where and denote the input and output of the DFT,
respectively, and is equal to . Let

(3)

A radix-16 decimation-in-frequency (DIF) FFT algorithm can
be derived based on the following first-stage decomposition by
substituting (3) into (2) as

(4)

(5)

where represents the -th output of the first-
stage’s -th radix-16 butterfly operation. Equation (4) can be
executed starting from the 32 inner (first-stage) 16-point but-
terfly operations, followed by 16 outer (second-stage) 32-point
DFTs. Next, let and be further defined as
and , , then radix-16 de-
composition is again applied to the second DFT stage, so that

Fig. 2. SFG for radix-16 512-point FFT algorithm.

one can get the following 512-point FFT in mixed-radix form,
i.e., two radix-16 stages and one radix-2 stage

(6)

(7)

(8)

In (7), the term represents the -th output
of the second-stage’s -th radix-16 butterfly opera-

tion, while the term in (8) represents the
-th output of the third-stage’s radix-2 butterfly operation. The

signal-flow graph (SFG) of the 512-point FFT in -th
mixed-radix form is shown in Fig. 2.

B. Reformulated Radix-16 Algorithm

For further reducing the high implementation cost of a con-
ventional radix-16 butterfly unit, one can let ,

, , , then the first-stage
radix-16 butterfly operations can be reformulated as two radix-4
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Fig. 3. Execution order of radix-4 butterfly operations of the reformulated 16-point butterfly operation (a) . (b) . (c) . (d) .

sub-stages as shown in (9)–(11) at the bottom of the page, where
represents the -th output of the first-sub-stage’s

-th radix-4 butterfly operation, and represents
the -th output of the second-sub-stage’s -th radix-4 butterfly
operation. The same process can be applied to the second-stage’s
radix-16 butterfly operations. The reformulation leads to two

simpler cascaded radix-4 butterfly sub-stages than the original
radix-16 butterfly stage, because the coefficients of 4-point
DFT are all trivial values of . Consequently,
a radix-16 butterfly can be efficiently executed in a four-cycle
period. During the period, the partial results of all 16 output
samples will be accumulated simultaneously. Fig. 3(a)–(d) il-

(9)

(10)

(11)
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lustrate the detailed accumulation flow. At the first cycle (i.e.,
cycle time counter ), the first input data set of samples

, , , come in simultaneously, and the butterfly
operation of the first radix-4 sub-stage is executed.
After the multiplication with corresponding twiddle factors
(all equal to one at this cycle time), its four results are then re-
spectively fed to , , , and of
the second radix-4 sub-stage for partial butterfly operations of
the second radix-4 stage and accumulation of the first partial
results of . In the figure, those active paths are
shown in bold blue solid lines, while inactive paths are shown
in thin dashed lines. Next, at cycle time , similar
process is repeated for , and the second partial results
of are accumulated simultaneously in the same
cycle time. This process is continued until all the four butterfly
operations and their associated twiddle
factor multiplications and the second radix-4 sub-stage opera-
tions are executed.
Since one radix-16 butterfly operation consumes four clock

cycles, four independent radix-16 butterfly operations will be
executed in parallel in order to meet the throughput require-
ment of 802.15.3c standard. As a result, the whole operation
time for the 512-point FFT can be greatly reduced. Moreover,
the reformulated radix-16 512-point FFT operation can be fin-
ished within only two radix-16 FFT stages, instead of three FFT
stages (i.e., two radix-16 stages and one radix-2 stage) required
by conventional radix-16 algorithms, as explained in the fol-
lowing. First, consider the butterfly operations executed on the
top-right corner of Fig. 2. Since the four radix-16 butterfly op-
erations , , and are executed
simultaneously, outputs from butterfly operations and

can be joined together to do the succeeding radix-2
butterfly operations immediately, and similarly for the outputs
from and . On the other hand, for conventional
radix-16 algorithms, the final radix-2 stage cannot be executed
until all the second-stage’s radix-16 butterfly operations have
been executed. In the following sections, an area-efficient and
high-throughput FFT processor for 802.15.3c system based on
the reformulated radix-16 algorithm will be detailed.

IV. HIGH THROUGHPUT FFT ARCHITECTURE

The proposed high-throughput FFT processor architecture
is depicted in Fig. 4. It consists of the following main parts,
together with their specific novelties and advantages. (i) A
memory unit composed of 16 dual-port memory banks, which
facilitates 16-way parallel data access. (ii) A memory bank
index and address generation unit (BAGU), which generates
conflict-free and in-place memory bank indexes and address
for the radix-16 FFT operation. (iii) Four commutator blocks
located in front of the input side and after the output side of
the memory, provide efficient data routing mechanism which
is governed by the BAGU signals. (iv) A scaling unit (SU) co-
ordinates controlled scaling operations for block floating-point
(BFP) operations, which generates higher signal-to-quanti-
zation noise ratio (SQNR) than the existing designs. (v) The
kernel processing engine, which is a high-performance com-
puting engine for radix-16 butterfly operations. It contains

Fig. 4. Block diagram of the proposed FFT processor architecture.

the following optimized subblocks: four radix-16 PEs (i.e.,
PE_R16 0 through PE_R16 3), two sets of radix-2 PEs (each
set contains four radix-2 PEs), and four sets of complex mul-
tipliers (each contains four complex multipliers) for twiddle
factor multiplications. Those multipliers are optimized with the
help of common-subexpression sharing technique and a new
twiddle-factor multiplication scheme. All the function units
inside the kernel processing engine are detailed as follows,
while the mentioned function units (i) to (iv) will be discussed
in the next section.

A.

The PE_R16 unit, as shown in Fig. 5, is designed specifically
for the reformulated radix-16 algorithm described by (9)–(11).
The operation begins by reading 16 samples from memory
banks and then passing them to proper PE_R16’s input sides
through the commutator . Though PE_R16 is based
on radix- decomposition, it is different from the conventional
radix- architecture in [24]. For the proposed architecture,
since each of the four PE_R16 units executes one radix-16
butterfly operation within four clock cycles simultaneously, the
total throughput remains 16 samples/cycle. In addition, it helps
to finish the 512-point FFT of 802.15.3c within two FFT stages
because the final stage’s radix-2 operations can be performed
right after the second stage’s radix-16 operations. A PE_R16
contains the following components: PE_R4_S1, CM_W_16
set, PE_R4_S2, LU, , SAU, and DSSU. Pipeline reg-
isters are inserted between PE_R4_S1 and to achieve
high operation speed. The BFP-related function units SAU and
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Fig. 5. Architecture of PE_R16.

DSSU will be detailed together with SU in Section VI, while
all the other components are explained below.
1) PE_R4_S1: It is responsible for the first radix-4 stage op-

eration, i.e., in Fig. 3. By further applying
radix- decomposition to a 4-point DFT, PE_R4_S1 can be
constructed with four radix-2 PEs.
2) Set: It is an optimized complex multiplier

set which executes the multiplications with constant values of
, in (9). Since the multiplication

term of the first data link (i.e., ) is equal to one, only three
complex multipliers (i.e., for and
3, respectively) are required. For efficient implementation of
these multipliers, two schemes are considered. First, by uti-
lizing symmetry property of complex sinusoidal functions, both
the real part and imaginary part of any number
of those factors can be derived from only three terms, i.e.,

, , and . For example, ,
and are equal to and , respec-
tively. Second, canonical signed digit (CSD) representation

TABLE II
CSD REPRESENTATION OF THREE BASIC TWIDDLE FACTORS

and common sub-expression sharing methods are exploited
to reduce area cost. Table II lists the CSD representations
of , , and . The common term
“101” (as enclosed by those red ellipse) between
and are used to construct the common subexpres-
sion block. With proper shifting and combinations, one can
construct with low hardware cost. The
architecture of is shown as an example in Fig. 6, while

, are similar to . From the synthesis
results, the total area cost of set is very close to that
of a conventional complex multiplier.
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Fig. 6. Low-complexity realizations of .

3) PE_R4_S2 Set: It contains four sub-blocks which are re-
sponsible for the second radix-4 stage’s butterfly operations, i.e.,

. For each PE_R4_S2, its input data arrive
sequentially (as indicated in Fig. 3), and four registers are used
for accumulating the partial results. Overall there are 16 reg-
isters (i.e., ). In front of each accumulator, the
four-point DFT coefficients are dynamically se-
lected for proper partial result generation in each clock cycle.
After every four cycles, the 16-point DFT results will be ready.
4) LU: Since at each clock cycle, only four DFT results of

total 16 DFT results inside a PE_R16 are scheduled to send
out for twiddle factor multiplication, 12 extra registers are nec-
essary for temporary buffering of the DFT results, otherwise
these values will be over-written by the incoming data of the
succeeding butterfly operations. Note that the four DFT results
stored in , , , and , can be output immedi-
ately without buffering.
5) MUX 16_4: The multiplexer selects four data samples out

of its 16 input data at each clock cycle. The selection mechanism
is based on a simple in-place memory addressing scheme, which
means that a DFT output will be written back to the same
memory location storing the DFT input data with the same index
(i.e., ).

B. PE_R2 Set

PE_R2 set is responsible for the final-stage’s radix-2 butterfly
operations. It consists of 8 radix-2 PEs. As mentioned earlier in
Section III, to meet the stringent throughput requirement, the
final radix-2 stage is executed immediately after its preceding
radix-16 stage (i.e., the second FFT stage), without feeding back
the results of PE-R16 units to memory.

C. Complex Multiplier Set (CM Set) and a Novel Twiddle
Factor Multiplication Scheme

A shown in Fig. 4, each set of 16 output data from the four
PE_R16 units will be simultaneously multiplied by proper
twiddle factors, i.e., the terms in (4), for the first FFT

stage or the terms in (6) for the second FFT stage. To
reduce the multiplier area, a new three-stage multiplier struc-
ture for twiddle factor multiplication is proposed as follows.
Consider the multiplication operation of a term with a twiddle
factor , 511. First, by utilizing 1/8 symmetry
property, the exponent is mapped to a number in a smaller
region (as shown in Fig. 7(a)) than before, so that
is considered instead. Besides, in order to further reduce the
number of the twiddle factors and simplify the associated
multiplication operations, is rewritten as ,

, , so that can be decomposed into the
following two-stage multiplication operation:

(12)

By doing so, equivalently the 64 twiddle factors are further
reduced to 16 different values. The corresponding block diagram
of a complex twiddle-factor multiplier is shown in Fig. 7(b).
Furthermore, based on the CSD representations of the 16 pa-
rameters listed in Table III, multiplier-less realization of the
first two stages in the figure can be achieved by optimizing the
common sub-expression eliminations of the 16 parameters.
Similar to the scheme used in set, the four terms “101”,
“10–1”, “1001”, “100–1”, as enclosed by red or blue ellipses
in Table III, are used to construct the common sub-expression
block. The optimized multiplier-less stage-1 and stage-2 ar-
chitectures are shown in Figs. 7(c) and 7(d), respectively. The
proposed multiplier-less architecture is area efficient. From
synthesis results, it achieves 24% area reduction of conventional
complex multipliers. Unlike the constant multiplier schemes in
[12], [22], [23], which are mostly limited to
multiplications, the proposed scheme can be applied to all the
constant multiplications in the entire design. In addition, there
is no need to allocate memory for storing any twiddle factors.
The control information , , and region_index are generated
easily in a low-complexity submodule on the fly, as shown at the
top-left corner of Fig. 7(b). From synthesis result, the area of
these control signals is roughly 1.38% of a complex multiplier
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Fig. 7. (a) Eight-Region symmetric division and mapping of twiddle factors. (b) Block diagram of three-stage realization of a complex multiplier (for twiddle
factor). (c)–(e) Detailed structure of the three-stage realization of a complex multiplie.

in average. Note that for high-speed operation, pipelined regis-
ters are inserted between stage-1 and stage-2 blocks. After the

two-stage operations, the third stage de-maps the result back to
the correct form.
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TABLE III
12-BIT CSD REPRESENTATIONS OF 16 BASIC VALUES FOR COMPOSING TWIDDLE FACTORS

V. NEW CONFLICT-FREE NORMAL-ORDER OUTPUT MEMORY
ADDRESSING SCHEME

To avoid possible conflicts in simultaneously reading (or
writing) 16 data from (or to) the memory banks during FFT
operations, a proper memory addressing scheme is necessary.
The well-known non-conflict memory addressing schemes [5],
[7] are only applicable to radix-2 FFT algorithm. Although the
addressing scheme in [6] is for general radix- FFT operations,
its FFT size should be a power-of- number. Besides, those
schemes are only limited to single-PE architecture. On the other
hand, the radix-2 addressing scheme for multiple PEs [16] is
relatively inefficient compared with higher-radix schemes and
is not suitable for 802.15.3c application. In the following, we
will detail a new memory efficient addressing scheme suitable
for the proposed multiple-PE FFT architecture.
The proposed scheme has three special features. First, it

ensures conflict-free FFT butterfly executions during the entire
FFT operation. Second, it supports parallel data outputs with
normal ordering. This feature is always desirable for providing
immediate and normal-order FFT outputs to the succeeding
functional blocks, such as channel estimator for timely op-
erations. Thirdly, like many other designs, the in-place FFT
computation strategy is also adopted for low memory overhead
consideration. The scheme is described as follows.

A. Optimized Input Data Loading for Conflict-free FFT
Operation

In the beginning of FFT operation, input data ,
, are loaded into the 16 memory banks according to

the following mapping functions for later conflict-free data ac-
cess. Let , , be the binary
representation of input sample index . Then, is routed to
the following memory address inside the memory
bank :

(13)

(14)

TABLE IV
DATA EXECUTION ARRANGEMENT AND DISTRIBUTION IN THE FOUR RADIX-16

PES FOR ENTIRE FFT OPERATIONS

where symbol “ ” means the “Exclusive OR” operation, while
“mod” represents the modulo operation. The derivation of the
above formulas is based on the following considerations:
1) Conflict-Free Memory Access: Table IV lists the partial

execution arrangement and the associated data distribution of
the first and the second radix-16 stages’ butterfly operations.
In the tables, the four vertical charts are respectively associ-
ated with the four radix-16 PEs. The 16 entries in the same
row of the charts indicate those data to be input concurrently to
the corresponding PEs, and therefore should be put in different
memory banks. Moreover, for the first FFT stage, all those four
consecutively indexed input data in each row should be stored
in different memory banks, and so are those input data whose
indexes differ by multiples of 128 (due to factor in (13)).
On the other hand, for the second FFT stage, in every row of
each chart, those input data whose indexes differ by multiples
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TABLE V
DETAILED ALLOCATION OF INPUT DATA IN MEMORY BANKS

of 8 should also be stored in different memory banks. Note that
after each radix-16 butterfly operation is done, the results will be
written back to their corresponding in-place memory locations
through commutators. Based on (13) and (14), allocation of the
input data samples are optimized as shown in Table V, which
results in conflict-free data accesses and uninterrupted butterfly
operations.
2) Parallel and Normal-Order Output Capability: this is one

of the key contributions of the proposed design. When a 512-
point FFT computation is completed, each set of 16 contiguous

will be distributed in 16 different memory banks due to
the following two factors in (13).

: When , since it corresponds to data index in-
crease of 64, this factor contributes to the increase of the bank
index of by 2 (under mod 4 oper-
ation) over that of , inside each set of 128 contiguous data
(i.e., , , ,

). For examples, as highlighted in Table V,
and , while

and .
: When , since it corresponds to index increase

of 256, this factor contributes to the increase of
value by 4 (under mod 16 operation) over , in

addition to the bank index value increase of contributed
from the term in (13). For example, if ,
then , as also highlighted in
Table V.
Since radix-16 algorithm and in-place memory addressing

scheme are adopted, a quad-bit digit-reverse mapping be-
tween , , and can be de-
scribed by the function of

. Table VI lists the partial mapping
patterns for all . It can be verified that the all the 16
contiguous FFT output data ,
to 31, are in different memory banks. This feature achieves
high output rate of (16 samples/cycle), which facilitates
an efficient integrated system design.

B. Bank Index and Address Generation Unit (BAGU) and
Commutators

During FFT operations, first a 5-bit counter slot_cnt (counts
from 31) is used to help generating the corresponding lo-
cations of the four PE_R16s’ inputs according to the arrange-
ments in Table IV. The four PE_R16s’ input data paths are la-
beled with path indexes , as shown in Fig. 4. Then
the 16 memory bank indexes and 16
addresses of the 16 parallel inputs to
the four radix-16 PEs are generated according to (13) and (14),
respectively. Next, a path decoder will decode the bank index
and generate the selection signals for
the 16 memory banks. Together with ,
they form the memory read addresses for the 16 memory bank
during FFT operations. A simplified logic block for path de-
coder and the detailed interconnections among path decoder, PE
inputs/outputs, 16 memory banks, and commutators are shown
in Fig. 8. Also, by adopting the in-place memory access scheme
and pipelining the read addresses in a shift register of length
7, the memory write addresses can be easily obtained 7 clock
cycles after the read addresses are generated. Meanwhile, com-
mutator will route the 16 PE outputs to proper
memory banks according to the control signals obtained from
the delayed selection signals (i.e., )
by 7 cycles. On the other hand, commutator will
route the 16 memory bank outputs to proper radix-16 PE inputs
according to the signals obtained from the delayed

signals by one cycle. Commutator is re-
sponsible for routing the input data to proper memory bank
during FFT input period, while is responsible for
routing the memory output data to proper output destinations.
A counter is used to help generating the input sample index of
each input path at each clock cycle, followed by the generations
of bank and address indexes of each path. On the other hand,
during FFT output period, a counter is used to help generating
the output index (i.e., of ) of each output path, then each
should be converted to its corresponding index first before

generating the bank and memory indices. Since the remaining
processes are similar to those for regular FFT operations, their
discussions are omitted.

VI. IMPLEMENTATION ISSUES

A. Block Floating-Point Scheme and SQNR Performance

For hardware implementation of the proposed FFT pro-
cessor, a proper wordlength should be determined first. In order
to obtain high SQNR, block floating-point (BFP) approach is
often adopted [11]. In this work, block size of 16 is adopted
for matching with the proposed radix-16 based architecture.
As mentioned before, SU (shown in Fig. 4) coordinates the
overall scaling operations. Fig. 5 illustrates that after each
set of 16-point DFT is done, DSSU will detect the maximum
magnitude of data values stored in . Then, a
scaling value (i.e., an exponent value) is determined and kept
in SU. Meanwhile, the values stored in will
be scaled before being outputting to complex multipliers.
The scheme can effectively reduce the area cost of complex
multipliers, because its wordlength is maintained the same as
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TABLE VI
THE PARTIAL LOCATION DISTRIBUTION OF IN THE MEMORY BANKS

Fig. 8. Detailed architectures of BAGU, Path Decoder and Commutators.

that of PE_R16s’ inputs. At the second radix-16 FFT stage, the
inputs to each PE_R16 should be aligned through SAU. The
SQNR performance versus wordlength is shown in Fig. 9. With
the radix-16 BFP approach, better SQNR performance can be
achieved compared to per-FFT-stage fixed scaling method (i.e.,
scale by 4 bits for each radix-16 stage). Since the proposed
FFT processor is also employed to do FFT operations for
channel equalizations [21], for enough SQNR consideration
and without loss of generality 12-bit wordlength is chosen in
our implementations to achieve 57 dB SQNR results.

B. Continuous-Flow Operation

The continuous-flow operation is an important issue for
FFT processor design when integrating a FFT processor into
the whole system. Though the addressing scheme in [6] only
needs a memory size of for maintaining continuous-flow
operation, it can’t support mixed-radix operation. A contin-
uous-flow mixed-radix FFT processor with a novel in-place

Fig. 9. SQNR performance versus wordlength.

scheme was proposed in [17]. However, it can’t meet the
high-throughput requirement of 802.15.3c, because it is based
on low-radix FFT algorithm (i.e., rdix-4/2). Regardless of
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Fig. 10. FFT input/output and operation scheduling for continuous-flow operations.

TABLE VII
THE COMPARISONS OF SEVERAL HIGH-THROUGHPUT FFT PROCESSORS FOR 802.15.3C (A) CBM IS THE ABBREVIATION OF COMPLEX BOOTH MULTIPLIER (B)

CCM IS THE ABBREVIATION OF COMPLEX CONSTANT MULTIPLIER

OFDM or single-carrier baseband receivers, generally FFT
processors are followed by frequency-domain equalization op-
erations. For very high-throughput applications like 802.15.3c
systems, in addition to continuous-flow operation, parallel and
normal-order outputs from FFT to equalizers are necessary.
By adding another size- memory block, the proposed FFT
processor can support continuous-flow operations, in addition
to providing parallel and normal-order output. Due to the high
input/output capability, only memory size is needed during
continuous-flow operation. The timing diagram of the proposed
FFT processor’s operation scheduling is shown in Fig. 10. At
beginning, the FFT input data from previous stage is stored in
memory group A. Since the proposed design provides 16-way
parallel data input/output, it takes only 32 clock cycles to load

the data into memory. Then FFT operation is performed on
Symbol 1 within 72 clock cycles. When FFT operation is done,
FFT output data is sent out to next stage within 32 clock cycles.
Similar process for memory group B is shown in the lower half
of Fig. 10. Hence, the proposed memory addressing scheme
can also support continuous-flow operations with low memory
requirement and without delaying input and output data.

VII. IMPLEMENTATION RESULTS AND DISCUSSIONS

Table VII shows the performance comparisons of the pro-
posed FFT processor and several FFT processors [13], [19],
[23] for 802.15.3c application, plus one 8-parallel MDF archi-
tecture modified from the design in [12]. The design in [19] is
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also a memory-based architecture based on radix-16 FFT algo-
rtihm. However, since it is not well designed, it requires much
more complex multipliers, complex adders, and complex regis-
ters than the proposed design. Hence, the area and power perfor-
mances are significantly improved in the current design. The de-
sign in [13] is a pipelined 8-parallel MDF architecture based on
radix- algorithm. Although it is claimed for 802.15.3c appli-
cation, it is specifically designed for 2048-point FFT, but not op-
timized in terms of area and power for 512-point FFT required
by 802.15.3c systems. The design in [23] based on a modified
radix- algorithm is also a pipelined 8-parallel MDF architec-
ture. Table VII shows the area analysis for the compared de-
signs. Since the design in [13] is not optimized for 512-point
FFT operations so that it is hard to do a fair comparison with
the proposed design. As shown in Table VII, the design in [23]
can reduce the area cost for complex multipliers, compared to
the design in [13], due to its heavy use of constant multipliers.
Although the number of complex multipliers of the proposed
design is larger than that of [23], it has fewer complex adders,
and it does not need the memory space for storing twiddle fac-
tors. Moreover, our design implements a shorter wordlength of
12 bits than 14 bits of [23]. By taking all these factors into ac-
count, it can be roughly concluded that the two designs have
comparable area sizes.
The main differences of the proposed design and the above

designs are explained as follows. First, the proposed design
provides normal-order FFT output. The feature of normal-order
FFT output eliminates the extra re-ordering buffer needed for
MDF pipelined architectures. To our best knowledge, currently
there are no MDF pipelined FFT processors with normal-order
output capability in the literatures. Even in continous-flow
mode, the proposed design only requires a size- memory
space, while MDF pipelined architecures require a memory
space of size close to , including a memory space of size
inside PE, and for alternating re-ordering buffer and output
buffer. Second, the proposed design has better SQNR perfor-
mance than those of [13], and [23], as shown in Table VII.
The total execution time of one 512-point FFT is 72 clock
cycles which meets the specification requirement. The VLSI
implementation of the proposed FFT processor with 12-bit
wordlength has been accomplished by using UMC 90-nm
process. The area of the whole FFT processor is mm , and
the power consumption is 42 mW. The hardware utilization of
the proposed design is close to 100%. The layout view of the
proposed design is shown in Fig. 11.

VIII. CONCLUSION

In this work, a new radix-16 FFT processor for 802.15.3c
system has been proposed. The proposed architecture achieves
high throughput rate by employing several performance-en-
hancement techniques, including a reformulated radix-16
algorithm realized with multiple memory banks and PEs, a
novel conflict-free memory addressing scheme, and a new
twiddle factor multiplier structure. Also, high operation speed
is obtained by devising an efficient pipelined PE structure,
while the new twiddle factor multiplier has low hardware
complexity and power consumption. Synthesis results show
that the proposed FFT processor can provide up to 2.59 GS/s

Fig. 11. Layout view of the proposed FFT processor for 802.15.3c.

throughput, while only dissipates 42 mW. The proposed FFT
architecture can also be modified and extended to support other
longer FFT sizes.
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