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Abstract

We consider families of Ehrenfest chains and provide a simple criterion on the L p-cutoff and the
L p-precutoff with specified initial states for 1 ≤ p < ∞. For the family with an L p-cutoff, a cutoff
time is described and a possible window is given. For the family without an L p-precutoff, the exact order
of the L p-mixing time is determined. The result is consistent with the well-known conjecture on cutoffs of
Markov chains proposed by Peres in 2004, which says that a cutoff exists if and only if the multiplication
of the spectral gap and the mixing time tends to infinity.
c⃝ 2012 Elsevier B.V. All rights reserved.

MSC: 60J10; 60J27

Keywords: Cutoff phenomenon; Ehrenfest chains

1. Introduction

Consider a time-homogeneous Markov chain on a finite set Ω with one-step transition matrix
K . Let K t (x, ·) denote the probability distribution of the chain at time t started at x . It is well-
known that if K is ergodic (irreducible and aperiodic), then

lim
t→∞

K t (x, y) = π(y) ∀x, y ∈ Ω ,
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where π is the stationary distribution of K on Ω . Denote by kt
x the relative density of K t (x, ·)

with respect to π , that is, kt
x (y) = K t (x, y)/π(y). For 1 ≤ p < ∞, define the L p-distance by

Dp(x, t) = ∥kt
x − 1∥L p(π) =


y∈Ω

|kt
x (y)− 1|

pπ(y)

1/p

.

For p = ∞, the L∞-distance is set to be D∞(x, t) = maxy |kt
x (y) − 1|. In the case p = 1, this

is exactly twice of the total variation distance between K t (x, ·) and π , which is defined by

DTV(x, t) = ∥K t (x, ·)− π∥TV = max
A⊂Ω

{K t (x, A)− π(A)}. (1.1)

In the case p = 2, it is the so-called chi-square distance. For any ϵ > 0 and 1 ≤ p ≤ ∞, define
the L p-mixing time by

Tp(x, ϵ) = min{t ≥ 0 : Dp(x, t) ≤ ϵ}.

Consider a family of finite ergodic Markov chains (Ωn, Kn, πn) with specified initial states
xn . For 1 ≤ p ≤ ∞, the family is said to present an L p-cutoff with cutoff time tn if

lim
n→∞

Dn,p(xn, (1 + a)tn) =


0 if a > 0
Mp if − 1 < a < 0

,

where Dn,p denotes the L p-distance for the nth Markov chain, M1 = 2 and Mp = ∞ for
p ∈ (1,∞]. In total variation and separation, the cutoff is defined in the same spirit and has
the replacement of Mp with 1. The concept of cutoffs was introduced by Aldous and Diaconis
in [1–3] to capture the fact that many ergodic Markov chains converge abruptly to their stationary
distributions. We refer the reader to [7,8,13,15,16] for details and further discussions on variant
examples.

In this paper, we treat the Ehrenfest chains, a classical example introduced by Paul Ehrenfest
to remark the second law of thermodynamics. In detail, let Ωn = {0, 1, . . . , n} and Kn be the
Markov kernel of the Ehrenfest chain on Ωn given by

Kn(i, i + 1) = 1 −
i

n
, Kn(i + 1, i) =

i + 1
n

, ∀0 ≤ i ≤ n − 1. (1.2)

Clearly, the unbiased binomial distribution, πn(i) =
 n

i


2−n , is the stationary distribution of

Kn and the pair (Kn, πn) is reversible, i.e. πn(i)Kn(i, j) = πn( j)Kn( j, i) for all i, j ∈ Ωn . By
lifting the chain to a random walk on the hypercube, one may use the group representation of
(Z2)

n to identify the eigenvalues and eigenvectors of Kn . See Lemma B.1.
The aim of this paper is to provide a necessary and sufficient condition on the L p-cutoff of

Ehrenfest chains with 1 ≤ p < ∞ and describe the L p-cutoff time if any. The following is our
main result achieved in Theorems 3.1 and 4.1.

Theorem 1.1. Let Kn be defined in (1.2) and set K ′
n = (I + nKn)/(n + 1), πn(i) =

 n
i


2−n .

For p ∈ [1,∞), the following are equivalent.

(1) The family {(Ωn, K ′
n, πn) : n = 1, 2, . . .} with starting states (xn)

∞

n=1 has an L p-cutoff.
(2) |n − 2xn|/

√
n → ∞ as n → ∞.

Moreover, if (3) holds, then, as n → ∞,

Tn,p(xn, ϵ) =
n

2
log

|n − 2xn|
√

n
+ O(n), ∀ϵ > 0, p ∈ (1,∞),
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where O(n) denotes a function of order less than or equal to n. For p = 1, the above identity
remains true with ϵ ∈ (0, 2).

For the total variation, [8, Theorem 6.5] provides a sufficient condition on cutoffs, while
Theorem 3.1 proves that such a condition is necessary. For the L p-cutoff with 1 < p < ∞,
Theorem [8, Theorem 6.5] gives the L2 case, while Theorem 4.1 gives the L p case. It is
worthwhile to remark that if there is a cutoff, then the main term of the mixing time is the same for
all 1 ≤ p < ∞. In fact, the equivalence in Theorem 1.1 is also valid for the precutoff, a concept
with a more general sense on the rapid convergence of Markov chains, which will be introduced
in the next section. The L p-precutoff in Theorem 1.1 is determined by Theorems 3.1 and 4.1.

The remaining of this article is organized in the following way. In Section 2, we recall various
notions of cutoffs in [7]. In Section 3, the total variation mixing of Ehrenfest chains is discussed
and a path comparison technique is introduced in the proof of the main theorem. In Section 4, we
treat the L p-cutoff with a precise estimation on the L p-norm of eigenfunctions. In Section 5, we
put some remarks summarizing from the proof and address a connection of Theorem 1.1 to well-
studied results. In Appendix A, we derive the limiting distribution of the hitting probability for the
simple random walk on Z. This is not only of interests by itself but also plays an important role in
proving the total variation cutoff. The other essential techniques are relegated to the Appendix B.

2. Cutoffs

Throughout the remaining of this paper, we let (Ω , K , π, µ) denote a time-homogeneous
irreducible Markov chain on Ω with one-step transition matrix K , stationary distribution π and
initial distribution µ. Write (Ω , Ht , π, µ) as the continuous time Markov chain associated with
(Ω , K , π, µ) if Ht = e−t (I−K ), the semigroup associated with K . If the chain starts at state x ,
we write (Ω , K , π, x) and (Ω , Ht , π, x) instead. For any two sequences of positive numbers, say
tn, sn , the notation sn = O(tn) means that there are N > 0 and C > 0 such that sn ≤ Ctn for
all n ≥ N . If both sn = O(tn) and tn = O(sn) hold, we simply write tn ≍ sn . If tn/sn → 1 as
n → ∞, write tn ∼ sn for short.

First, we recall the definition of cutoff in [7] and write it in L p-distance.

Definition 2.1. Let F = {(Ωn, Kn, πn, µn) : n = 1, 2, . . .} be a family of irreducible finite
Markov chains. For p ∈ (1,∞], the family F is said to present:

(1) An L p-precutoff if there is a sequence tn > 0 and constants 0 < A < B such that

lim
n→∞

Dn,p(µn, Bn) = 0, lim inf
n→∞

Dn,p(µn, An) > 0,

where Bn = inf{ j ≥ 0 : j > Btn} and An = sup{ j ≥ 0 : j < Atn}.
(2) An L p-cutoff if there is a sequence tn > 0 such that, for all ϵ ∈ (0, 1),

lim
n→∞

Dn,p(µn, kn(ϵ)) = 0, lim
n→∞

Dn,p(µn, kn(−ϵ)) = ∞,

where kn(ϵ) = inf{ j ≥ 0 : j > (1 + ϵ)tn} and kn(ϵ) = sup{ j ≥ 0 : j < (1 + ϵ)tn}.
(3) A (tn, bn)L p-cutoff if tn > 0, bn > 0, bn = o(tn) and

lim
c→∞

Fp(c) = 0, lim
c→−∞

Fp(c) = ∞,

where

Fp(c) = lim sup
n→∞

Dn,p(µn, k(n, c)), Fp(c) = lim inf
n→∞

Dn,p(µn, k(n, c)),

and k(n, c) = inf{ j ≥ 0 : j > tn + cbn} and k(n, c) = sup{ j ≥ 0 : j < tn + cbn}.
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The definition of cutoffs for p = 1 is the same except the replacement of the limit ∞ with 2.
In (2) and (3), tn is called an L p-cutoff time and bn is called a window with respect to tn .

Remark 2.1. If tn tends to infinity, it makes no difference to replace An with ⌊Atn⌋ or ⌈Atn⌉,
and so for the replacements of Bn, kn(ϵ), kn(ϵ), k(n, c), and k(n, c). In the continuous time case,
the definition of cutoffs follows in the same way with An = Atn, Bn = Btn, kn(ϵ) = kn(ϵ) =

(1 + ϵ)tn and k(n, c) = k(n, c) = tn + cbn .

For any Markov chain, how fast of the convergence to the stationary distribution can also be
captured by the following simple concept.

Definition 2.2. Let (Ω , K , π, µ) be an irreducible finite Markov chain and p ∈ [1,∞]. For
ϵ > 0, the ϵ-L p-mixing time (or briefly the L p-mixing time) is defined to be

Tp(µ, ϵ) := inf{t ≥ 0 : Dp(µ, t) ≤ ϵ},

where the right side is set to be infinity if the infimum is taken on an empty set. If (Ω , Ht , π, µ)

is the continuous time chain associated with K , write the L p-mixing time as

T c
p (µ, ϵ) := inf{t ≥ 0 : Dc

p(µ, t) ≤ ϵ},

where Dc
p(µ, t) is the L p-distance between µHt and π .

The concept of cutoff can also be described using the notion of mixing time. For instance,
assuming Tn,p(ϵ) → ∞ for some ϵ > 0, a family of irreducible Markov chains has an L p-cutoff
if and only if

lim
n→∞

Tn,p(µn, ϵ)/Tn,p(µn, δ) = 1, ∀ϵ, δ ∈ (0,Mp),

where Mp = ∞ if p > 1 and M1 = 2. See [7, Propositions 2.3 and 2.4] for further details and
relationships.

We end this section by introducing the following lemma and corollary, which will be used in
proving the main results.

Lemma 2.1. Let F = {(Ωn, Kn, πn, µn) : n = 1, 2, . . .} be a family of irreducible and
aperiodic Markov chains and p ∈ [1,∞]. Suppose that there is ϵ > 0 and an → ∞ such
that Tn,p(µn, ϵ) ≍ an and Tn,p(µn, δ) = O(an) for all 0 < δ < ϵ. Then, the following are
equivalent.

(1) F has no L p-precutoff.
(2) For all c > 0,

lim sup
n→∞

Dn,p(µn, ⌊can⌋) > 0.

(3) As δ → 0,

lim sup
n→∞

Tn,p(µn, δ)

an
→ ∞.

Proof. See Appendix B. �
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The following corollary comes immediate from the above lemma.

Corollary 2.2. As in the setting of Lemma 2.1, the following are equivalent.

(1) No subfamily of F has an L p-precutoff.
(2) For all c > 0,

lim inf
n→∞

Dn,p(µn, ⌊can⌋) > 0.

(3) As δ → 0,

lim inf
n→∞

Tn,p(µn, δ)

an
→ ∞.

Lemma 2.1 and Corollary 2.2 also hold in the continuous time case without the assumptions
Tn,p(µn, ϵ) → ∞ and an → ∞. It makes no difference to replace ⌊can⌋ with ⌈can⌉

Lemma 2.1(2) and Corollary 2.2(2).

3. The total variation cutoff of Ehrenfest chains

This section is dedicated to the total variation cutoff of Ehrenfest chains. For n ≥ 1,
let Kn be the transition matrix in (1.2), K ′

n be the modification of Kn in Theorem 1.1 and
Hn,t = e−t (I−Kn) be the semigroup associated with Kn . Referring to the setting of (1.1), let
Dn,TV(xn, t), Dc

n,TV(xn, t) be respectively the total variation distances between (K ′
n)

t , Hn,t and
πn with initial state xn , and let Tn,TV(xn, ϵ), T c

n,TV(xn, ϵ) be the corresponding mixing times. For
p ∈ [1,∞], let Dn,p, Dc

n,p and Tn,p, T c
n,p be the L p-distances and the L p-mixing time in the

discrete and continuous time cases.

Theorem 3.1. Consider the families F = {(Ωn, K ′
n, πn, xn) : n = 1, 2, . . .} and Fc =

{(Ωn, Hn,t , πn, xn) : n = 1, 2, . . .}. The following are equivalent.

(1) F (resp, Fc) has a total variation precutoff.
(2) F (resp, Fc) has a total variation cutoff.
(3) |n − 2xn|/

√
n → ∞.

Furthermore, if (3) holds, then both F and Fc have a (tn, n) total variation cutoff with

tn =
n

2
log

|n − 2xn|
√

n
.

Remark 3.1. The window size n is optimal in the sense that, if F or Fc has a (tn, bn) total
variation cutoff, then n = O(bn). See [7] for details.

Proof of Theorem 3.1. (3) ⇒ (2) and the (tn, n) total variation cutoff under (3) was given by [8].
(2) ⇒ (1) follows from the definition. For (1) ⇒ (3), we assume (3) fails and prove F and Fc
have no total variation precutoff. It suffices to show that, if |xn − n/2|/

√
n is bounded, then no

subfamily of F and Fc has a total variation precutoff. The proof consists of three steps.

Step 1: Bounding the total variation from above. Note that the total variation distance is bounded
above by the chi-square distance. That is,

2Dn,TV(x, t) ≤ Dn,2(x, t), 2Dc
n,TV(x, t) ≤ Dc

n,2(x, t).
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Using the reversibility of Kn and Lemma B.1, the L2-distance can be expressed as follows.

[Dn,2(x, t)]2
=

n
i=1

|ψn,i (x)|
2


1 −
2i

n + 1

2t

≤ 2
⌊n/2⌋
i=1

|ψn,i (x)|
2e−4i t/(n+1)

+ e−4tn/(n+1),

where ψn,i is the function defined in (B.1) and the inequality applies the identity ψn,n−i (x) =

(−1)xψn,i (x) for all x, i ∈ {0, 1, . . . , n}. It is worthwhile to note that the summation in the last
line is also an upper bound for the continuous time case since

[Dc
n,2(x, t)]2

=

n
i=1

|ψn,i (x)|
2e−4i t/n

≤ 2
⌊n/2⌋
i=1

|ψn,i (x)|
2e−4i t/(n+1)

+ e−4nt/(n+1).

Recall [8, Eq. (6.6)] as follows.

ψn,i+1(x) =
n − 2x

√
n

An,iψn,i (x)− Bn,iψn,i−1(x), (3.1)

where

An,i =


n

(i + 1)(n − i)
, Bn,i =


i(n − i + 1)
(i + 1)(n − i)

.

Obviously, for n ≥ 2 and 1 ≤ i < n, An,i ≤ 1 and Bn,i ≤ 2. By setting r = 2 + supn{|n −

2xn|/
√

n} < ∞, we obtain

|ψn,i+1(xn)| ≤ (r − 2)|ψn,i (xn)| + 2|ψn,i−1(xn)|, ∀1 ≤ i < n.

Along with the following boundary condition,

|ψn,0(xn)| = 1, |ψn,1(xn)| = |n − 2xn|/
√

n ≤ (r − 2),

the above inequality yields

|ψn,i (xn)| ≤ r i , ∀0 ≤ i ≤ n.

Putting this back to the computation of the L2-distance, one has

max{Dn,TV(xn, N (n + 1)), Dc
n,TV(xn, N (n + 1))}

≤
1
2


2

⌊n/2⌋
i=1

r2i e−4i N
+ e−4nN

1/2

<


1
2

∞
i=1

r2i e−4i N

1/2

,

where N is any positive integer. Using the last inequality in the above, we obtain

max{Tn,TV(xn, ϵ), T c
n,TV(xn, ϵ)} ≤


1
2

log
r

ϵ


(n + 1), ∀ϵ ∈ (0, 1), n ≥ 2.

Step 2: Bounding the total variation from below: Discrete time case. Note that the evolution of
the chain under K ′

n is very similar to that under Kn . Intuitively, the set of even integers less than
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(n + 1), say An , is an appropriate testing set for the total variation due to the periodicity of Kn .
In fact, 2 · 1An − 1 = ψn,n and

Dn,TV(xn, t) ≥ |(K ′
n)

t (xn, An)− πn(An)|

=
1
2
|(K ′

n)
t (xn, ψn,n)| ≥

1
2

e−4t/(n+1), (3.2)

for n ≥ 3. This implies, for 0 < ϵ ≤ 1/(2e4) and n ≥ 3,

Tn,TV(xn, ϵ) ≥


1
4

log
1
2ϵ


(n + 1).

Note that such a lower bound is independent of the initial state xn .
Along with the upper bound in Step 1, we obtain Tn,TV(xn, 1/(2e4)) ≍ n and Tn,TV(xn, ϵ) =

Oϵ(n) for all ϵ < 1/(2e4). Using the last inequality of (3.2), it is easy to see that, for any c ≥ 1
and n ≥ 1,

Dn,TV(xn, ⌊cn⌋) ≥ Dn,TV(xn, ⌊2c⌋(n + 1)) ≥
1
2

e−4⌊2c⌋.

By Corollary 2.2, no subfamily of F has a total variation precutoff.

Step 3: Bounding the total variation from below: Continuous time case. Again, we suppose
|n − 2xn|/

√
n is bounded. It has been developed in Step 1 that T c

n,TV(xn, ϵ) = Oϵ(n) for all
ϵ ∈ (0, 1). By Corollary 2.2, it suffices to show that

lim inf
n→∞

Dc
n,TV(xn, cn) > 0, ∀c > 0. (3.3)

The trick used in Step 2 does not work for the continuous time case. Our policy is as follows.
First, we compare the original discrete time Ehrenfest chain Kn with the simple random walk on
Z. The comparison will generate a lower bound on the total variation distance related to the first
passage time in Appendix A. This will lead to (3.3).

Observe that, for any A ⊂ Ωn and t ≥ 0,

Dc
n,TV(xn, t) ≥ Hn,t (xn, A)− πn(A) =

∞
i=0


e−t t i

i !


K i

n(xn, A)− πn(A). (3.4)

By the symmetry of Kn and the boundedness of |xn − n/2|/
√

n, it loses no generality to assume
that n/4 ≤ xn ≤ n/2 for all n ≥ 1. Concerning the subfamily of Fc, it suffices to deal with the
following subcases.

(n/2 − xn)/
√

n → a ∈ [0,∞), as n → ∞. (3.5)

The next proposition is helpful in the selection of the testing set A.

Proposition 3.2. Let Kn be the transition matrix on Ωn defined by (1.2). Suppose µn is a
probability concentrated on A = {0, 1, . . . , ⌈n/2⌉}. Then, µn K t

n(A) ≥ 1/2 for all t ≥ 0.

See Appendix B for a proof of this proposition. Now, let A = {0, 1, . . . , ⌈n/2⌉}. Clearly,
πn(A) ≤ 1/2 + πn(⌈n/2⌉) and πn(⌈n/2⌉) ∼ (πn/2)−1/2. Let T be the first time the chain Kn
hits state ⌊n/2⌋. By the strong Markov property, we have

K i
n(xn, A) =

i
j=0

K i− j
n (⌊n/2⌋, A)Pxn (T = j)+ Pxn (T > i) ≥

1
2

+
1
2

Pxn (T > i).
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Putting this back to (3.4) yields, for m ≥ 0,

Dc
n,TV(xn, t) ≥

1
2


e−t

m
i=0

t i

i !


Pxn (T > m)− πn(⌈n/2⌉). (3.6)

Next, we use Theorem A.1 to bound Pxn (T > m) from below. Consider the simple random
walk on Z. For m ≥ 1, k ≥ 1 and i ∈ Z, let P(m, k, i) be the set containing paths of length m
starting from 0, ending at i and staying in {0,±1,±2, . . . ,±(k − 1)} up to time m and write

x + P(m, k, i) = {(x + w0, x + w1, . . . , x + wm) : (w0, w1, . . . , wm) ∈ P(m, k, i)}.

Clearly,

Pxn (T > m) ≥

⌊n/2⌋−xn−1
i=0

Pxn (xn + P(m, ⌊n/2⌋ − xn, i))

Let P′ be the probability where the simple random walk on Z starting from the origin sits.
For any path w = (w0, w1, . . . , wm) ∈ P(m, k, i) with |i | < k, one may partition the edges
{(w j , w j+1) : 0 ≤ k < m} into two subsets, say B1(w) and B2(w), where B1(w) = {( j, j + 1) :

0 ≤ j < i} for i > 0, B1(w) = {( j, j − 1) : 0 ≥ j > i} for i < 0, and B2(w) is a union of pairs
in the form {( j, j + 1), ( j + 1, j)} with −k < j < k − 1. Note that, for 2xn − n/2 ≤ j ≤ n/2,

1 −
j

n
≥

j

n
≥

1
2


4xn

n
− 1


=

1
2


1 −

2(n − 2xn)

n


and 

1 −
j

n


j + 1

n
≥

1
4


1 −


n − 2 j

n

2


≥
1
4


1 − 4


n − 2xn

n

2

.

This leads to Pxn (w) ≥ cn(m)P′(w) for all w ∈ xn + P(m, ⌊n/2⌋− xn, i − xn) and 2xn − n/2 ≤

i ≤ n/2 with

cn(m) =


1 − 4


n − 2xn

n

2
m/2 

1 −
2(n − 2xn)

n

n/2−xn

.

Letting N be any positive integer and m = Nn, we obtain

Pxn (T > Nn) ≥ cn(Nn)P′(T⌊n/2⌋−xn > Nn),

where Tl is the first passage time to {±l} of the simple random walk on Z. See (A.1) for details.
Putting this back to (3.6) yields

Dc
n,TV(xn, t) ≥

1
2


e−t

Nn
i=0

t i

i !


cn(Nn)P′(T⌊n/2⌋−xn > Nn)− πn(⌊n/2⌋).

By Theorem A.1 and Lemma B.4, if a > 0 in the setting of (3.5), then

lim inf
n→∞

Dc
n,TV(xn, cn) ≥

αN

2
e−(8N+4)a2

, ∀N > c,

where αN =
4
π


∞

k=0
(−1)k

2k+1 e−N (2k+1)2π2/(8a2) > 0. Hence, for a > 0, no subfamily of Fc has a
total variation precutoff.
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In the end, we deal with the subcase a = 0. First, we write

K t
n(x, y)/πn(y)− 1 =

n
i=1

ψn,i (x)ψn,i (y)β
t
n,i .

See [15, Lemma 1.3.3] for a proof. Applying this identity to the case (K ′
n)

t and Hn,t gives

(K ′
n)

t (x, y)

πn(y)
− 1 =

n
i=1

ψn,i (x)ψn,i (y)


1 + nβn,i

n + 1

t

(3.7)

and

Hn,t (x, y)

πn(y)
− 1 =

n
i=1

ψn,i (x)ψn,i (y)e
−t (1−βn,i ) (3.8)

For n ≥ 1, set

Hn,t (xn, y)/πn(y)− 1 = fn(t, y)+ gn(t, y),

where

fn(t, y) = ψn,2(xn)e
−t (1−βn,2)ψn,2(y)

and

gn(t, y) =

n
i=1,i≠2

ψn,i (xn)e
−t (1−βn,i )ψn,i (y).

By Jensen’s inequality, one can see that

2Dc
n,TV(xn, t) = ∥ fn(t, ·)+ gn(t, ·)∥L1(πn)

≥ ∥ fn(t, ·)∥L1(πn)
− ∥gn(t, ·)∥L2(πn)

.

It remains to prove that, for all c > 0,

lim inf
n→∞


∥ fn(cn, ·)∥L1(πn)

− ∥gn(cn, ·)∥L2(πn)


> 0.

Note that

∥gn(t, ·)∥L2(πn)
=


(n − 2xn)

2

n
e−4t/n

+

n
i=3

|ψn,i (xn)|
2e−4i t/n

1/2

.

Recall that, in Step 1, if r = 2 + supn

|n − 2xn|/

√
n

< ∞, then |ψn,i (xn)| ≤ r i for all

0 ≤ i ≤ n. Putting this back to the L2(πn)-norm of gn(t, ·) gives

∥gn(cn, ·)∥L2(πn)
≤


(n − 2xn)

2

n
e−4c

+
(r2e−4c)3

1 − r2e−4c

1/2

,

provided r < e2c. Also, it is an easy exercise to compute |ψn,2(xn)| ∼ 1/
√

2 and

∥ψn,2∥L1(πn)
≥

1
2
πn


x : |x − n/2| <
√

n/4


∼
1

√
2π

 1/2

0
e−u2/2du ≥

1
12
.



G.-Y. Chen et al. / Stochastic Processes and their Applications 122 (2012) 2830–2853 2839

Under the assumption (n/2 − xn)/
√

n → 0, if r < e2c, then

lim inf
n→∞


∥ fn(cn, ·)∥L1(πn)

− ∥gn(cn, ·)∥L2(πn)


≥

1

12
√

2
e−4c

−
r3

√
1 − r2e−4c

e−6c
= e−4c


1

12
√

2
−

r3
√

1 − r2e−4c
e−2c


.

The last term is positive for large c and this implies

lim inf
n→∞

Dc
n,TV(xn, cn) > 0, ∀c > 0.

Hence, in the case a = 0, no subfamily of Fc has a total variation precutoff. �

4. The L p-cutoff of Ehrenfest chains

This section is contributed to the development of the L p-cutoff of Ehrenfest chains with
p ∈ (1,∞). The main theorem states as follows.

Theorem 4.1. Let F and Fc be the families in Theorem 3.1. For p ∈ (1,∞), the following are
equivalent.

(1) F (resp. Fc) has an L p-precutoff.
(2) F (resp. Fc) has an L p-cutoff.
(3) |xn − n/2|/

√
n → ∞.

Moreover, if (3) holds, then both F and Fc have a (tn, n)L p-cutoff with

tn =
n

2
log

|n − 2xn|
√

n
.

Proof. In this proof, the L p(π)-norm of f is written as ∥ f ∥p. Obviously, (2) ⇒ (1) comes
immediate from Definition 2.1 for all 1 < p < ∞. For (3) ⇒ (2) and the (tn, n)L p-cutoff, we
set

Fp(a) = lim sup
n→∞

Dn,p(xn, tn + an), Fp(a) = lim inf
n→∞

Dn,p(xn, tn + an)

and

G p(a) = lim sup
n→∞

Dc
n,p(xn, tn + an), G p(a) = lim inf

n→∞
Dc

n,p(xn, tn + an).

The case p = 2 is given in [8]. By the monotonicity (in p) of L p-norm, it remains to show that,
for 1 < p < 2,

lim
a→−∞

min{Fp(a),G p(a)} = ∞,

and, for 2 < p < ∞,

lim
a→∞

max{Fp(a),G p(a)} = 0.

Case 1: (1 < p < 2) Set q = (1 − 1/p)−1. As a consequence of the central limit theorem, we
have

∥ψn,1∥q =


n

x=0


|n − 2x |

√
n

q

πn(x)

1/q

→ Cq := [E(|X |
q)]1/q < ∞,
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where X is a standard normal random variable and E denotes the expectation. By (3.7) and (3.8),
this implies

Fp(a) ≥ lim inf
n→∞

|⟨(K ′
n)

tn+an(xn, ·)/πn − 1, ψn,1⟩πn |

∥ψn,1∥q
= e−2a/Cq

and

G p(a) ≥ lim inf
n→∞

|⟨Hn,tn+an(xn, ·)/πn − 1, ψn,1⟩πn |

∥ψn,1∥q
= e−2a/Cq .

This proves the desired (tn, n)L p-cutoff.

Case 2: (2 < p < ∞) Using the fact ψn,n−i (x) = (−1)xψn,i (x), the right sides of (3.7) and
(3.8) yields

Dn,p(xn, t) ≤ 2
⌈n/2⌉
i=1

|ψn,i (xn)|∥ψn,i∥p


1 −

2i

n + 1

t

+


1 −

2
n + 1

t

≤ 2dp(n, t)

and

Dc
n,p(xn, t) ≤ 2

⌈n/2⌉
i=1

|ψn,i (xn)|∥ψn,i∥pe−2i t/n
+ e−2t

≤ 2dp(n, t),

where

dp(n, t) =

⌈n/2⌉
i=1

|ψn,i (xn)|∥ψn,i∥pe−2i t/(n+1)
+ e−2t/(n+1).

It remains to compute ∥ψn,i∥p. By (3.1), it is easy to see

|ψn,i+1(x)| ≤


2

i + 1
×

|n − 2x |
√

n


|ψn,i (x)| + |ψn,i−1(x)|, ∀i ≤ n/2.

With the initial conditions, ψn,0 ≡ 1 and ψn,1(x) = (n − 2x)/
√

n, one can prove inductively

|ψn,i (x)| ≤


2i

i !

i
j=1


|ψn,1(x)| +


j

2


, ∀x ∈ Ωn, i ≤ n/2. (4.1)

For convenience, we write i ! = αi i i+1/2e−i . By Stirling’s formula, we may choose β > 1 such
that

i i+1/2e−i/β ≤ i ! ≤ βi i+1/2e−i , ∀i ≥ 1. (4.2)

In the above setting, (4.1) gives

|ψn,i (x)| ≤ (2e)i/2i−1/4β1/2

|ψn,1(x)|i

−1/2
+ 1

i
, (4.3)

which implies

∥ψn,i∥
p
p ≤ (2e)pi/2i−p/4β p/2πn


|ψn,1|i

−1/2
+ 1

pi


≤ (2e)pi/2i−p/4β p/22pi

i−pi/2πn


|ψn,1|

pi


+ 1

,
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where the last inequality uses the fact (s + t)r ≤ 2r−1(sr
+ tr ) for any s > 0, t > 0 and r ≥ 1.

By Lemma B.5, one may choose C > 1 such that

πn(|ψn,1|
pi ) ≤ C4piΓ


pi + 1

2


≤ 5βC4pi pi[(pi)/(2e)]pi/2, (4.4)

where Γ (·) is the Gamma function. To see the last inequality, recall that Γ (t + 1) = tΓ (t).
Observe that sup1≤α≤2 Γ (α) ≤ 2 and e3/2

≤ 5. By (4.2), we obtain

Γ


pi + 1
2


=

pi − 1
2

Γ


pi − 1
2


≤ pi


pi − 3

2


!


≤ βpi(⌈(pi − 3)/2⌉)⌈(pi−3)/2⌉+1/2e−⌈(pi−3)/2⌉

≤ 5βpi(pi/2e)pi/2.

Plugging (4.4) back to the upper bound for ∥ψn,i∥
p
p, one has

∥ψn,i∥p ≤ (2e)i/2i−1/4β1/22i

5βC4pi pi(p/(2e))pi/2

+ 1
1/p

≤ 10βCi1/4(8p)i

and, applying (4.3) with x = xn , this leads to

dp(n, t) ≤ 10β2C
⌈n/2⌉
i=1

(20p)i

|ψn,1(xn)| + 1

i e−2i t/(n+1)
+ e−2t/(n+1), (4.5)

where 8
√

2e < 20 is used.
Finally, let a > 1. It is obvious that, for n large enough,

tn =
n

2
log |ψn,1(xn)|, tn + an ≥

n + 1
2

log |ψn,1(xn)| +
n + 1

2
(a − 1).

By (4.5), this implies

dp(n, tn + an) ≤ 10β2C
⌈n/2⌉
i=1


20p

ea−1 ×
|ψn,1(xn)| + 1

|ψn,1(xn)|

i

+ exp{−|ψn,1(xn)|}.

Letting n → ∞ yields that, for ea−1 > 20p,

max{Fp(a),G p(a)} ≤ 20β2C
∞

i=1

i(20pe1−a)i =
400β2Cpe1−a

1 − 20pe1−a
.

This proves the desired cutoff.
For (1) ⇒ (3), we assume that |xn − n/2|/

√
n is bounded and prove that no subfamily of

F and Fc has an L p-precutoff. Set M = supn≥1

|2xn − n|/

√
n


+ 1. By (4.5), if p > 2 and
ea

≥ 20Mp, then

max{Dn,p(xn, ⌈an⌉), Dc
n,p(xn, an)} ≤

400Mβ2Cpe−a

1 − 20Mpe−a + 2e−a .

On one hand, the right side converges to 0 as a tends to infinity. This implies, for all ϵ > 0 and
p < ∞,

Tn,p(xn, ϵ) = Oϵ(n), T c
n,p(xn, ϵ) = Oϵ(n).
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On the other hand, one may conclude from the proof of Theorem 3.1 (Steps 2–3) that

lim inf
n→∞

min{Dn,TV(xn, an), Dc
n,TV(xn, an)} > 0, ∀a > 0.

By Corollary 2.2, no subfamily of F and Fc has an L p-precutoff for 1 < p < ∞. �

5. Some remarks

In this section, we make some remarks summarizing from the content of the previous sections
and establish a connection with known results. First, it is worthwhile to remark from the proofs
of Theorems 3.1 and 4.1 that if |n − 2xn|/

√
n is bounded, then the L p-mixing time of Ehrenfest

chains is of order n in both discrete and continuous time case for 1 ≤ p < ∞, though the families
do not present any cutoff at all. This implies that (3) of Theorems 3.1 and 4.1 is equivalent to
λnTn,p(xn, ϵ) → ∞ and λc

nT c
n,p(xn, ϵ) → ∞ for 1 ≤ p < ∞, where λn, λ

c
n are respectively

the spectral gaps of discrete and continuous time chains. This is consistent with the conjecture
proposed by Peres during the ARCC workshop held by AIM in Palo Alto, December 2004.

For the L∞-cutoff, the equivalence in Theorem 4.1 might fail. Assume that n is even,
xn = n/2 and consider the continuous time case. Recall the separation distance as follows.

Dn,sep(x, t) = max
y


1 −

(K ′
n)

t (x, y)

πn(y)


, Dc

n,sep(x, t) = max
y


1 −

Hn,t (x, y)

πn(y)


.

It is easy to see that the separation distance is closely related to the L∞-distance. For n ≥ 1, let
Ln be the Markov kernel on {0, 1, . . . , n/2} given by

Ln(i, i) = 0, ∀0 ≤ i ≤ n/2, Ln(i, i + 1) = 1 −
i

n
, ∀0 ≤ i < n/2,

and

Ln(i + 1, i) =
i + 1

n
, ∀0 ≤ i < n/2 − 1, Ln(n/2, n/2 − 1) = 1.

Obviously, the stationary distribution of Ln is given by πn(i) = 21−n
 n

i


for i < n/2 andπn(n/2) = 2−n


n

n/2


. Set Dc

n,sep(x, t) be the separation distances between e−t (I−Ln)(x, ·) andπn . Then, Dc
n,sep(n/2, t) = Dc

n,sep(n/2, t). Observe that I − Ln has eigenvalues 4i/n with
0 ≤ i ≤ n/2. Clearly, the spectral gap of Ln is λn = 4/n and

tn =

n/2
i=1

n

4i
=

n log n

4
+ O(n).

By[10, Theorems 5.1 and 6.1], the family Fc has a


1
4 n log n, n


separation cutoff, but has no

L p-precutoff for 1 ≤ p < ∞ according to Theorems 3.1 and 4.1.
Finally, we get our results involved in several well-studied results. For continuous time

Markov chains with countable state spaces, Martı́nez and Ycart [14] provide an equivalence to the
cutoff of families with nominated sequence of initial states xn . According to their framework, a
special state, called 0, is selected and the hitting time T0 to 0 is considered. In [14, Theorem 4.1],
they showed that the family of continuous time Markov chains with starting state xn has a total
variation cutoff with cutoff time Exn (T0) if and only if T0 has a concentration phenomenon as
the distance between xn and 0 tends to infinity. Back to the setting of Ehrenfest chain, if one



G.-Y. Chen et al. / Stochastic Processes and their Applications 122 (2012) 2830–2853 2843

selects the typical state ⌊n/2⌋ as 0 and lets |xn − n/2| tends to infinity, then the equivalence of
the total variation cutoff should be achieved through a precise estimation of the average hitting
time to ⌊n/2⌋ starting from xn . A formula on the expected hitting times of birth and death
chains is available in [4, Eq. (4.20)] and the comparison of the mixing time and the expected
hitting time would be of interest. Such a comparison was made by Lachaud in [12] for the
Ornstein–Uhlenbeck process, which can be approximated by Ehrenfest chains.

In [4], Barrera et al. observed that, assuming a drift toward a typical state is associated
with an energy function, if the energy well is sufficiently steep with sufficiently smooth walls,
descents are abrupt and the hitting time to the typical state starting from n has a concentration
phenomenon and, hence, a cutoff exists. This was proved in [4] to be applicable for Ehrenfest
chains. If |xn − n/2| is bounded, the result in Theorem 1.1 can be related to the fact that the
energy well is not steep enough between ⌊n/2⌋ and xn so that no cutoff exists. For discrete time
Ehrenfest chains, Bertoncini showed in [5, Chapter 7] that the family starting from the boundary
points has a total variation cutoff if there is a concentration phenomenon for the time to access
a neighborhood of ⌊n/2⌋ within a distance of order less than

√
n. In some sense, this means

that if the initial state is not too close to ⌊n/2⌋, then there is a cutoff, which is a converse of
Theorem 1.1.
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Appendix A. The first passage time of simple random walks on Z

This section is contributed to the estimation of the hitting probability for the simple random
walk on integers. A simple random walk is a discrete time Markov chain (Xn)

∞

n=0 with transition
matrix

K (i, i + 1) = K (i, i − 1) = 1/2, ∀i ∈ Z.

For m ≥ 1, let Tm be the first passage time to the set {±m}, i.e.

Tm = inf{n ≥ 0 : Xn = m or Xn = −m}. (A.1)

For the continuous time case, let N (t) be a Poisson process with parameter 1 and independent of
Xn and set Yt = X N (t). Clearly, Yt is a realization of the semigroup Ht = e−t (I−K ) associated
with K and the corresponding first passage time to {±m} is denoted byTm = inf{t ≥ 0 : Yt = m or Yt = −m}. (A.2)

The following is the main theorem in this section.

Theorem A.1. Let Tm,Tm be the random times defined in (A.1) and (A.2) and P0 be the
conditional probability given the initial state is 0. Then, for b > 0,

lim
m→∞

P0(Tm > bm2) = lim
m→∞

P0(Tm > bm2) =
4
π

∞
k=0

(−1)k

2k + 1
e−b(2k+1)2π2/8.



2844 G.-Y. Chen et al. / Stochastic Processes and their Applications 122 (2012) 2830–2853

Theorem A.1 is a consequence of the convergence of the renormalized processes
(X⌊m2t⌋/m)t≥0 and (Ym2t/m)t≥0 toward the Brownian motion on R in the weak topology with
respect to the uniform norm over compact time intervals. The computation of the Laplace
transform of the hitting times is a standard approach and the inversion of the Laplace transform
leads to a special function whose expansion is given in Theorem A.1. Here, we consider
another approach by computing the Laplace transform of the hitting times for (Xn)n≥0, (Yt )t≥0
and determining the limiting distribution directly from a detailed analysis of the sequence of
transforms.

The following proposition is useful in characterizing the distribution of the first passage time.

Proposition A.2 ([6, Section 2]). Let K be the transition matrix of an irreducible birth-and-
death chain on {0, 1, . . .}. For m ≥ 1, let τm and τm be respectively the first passage times
to state m associated with the discrete time and continuous time chains. Let λ1, . . . , λm be the
eigenvalues of the submatrix of I − K indexed by {0, 1, . . . ,m − 1}. Then, λi ∈ (0, 2) for
1 ≤ i ≤ m, λi ≠ λ j for i ≠ j , and

P0(τm > k) =

m
i=1

 
j : j≠i

λ j

λ j − λi


(1 − λi )

k (A.3)

and

P0(τm > t) =

m
i=1

 
j : j≠i

λ j

λ j − λi


e−tλi . (A.4)

Remark A.1. The right side of (A.4) is exactly P(T > t), where T is a sum of m independent
exponential random variables with parameters λ1, . . . , λm . Assuming λi ∈ (0, 1) for all 1 ≤ i ≤

m, the right side of (A.3) is equal to P(T > k), where T is a sum of independent geometric
random variables with success probabilities λ1, . . . , λm .

To prove Theorem A.1, we need the following lemmas of which proofs are deferred to the end
of this section.

Lemma A.3. For n ≥ 1, let Xn,1, . . . , Xn,n be independent exponential random variables with
parameters λn,1, . . . , λn,n , where λn,m = 1 − cos (2m−1)π

2n . Set Sn = Xn,1 + · · · + Xn,n . Then,
Sn/n2 converges in distribution to a positive continuous random variable with density

f (t) =
π

2

∞
m=0

(−1)m(2m + 1)e−t (2m+1)2π2/8, ∀t > 0.

In particular,

lim
n→∞

P(Sn/n2 > t) =
4
π

∞
m=0

(−1)m

2m + 1
e−t (2m+1)2π2/8.

Lemma A.4. For n ≥ 1, let Xn,1, . . . , Xn,n be independent geometric random variables with

parameters λn,1, . . . , λn,n , where λn,m =
1
2


1 − cos (2m−1)π

2n


. Set Sn = Xn,1 + · · · + Xn,n .
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Then, Sn/n2 converges in distribution to a positive continuous random variable with density

f (t) =
π

4

∞
m=0

(−1)m(2m + 1)e−t (2m+1)2π2/16, ∀t > 0.

In particular,

lim
n→∞

P(Sn/n2 > t) =
4
π

∞
m=0

(−1)m

2m + 1
e−t (2m+1)2π2/16.

Proof of Theorem A.1. Back to the setting of the simple random walk. Observe that

P0(Tm > k) = P0(|X i | < m, ∀i ≤ k), P0(Tm > t) = P0(|Ys | < m, ∀s ≤ t).

By the symmetry of the walk starting from 0, one may collapse states ±i to achieve

P0(Tm > k) = P′

0(τm > k), P0(Tm > t) = P′

0(τm > t),

where P′

0 is the probability for the birth-and-death chain on {0, 1, . . .} with initial state 0 and
transition matrix K ′ given by

K ′(0, 1) = 1, K ′(i, i − 1) = K ′(i, i + 1) = 1/2, ∀i ≥ 1.

Here, τm and τm are the first passage times to state m associated with the discrete time and
continuous time chains driven by K ′. Applying the method introduced in [11, Section XIV.5],
the eigenvalues and eigenvectors for the submatrix of I − K ′ indexed by 0, 1, . . . ,m − 1 are

λm,i = 1 − cos
(2i − 1)π

2m
, φm,i ( j) = cos

(2i − 1) jπ

2m
,

for 1 ≤ i ≤ m and 0 ≤ j ≤ m − 1.
We first treat the continuous time case. Let Sm,1, . . . , Sm,m be independent exponential

random variables with parameters λm,1, . . . , λm,m . Set Sm = Sm,1 + · · · + Sm,m . By
Proposition A.2, P0(Tm > bm2) = P(Sm > bm2). As a consequence of Lemma A.3, letting
m tend to infinity yields the desired identity in continuous time case.

For the discrete time case, the periodicity of K ′, which is of period 2, implies λm,i > 1 for
some i . Consider the lazy walk with transition matrix 1

2 (I + K ′). It is clear that the eigenvalues
of the submatrix of I −

1
2 (I + K ′) indexed by {0, . . . ,m − 1} are λm,1/2, . . . , λm,m/2, which

are contained in (0, 1). To relate the discrete time case and the transition matrix 1
2 (I + K ′),

let (X ′
n)

∞

n=0 be the birth-and-death chain with transition matrix K ′ and define Zn = X ′

2n/2.
Obviously,

P′

0(Zn+1 = 1|Zn = 0) = P′

0(X
′

2n+2 = 2|X ′

2n = 0) = 1/2.

For i > 0,

P′

0(Zn+1 = i + 1|Zn = i) = P′

0(X
′

2n+2 = 2i + 2|X ′

2n = 2i) = 1/4

and

P′

0(Zn+1 = i − 1|Zn = i) = P′

0(X
′

2n+2 = 2i − 2|X ′

2n = 2i) = 1/4

and, for i ≥ 0,

P′

0(Zn+1 = i |Zn = i) = P′

0(X
′

2n+2 = 2i |X ′

2n = 2i) = 1/2.
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This implies that given X ′

0 = 0, or equivalently Z0 = 0, (Zn)
∞

n=0 is a Markov chain on {0, 1, . . .}
with initial state 0 and transition matrix 1

2 (I + K ′). Furthermore, by the periodicity of K ′, if m
is even and positive, then

P′

0(τm > k) = P′

0(X
′

i < m, ∀i ≤ k) = P′

0(Zi < m/2, ∀i ≤ ⌊k/2⌋).

If m is odd and m > 1, then

P′

0(τm > k) = P′

1(X
′

i < m, ∀i ≤ k − 1) = P′

0(Zi < (m − 1)/2, ∀i ≤ ⌊(k − 1)/2⌋),

where the last equality uses the fact that, given X ′

0 = 1, the chain (X ′

2n − 1)∞n=1 has the same
distribution as (Zn)

∞

n=1 with Z0 = 0. Let τ ′
m be the first passage time to m of the chain (Zn)

∞

n=0.
Putting all above together yields, for m > 1,

P0(Tm > k) = P′

0(τm > k)


≥ P′

0(τ
′

⌊m/2⌋
> k/2)

≤ P′

0(τ
′

⌊m/2⌋
> k/2 − 1)

.

For m ≥ 1, let S′

m,1, . . . , S′
m,m be independent geometric random variables with success

probabilities λm,1/2, . . . , λm,m/2 and set S′
m = S′

m,1 + · · · + S′
m,m . By Proposition A.2, for

any positive integer k,

P0(Tm > k)


≥ P(S′

⌊m/2⌋
> k/2)

≤ P(S′

⌊m/2⌋
> k/2 − 1)

.

By Lemma A.4, replacing k with ⌊bm2
⌋ yields the desired identity. �

Proof of Lemma A.3. We first show that Sn/n2 converges in distribution. Consider the
characteristic function of Sn/n2, φn(t) = E(ei t Sn/n2

), where i =
√

−1. Clearly, φn(t) =n
m=1(1 − i tn−2λ−1

n,m)
−1. Write φn = gnhn , where

gn(t) =


1≤m≤

√
n

1

1 − i tn−2λ−1
n,m

, hn(t) =


√

n<m≤n

1

1 − i tn−2λ−1
n,m

.

Let θm = (2m − 1)2π2/8 and set

ψn(t) =


1≤m≤

√
n

1

1 − i tθ−1
m
.

For w1, . . . , wk, z1, . . . , zk ∈ C, it is easy to see that k
i=1

wi −

k
i=1

zi

 ≤

k
i=1

|wi − zi |


i−1
j=1

|z j |


k

j=i+1

|w j |


.

Using the above inequality, we obtain

|hn(t)− 1| ≤ t


√
n<m≤n

1

n2λn,m
≤ 4t


√

n<m≤n

θ−1
m

and

|gn(t)− ψn(t)| ≤ t


1≤m≤
√

n

|θ−1
m − n−2λ−1

n,m | ≤ t


1≤m≤
√

n

1

6n2 − θm
,
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where the last inequalities use the following fact

max{s2/2 − s4/24, s2/8} ≤ 1 − cos s ≤ s2/2, ∀0 ≤ s ≤ π. (A.5)

Note that θm ≤ 6n for 1 ≤ m ≤
√

n. This leads to

|gn(t)− ψn(t)| ≤
t

6
√

n(n − 1)
≤ tn−3/2, ∀n > 1.

Putting all above together yields

|φn(t)− ψn(t)| ≤ |gn(t)[hn(t)− 1]| + |gn(t)− ψn(t)|

≤ |hn(t)− 1| + |gn(t)− ψn(t)| → 0,

as n → ∞, for all t ∈ R. It is clear that ψn converges pointwise to ψ(t) =


∞

m=1(1 − i tθ−1
m )−1

and ψ is exactly a sum of independent exponential random variables with parameters (θm)
∞

m=1,
say X . Thus, Sn/n2 converges in distribution to X .

To see the distribution of X , let (Xm)m≥1 be independent exponential random variables with
parameters (θm)m≥1 and Ym = X1 + · · · + Xm . Obviously, Ym converges in distribution to X .
Note that, for t > 0,

P(Ym > t) =

m
k=1

cm,ke−θk t ,

where

cm,k =

m
j=1, j≠k

θ j

θ j − θk
=

4(−1)k−1

2k − 1


2−2m


2m

m

2
(m!)2

(m − k)!(m + k − 1)!
.

It is easy too see that |cm,k | > |cm,k+1| for 1 ≤ k < m and θk < θk+1 for all k. This implies that
|cm,k |e−θk t is decreasing in k. As cm,ke−θk t is an alternating sequence, one hasP(Ym > t)−

j
k=1

cm,ke−θk t

 ≤ |cm, j |, ∀ j ≤ m.

By Stirling’s formula,

lim
m→∞

cm,k = (−1)k−1 4
(2k − 1)π

, ∀k ≥ 1.

Letting m → ∞ and then j → ∞ yields

P(X > t) =
4
π

∞
k=0

(−1)k

2k + 1
e−t (2k+1)2π2/8, ∀t ≥ 0.

The desired density function of X is then obtained by the uniform convergence of the right side
and its derivative. �

Proof of Lemma A.4. Set φn(t) = E(ei t Sn/n2
) and ψn(t) =

n
m=1(1 − i tn−2λ−1

n,m)
−1 with

i =
√

−1. As a consequence of the proof for Lemma A.3, we have

lim
n→∞

ψn(t) =

∞
m=1

1

1 − i(2t)θ−1
m
, ∀t ∈ R,
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where θm = (2m − 1)2π2/8. Thus, it remains to show that φn(t)/ψn(t) → 1 as n → ∞ for all
t ∈ R. Note that

φn(t) =

n
m=1

1

1 − λ−1
n,m(1 − e−i t/n2

)
.

Fix t ∈ R and write (1 − e−i t/n2
)n2

= an + ibn with an, bn ∈ R. By (A.5), one has, for
n ≥ max{|2t |, 1},

0 ≤ an ≤
t2

2n2 ≤
1
8
, |bn| = | sin(t/n2)|n2

≤ |t |,

and

n2λn,m ≥
n2

2
×

[(2m − 1)π/2n]
2

8
≥
(2m − 1)2

8
.

This implies

|1 − λ−1
n,m(1 − e−i t/n2

)| ≤ |1 − n−2λ−1
n,m i t |, ∀1 ≤ m ≤ n,

which leads to

|ψn(t)/φn(t)− 1| ≤

n
m=1

n−2λ−1
n,m[n2(e−i t/n2

− 1)+ i t]

1 − n−2λ−1
n,m i t

m−1
k=1

1 − λ−1
n,m(1 − e−i t/n2

)

1 − n−2λ−1
n,m i t


≤ 8|n2(e−i t/n2

− 1)+ i t |
∞

m=1

(2m − 1)−2
→ 0,

when n → ∞, as desired. �

Appendix B. Techniques and proofs

Lemma B.1 ([9, Theorem 1]). The matrix defined in (1.2) has eigenvalues

βn,i = 1 −
2i

n
0 ≤ i ≤ n,

with L2(πn)-normalized eigenvectors

ψn,i (x) =

n

i

−1/2 i
k=0

(−1)k
 x

k

n − x

i − k


, 0 ≤ i, x ≤ n. (B.1)

Proof of Lemma 2.1. (2) ⇔ (3) is obvious from the definition of the L p-mixing time. By the
monotonicity of the L p-distance, the converse statements for (1) and (2) are exactly

(1)′ F has an L p-precutoff.
(2)′ There is C > 0 such that

lim
n→∞

Dn,p(µn, ⌊Can⌋) = 0.
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We prove the equivalence of (1) and (2) by showing (1)′ ⇔(2)′ instead. First, assume that F has
an L p-precutoff and, according to Remark 2.1, let tn > 0 and 0 < A < B be constants such that

lim inf
n→∞

Dn,p(µn, ⌊Atn⌋) = ϵ0 > 0, lim
n→∞

Dn,p(µn, ⌊Btn⌋) = 0.

Let δ < min{ϵ, ϵ0} and choose N > 0,C1 > 0 such that

Dn,p(µn, ⌊Atn⌋) > δ > Dn,p(µn, ⌊Btn⌋), Tn,p(µn, δ) ≤ C1an, ∀n ≥ N .

The former implies Atn ≤ Tn,p(µn, δ) ≤ Btn and, then,

Btn ≤
BTn,p(µn, δ)

A
≤

BC1

A
an .

This yields

lim sup
n→∞

Dn,p(µn, ⌊BC1an/A⌋) ≤ lim sup
n→∞

Dn,p(µn, ⌊Btn⌋) = 0.

Second, assume (2)′ and choose C2 > 0 such that Tn,p(µn, ϵ) ≥ C2an and an ≥ 2/C2. Then,
for n ≥ 1,

Dn,p(µn, ⌊C2an/2⌋) ≥ Dn,p(µn, ⌊C2an − 1⌋) ≥ Dn,p(µn, Tn,p(µn, ϵ)− 1) > ϵ > 0.

This proves the L p-precutoff. �

We consider Proposition 3.2 in a more general setting.

Lemma B.2. Let K be the transition matrix of a periodic birth-and-death chain on Ω =

{0, 1, . . . ,m} with birth rate pi and death rate qi = 1 − pi . That is,

K (i, i + 1) = pi , K (i, i − 1) = qi = 1 − pi , ∀0 ≤ i ≤ m,

with the convention pm = q0 = 0. Let l = ⌊m/2⌋ and µ be a probability on Ω . Suppose that, for
any i ≥ 0,

µ(l − 2i) ≥ µ(l + 2i + 2) ≥ µ(l − 2i − 2), pl+2i ≥ ql−2i ≥ pl+2i+2, (B.2)

and

pl+2i + ql+2i+2 ≥ pl−2i−2 + ql−2i ≥ pl+2i+2 + ql+2i+4. (B.3)

Then, for all i ≥ 0,

µK (l + 2i + 1) ≥ µK (l − 2i − 1) ≥ µK (l + 2i + 3).

Proof. By the periodicity of K ,

µK ( j) = µ( j − 1)p j−1 + µ( j + 1)q j+1, ∀0 ≤ j ≤ m,

where

µ(−1) = µ(m + 1) = p−1 = qm+1 = 0. (B.4)

It is easy to check that both (B.2) and (B.3) hold under the extension in (B.4). If i ≤ (l − 1)/2,
then l + 2i + 1 ≤ 2l ≤ m and

µK (l + 2i + 1)− µK (l − 2i − 1)

= [µ(l + 2i)pl+2i + µ(l + 2i + 2)ql+2i+2]
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− [µ(l − 2i)ql−2i + µ(l − 2i − 2)pl−2i−2]

≥ µ(l − 2i)(pl+2i − ql−2i )+ µ(l + 2i + 2)(ql+2i+2 − pl−2i−2)

≥ µ(l + 2i + 2)(pl+2i − ql−2i + ql+2i+2 − pl−2i−2) ≥ 0.

If l + 2i + 3 ≤ m, then l − 2i − 1 ≥ 2l + 2 − m ≥ 1 and

µK (l − 2i − 1)− µK (l + 2i + 3)

= [µ(l − 2i)ql−2i + µ(l − 2i − 2)pi−2i−2]

− [µ(l + 2i + 2)pl+2i+2 + µ(l + 2i + 4)ql+2i+4]

≥ µ(l + 2i + 2)(ql−2i − pl+2i+2)+ µ(l − 2i − 2)(pi−2i−2 − ql+2i+4)

≥ µ(l − 2i − 2)(ql−2i − pl+2i+2 + pi−2i−2 − ql+2i+4) ≥ 0.

This finishes the proof. �

Remark B.1. Lemma B.2 also holds for the case that m is even and l = m/2 − 1. The proof
goes similarly and is omitted.

The following is a simple corollary of Lemma B.2.

Corollary B.3. Let K be the transition matrix on Ω = {0, 1, . . . ,m} given by

K (i, i + 1) = pi , K (i, i − 1) = qi = 1 − pi , ∀0 ≤ i ≤ m,

where pm = q0 = 0, and let µ be a probability on Ω . Suppose that

pi = qm−i , pi ≥ pi+1, ∀i ≤ m/2,

and

pi + qi+2 ≤ pi+1 + qi+3, ∀0 ≤ i ≤ ⌊m/2⌋ − 2.

(1) If m = 2l and

µ(l + 2i) ≥ µ(l − 2i − 2) ≥ µ(l + 2i + 2), ∀i ≥ 0,

then, for all i ≥ 0 and t ∈ {0, 1, 2, . . .},

µK 2t+1(l − 2i − 1) ≥ µK 2t+1(l + 2i + 1) ≥ µK 2t+1(l − 2i − 3)

and

µK 2t (l + 2i) ≥ µK 2t (l − 2i − 2) ≥ µK 2t (l + 2i + 2).

(2) If m = 2l and

µ(l − 2i − 1) ≥ µ(l − 2i + 1) ≥ µ(l − 2i − 3), ∀i ≥ 0,

then, for all i ≥ 0 and t ∈ {0, 1, 2, . . .},

µK 2t+1(l + 2i) ≥ µK 2t+1(l − 2i − 2) ≥ µK 2t+1(l + 2i + 2).

and

µK 2t (l − 2i − 1) ≥ µK 2t (l + 2i + 1) ≥ µK 2t (l − 2i − 3).



G.-Y. Chen et al. / Stochastic Processes and their Applications 122 (2012) 2830–2853 2851

(3) If m = 2l + 1 and

µ(l − 2i) ≥ µ(l + 2i + 2) ≥ µ(l − 2i − 2), ∀i ≥ 0,

then, for all i ≥ 0 and t ∈ {0, 1, 2, . . .},

µK 2t+1(l + 2i + 1) ≥ µK 2t+1(l − 2i − 1) ≥ µK 2t+1(l + 2i + 3)

and

µK 2t (l − 2i) ≥ µK 2t (l + 2i + 2) ≥ µK 2t (l − 2i − 2).

Proof of Proposition 3.2. For the birth-and-death chain in Proposition 3.2, it is obvious that
pi = 1 − i/n and qi = i/n. This implies

pi = qn−i , pi > pi+1, pi + qi+2 = 1 +
2
n
, ∀i ≥ 0.

Applying Corollary B.3 with K = Kn and µ = δ⌈n/2⌉, the Dirac mass on ⌈n/2⌉, yields

K t
n(⌈n/2⌉, A) ≥ 1/2, ∀t ≥ 0.

For the general case with µn(A) ≥ 1/2, let (X t )
∞

t=0 be a Markov chain with transition matrix Kn
and let T be the first passage time to state ⌈n/2⌉, i.e., T = min{t ≥ 0 : X t = ⌈n/2⌉}. By the
irreducibility of Kn , Pµn (T < ∞) = 1. Using the strong Markov property, we obtain, for t ≥ 0,

µn K t
n(A) =

t
i=0

Pµn (X t ∈ A, T = i)+ Pµn (X t ∈ A, T > t)

=

t
i=0

P(X t−i ∈ A|X0 = ⌈n/2⌉)Pµn (T = i)+ Pµn (T > t)

≥
1
2

Pµn (T ≤ t)+ Pµn (T > t) ≥ 1/2. �

Lemma B.4 ([7, Lemma A.1]). For n > 0, let an ∈ R+, bn ∈ Z+, cn =
bn−an√

an
and

dn = e−an
bn

i=0
ai

n
i ! . Assume that an + bn → ∞. Then

lim sup
n→∞

dn = Φ


lim sup
n→∞

cn


, lim inf

n→∞
dn = Φ


lim inf
n→∞

cn


, (B.5)

where Φ(x) =
1

√
2π

 x
−∞

e−t2/2dt.

In particular, if cn converges(the limit can be +∞ and −∞), then limn→∞ dn =

Φ (limn→∞ cn).

Lemma B.5. For n ≥ 1, let ξn be a binomial random variable with parameters (n, 1/2). Then,
there is a universal constant C > 0 such that

E

n − 2ξn
√

n

θ


≤ C4θΓ

θ + 1

2


, ∀θ > 0, n ≥ 1,

where Γ is the Gamma function.
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Proof. Set Ωn = {0, 1, . . . , n} and πn(x) =
 n

x


2−n . According to the definition of ξn ,

P(ξn = x) = πn(x) for x ∈ Ωn . For 0 ≤ j <
√

n, set

En, j = {x ∈ Ωn : |n − 2x |/
√

n ∈ ( j, j + 1]}, yn, j = max{x ∈ En, j : x ≤ n/2}.

Clearly,

n − ( j + 1)

√
n

/2 ≤ yn, j <


n − j

√
n

/2 and

E

n − 2ξn
√

n

θ


≤

⌊
√

n⌋
j=0

( j + 1)θπn(En, j ). (B.6)

Using (4.2), we obtain, for yn, j ≠ 0,

πn(En, j ) = 2−n


x∈En, j

n!

x !(n − x)!
≤ 21−n √n

 n!

yn, j !(n − yn, j )!

≤ 22−n√
nβ3 nn+1/2

y
yn, j +1/2
n, j (n − yn, j )

n−yn, j +1/2
= 8β3/zn, j ,

where

zn, j =


1 −


1 −

2yn, j

n

2
(n+1)/2 

1 + (1 − 2yn, j/n)

1 − (1 − 2yn, j/n)

n/2−yn, j

.

Since t → (1 − t)1/t is strictly decreasing on (0, 1), it is easy to see that

1 −


1 −

2yn, j

n

2

≥


1 −


1 −

2yn, j

n

1−2yn, j /n

.

As yn, j ≤ n/2, this implies

zn, j ≥
2yn, j

n


1 +


1 −

2yn, j

n

n/2−yn, j

.

In the case yn, j ≥ n/6, one may use the inequality, log(1 + t) ≥ t/2 for t ∈ [0, 1], to get

zn, j ≥
1
3

exp


n

4


1 −

2yn, j

n

2


≥
1
3

e j2/4.

In the case 1 ≤ yn, j ≤ n/6, it is clear that

zn, j ≥
2
n


5
3

n/3

≥
2
n

en/6
≥

2
n

en/24e j2/8,

where the last inequality applies the fact j <
√

n. Putting both cases together, we may choose a
universal constant C > 1 such that

zn, j ≥
e j2/8

C
, ∀0 ≤ j ≤

√
n, yn, j ≠ 0, n ≥ 1.

Back to the computation of πn(En, j ), this gives

πn(En, j ) ≤ 8Cβ3e− j2/8, ∀0 ≤ j ≤
√

n, yn, j ≠ 0, n ≥ 1.
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In fact, the above inequality also holds for yn, j = 0 (which must imply j =
√

n

) because, in

such a case, πn(En, j ) = 21−n
≤ 2e−(log 2) j2

≤ 2e− j2/8. Back to (B.6), we achieve

E

n − 2ξn
√

n

θ


≤ 32Cβ34θΓ

θ + 1

2


. �
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