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This study calculated the contribution of electrons and holes to TiO, conductivity in Si/TiO,/Ni
structures by conducting experiments on the injection of minority carriers from - and p-type silicon.
Results show that electrons and holes contribute to the conductivity of TiO,, enabling two-band
conductivity. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737016]

Universal memory in electronic devices must have the
best properties of modern memory types. It must be as fast as
random access memory (RAM), have an unlimited number of
write cycles, and must be non-volatile, as in hard drives and
flash and solid-state drive (SSD). A recently discovered resis-
tive memory effect in high-x dielectric films provides the
opportunity to create such types of universal memory for elec-
tronic devices.! Because this resistive memory effect was
discovered in films of TiO,,” this material may be used in the
production of new memory chips in the future.

To obtain silicon devices with most optimal properties, it
is crucial to comprehend charge transport mechanisms in
dielectrics. The conductivity of dielectrics can be monopolar
or bipolar. In other words, the charge carriers can be electrons
or holes only, or electrons and holes simultaneously, i.e., the
conductivity can be one-band or two-band. For example, the
conductivity of metal-insulator-semiconductor (MIS) with
thermal SiO, (Ref. 3) and the conductivity of Al,O5; (Ref. 4)
are monopolar (electronic), whereas SizN4 (Refs. 5 and 6) and
71O, (Ref. 7) have bipolar conductivity.

Scientific literature presents theoretical models of
charge transport mechanisms in titanium dioxide films,
describing a resistive memory effect while considering only
electrons as charge carriers.®® The authors®® considered the
presence of electronic traps in reduced Ti ion centers or
oxygen vacancies because of the weak Coulombic interac-
tion. No researcher has yet attempted to evaluate the contri-
bution of holes in the charge transport, neither theoretically
nor experimentally. Therefore, this study determines the
carriers charge sign in TiO, using experimental measure-
ments of the injection of minority carriers from n- and
p-type silicon in MIS structures.>'°

Samples were cleaved from Si wafers with TiO, film,
with a thickness of 150 A. The TiO, films were deposited by
physical vapor deposition (PVD) on p- and n-type Si sub-
strates. Low post-deposition annealing (PDA) at 300°C was
applied to prevent the growth of interfacial SiO,. Structural
analysis shows that the resulting TiO, films underwent nano-
crystallization."' The TiO, capacitors fabricated at higher
temperatures showed a poly-crystalline structure by x-ray
diffraction (XRD) spectra and a very large leakage current via
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grain boundary conduction.'” The leakage current is greatly
reduced by 6 orders of magnitude in a nanocrystallized TiO,
material without grain boundary conduction.'' The samples
for transport measurements were equipped with Ni gates of a
square form of 1.1x 1.1 mm? for electrical contact. The Si
substrate was used as the ground contact. Current-voltage
(I-V) measurements were taken at room temperature. A tung-
sten lamp was used for illumination.

Fig. 1 shows the energy band diagram of n-Si/TiO,/Ni
(a), (c), (e) and p-Si/TiO,/Ni (b), (d), (f) structures in flat
band mode (a), (b) and with applied bias voltage (c)—(f).

When a positive potential is applied to Ni contact for
n-Si/TiO,/Ni (Fig. 1(c)), the electronic system is in accumula-
tion mode, and conductivity is provided by major carriers
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FIG. 1. Energy band diagram of n-Si/TiO,/Ni (a) and p-Si/TiO,/Ni (b) struc-
tures in flat band mode. The same diagrams in accumulation (c), (f) and deple-
tion mode (d), (e). J./J, are flows of injected electrons/holes from Si
into TiO», J/J;; are flows of injected electrons/holes from the metal into TiO,,

JE/J}, are recombination flows of injected electrons/holes from TiO, into Si.

© 2012 American Institute of Physics
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FIG. 2. Experimental /-V curves for n-Si/TiO,/Ni MIS structure for depletion
and accumulation modes in the dark (thick line) and under illumination
(thin line). TiO, film thickness is 150 A.

(electrons). The current through the TiO, dielectric films J, is
relatively high. When a negative potential is applied to the Ni
contact, the system falls into non-equilibrium depletion mode,
and the current in dielectric is a flow of injected electrons
from the metal into TiO, J?. Fig. 2 shows the experimental
I-V curves of the n-Si/TiO,/Ni MIS structure. The -V plate
illustrates that J? (thick line, V' < 0) is substantially less than
Je (thick line, V > 0). Illumination causes an additional photo-
generation of minority carriers (holes) (a twisted arrow in
Fig. 1(e)), which subsequently increases the dielectric current
Jn. This dramatic growth of the dielectric current is shown in
[-V plate by the thin line in Fig. 2. The current increases expo-
nentially at low voltages, and current saturation appears at
a sufficiently large voltage. The current saturation level
increases under illumination, and this rise indicates that the
depletion mode minority carriers (holes, in this case) are
injected from Si into TiO,.

Fig. 3 shows I-V dependencies for p-Si/TiO,/Ni struc-
tures. With a negative potential applied to Ni for p-Si/TiO,/Ni
(Fig. 1(f)), i.e., when in accumulation mode, the current grows
exponentially with increasing voltage. Current saturation
appears in depletion mode, and the saturation level increases
under illumination. This phenomenon also occurs in depletion
mode in n-Si/TiO,/Ni structures. The current saturation level
in p-Si/TiO,/Ni structures indicates the injection of minority
carriers (electrons) from the silicon substrate into titanium
dioxide.
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FIG. 3. Experimental /-V curves for p-Si/TiO,/Ni MIS structure for depletion
and accumulation modes in the darok (thick line) and under illumination
(thin line). TiO, film thickness is 150 A.
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FIG. 4. (a) Flows of charge carriers in n-Si/TiO,/Ni MIS structure with
the positive bias +V applied to the Ni contact (a). (b) The same diagram of
p-Si/TiO,/Ni MIS structure with the negative bias —V applied to the Ni
contact. Dashed arrows show the flows of not recombined charge carriers.

In conclusion, this study presents experiments on separat-
ing carrier signs in TiO, using #n- and p-Si in non-equilibrium
depletion mode. Results demonstrate that TiO, conductivity is
two-band, similar to that in SizNy4,>° ZrO,,” and HfO,."?

As in SisNy, and HfO,, the delocalized free electrons
recombined with holes trapped at hole traps, and the free
holes recombined with electrons localized on the electron
traps in the bulk insulator (Fig. 4). The probability of recom-
bining holes and electrons in the surface states on the Si/
TiO, interface is negligible, similar to that which occurs in
HfO,,"* which also indicates that the major carriers current
from the metal gate J7, is much less than the current of mi-
nority carriers Jp¢ under illumination. The probability of
recombination of injected from the insulator holes with elec-
trons in the inversion layer is low, since the thickness of the
inversion layer is less than the diffusion length of the holes.
The flows of not recombined charge carriers are shown in
the Fig. 4 by dashed arrows.

The new results must be considered in further investiga-
tions for the creation of more accurate models of transport
mechanisms in titanium dioxide films to describe different
effects, including the resistive memory effect.
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