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Mesh segmentation has become a key ingredient in many mesh applications in com- 

puter graphics. In this paper, we propose a hierarchical segmentation that decomposes a 
polygonal object into meaningful parts in such a way that not only components on a higher 
level reveal higher degree of salience than their descendant parts but also the compo-
nents on each level of hierarchy have similar degree of salience. Moreover, the number 
of boundaries on each level of the hierarchy is determined automatically. The proposed 
segmentation is based on the Minimum Slice Perimeter (MSP) function [1], which 
represents non-local shape features and has better interpretation for the object parts. The 
gradient of MSP function is used to locate the segmentation regions and a new measure 
of part salience is proposed to evaluate the significance of the segmentation regions. For 
each level of hierarchy, some most perceptually significant segmentation regions are se-
lected based on their salience measures and boundaries are then computed from the se-
lected segmentation regions by using a capacity that considers both the curvature and 
MSP gradient.  
 
Keywords: shape analysis, mesh segmentation, minimum slice perimeter, computer graph- 
ics, geometric modeling   
 
 

1. INTRODUCTION 
 

Triangular meshes are fundamental modeling representation for computer graphics 
applications. The demand of techniques for analysis, processing, transmission, and ren-
dering 3D meshes are increasing in response to the wide-spreading applications, leading 
to tremendous technical developments for 3D meshes in the last decade. As meshes are 
becoming larger and more complex, decomposing an object into smaller and simpler 
components is essential for many mesh techniques, including parameterization, texture 
mapping, morphing, editing, shape matching, compression, and more. Thus mesh seg-
mentation has become a key ingredient in many mesh applications. 

To perform geometric operations on the mesh surface, we often require the help of 
properties defined on the surface. Most of the existing mesh segmentation methods rely 
on surface properties that are either local detail geometric features or global topological 
structure. The use of too local or too global surface properties limits many segmentation 
algorithms to either decompose a model into several surface patches or be able to handle 
only models with some specific topological structure such as core-salient features. The 
object part is an intermediate level structure relative to the entire mesh and it can be ana-
lyzed using some intermediate level surface properties. Our segmentation scheme is 
based on the observation that neighboring regions having similar internal volume tend to 
be grouped into a part. To describe the internal volume of the object, we use a recently 
developed surface property called Minimum Slice Perimeter (MSP) [1]. The MSP is a 
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surface function that describes the local internal volume around the surface point. It is 
derived from the concept of short-cut [2] which tries to find the best representative slice 
plane for a surface point. And the internal volume around the surface point can then be 
approximated as the perimeter of the slice. Compared to the Shape Diameter Function 
(SDF) [3] derived from the concept of medial-axis, the short-cut slice in MSP has better 
interpretation for the local internal volume than the maximum inscribed balls in SDF. For 
object parts that are highly non-cylindrical, the SDF describes only part of the internal 
volume since it requires multiple inscribed balls to fill the volume. 

Since complex models often contain features in different scales or salience, ranging 
from global structure to detail surface features, it is useful to decompose the models into 
components in several levels or hierarchically. Several approaches have been proposed in 
this direction. Hierarchical face clustering techniques construct the hierarchy in bottom 
up fashion [4]. Top down approaches start from the root representing the whole object 
and partition the component into two or more parts [5]. This process continues recur-
sively until a certain condition is met. At each level of the top-down approach, the seg-
mentation is usually derived implicitly by locating the best boundary between parts. Sev-
eral hierarchical segmentation techniques have been proposed [5-8]. Most of them pos-
sess the property that components on a higher level reveal higher degree of salience than 
their descendant parts. But many of them cannot ensure that the components on each 
level of hierarchy have similar degree of salience. 

Locating boundary between parts can be done by either boundary-based or region- 
based approach. Boundary-based approaches use local geometric properties, such as cur-
vature, to locate boundary. Region-based approaches seek for regions with similar prop-
erties, such as the combination of geodesic and angular distances in [5], and from which 
boundaries are derived. Since parts have different levels of salience, to evaluate the sig-
nificance of a boundary between parts we need to include the salience measures of the 
associated parts. However, the boundary computed by using boundary-based and region- 
based approach usually lacks for the salience measures of the parts associated with the 
boundary. 

This paper presents a new hierarchical segmentation scheme that decomposes an 
object into meaningful parts in such a way that not only components on a higher level 
reveal higher degree of salience than their descendant parts but also the components on 
each level of hierarchy have similar degree of salience. Our segmentation is based on a 
recently developed surface function called Minimum Slice Perimeter (MSP) which re- 
presents the object’s internal volume on the surface [1]. As neighboring regions having 
similar internal volume tend to be grouped together and form a part, the gradient of MSP 
can be used to locate the candidate segmentation regions that contain the boundaries. 
Moreover, the significance of segmentation regions is evaluated in the process of hierar-
chical segmentation. The evaluation takes into account the salience information of the 
parts associated with the segmentation region. 

The proposed hierarchical segmentation scheme starts from the whole object and, 
for each level of the hierarchy, locates segmentation regions by applying a threshold to 
the gradient of MSP function, then evaluates the significance of segmentation regions, 
and finally selects a set of most significant segmentation regions for that hierarchy level. 
The boundaries for that level are then computed by using graph cut [5] with a capacity 
that considers both the curvature and MSP gradient. 

The paper makes the following contributions: 
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1. Propose a segmentation scheme based on a surface function MSP that encodes local 
volume information. The proposed segmentation scheme has several advantages: 

 
• The MSP function is an intermediate-level surface property. It is more global than 

surface functions that represents local geometry detail, such as curvature, and less 
global than functions such as geodesic function. 

• Regions of similar volume are grouped into a part according to the intermediate- 
level surface function MSP. 

• A significance measure of a boundary that takes into account the local curvature and 
the changes in MSP value is presented. 

 
2. Propose a hierarchical segmentation on which not only components on a higher level 

reveal higher degree of salience than their descendant parts but also the components 
on each level of hierarchy have similar degree of salience. 

2. RELATED WORK 

In the past decade, many mesh segmentation methods have been proposed. Based 
on the objective, mesh segmentation methods generally fall into two categories: patch- 
type and part-type [9]. Patch-type segmentation usually decomposes the mesh into sev-
eral patches by analyzing the surface properties such as dihedral angles [10, 11], curva-
ture [11-13], geodesic distance [14], and planarity [4]. Part-type segmentation tends to 
segment the complex object into several meaningful components, usually based on the 
concepts from cognition theory [15, 16]. For example, the minima rule states that human 
perception tends to break an object into parts along the region of minimum negative cur-
vature [15]. Moreover, the salience of parts determined by relative volume, boundary 
strength, and degree of protrusion is important for human perception [16]. Our method is 
a part-type segmentation, and we will mainly review this type of segmentation and refer 
readers to the excellent survey paper by Shamir [9] for the patch-type segmentation. 

As described in section 1, locating boundary between parts can be done by either 
boundary-based or region-based approach. Mangan and Whitaker used the watershed to 
segment the object into several parts according to the curvature on the surface [12]. Lee 
et al. [7] cut the object into parts by first finding the loop along the minimum negative 
curvature, and then test the salience of the divided parts based on the part salience theory 
[16]. However, the surface curvature is too local for describing the shape of object and 
locating cut boundaries based on the curvature cannot always result in a meaningful part 
segmentation. Moreover, the iterative segmentation process proposed leads to a binary 
hierarchical segmentation on which each level does not provide intuitive meaning for 
object parts. 

The geodesic distance is another attribute widely used in mesh segmentation [5, 17- 
20]. The averaged geodesic distance (AGD) derived as the average of geodesic distance 
from a surface point to all other points can be used to represent the degree of protrusion 
of a part. However, such attributes are useful only for models that have obvious core part 
and feature parts. 

The Medial Axis Transform (MAT) is a global shape descriptor of the object [20]. 
MAT or skeleton can be used as a guideline for segmentation. For example, Li et al. 
segmented the object by moving a sweep plane along the skeleton of object [22]. Since 
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the size of the cutting section of the sweeping plane can be regarded as local volumetric 
information of the object, the cut boundaries are usually at the regions where the size of 
cutting section varies rapidly. Oscar et al. segmented the skeletal mesh by measuring 
thickness corresponding to the skeleton nodes derived from the skeletonization process 
[23]. The most concave region for the cutting is searched for each skeleton branch by 
comparing the thickness of the skeleton nodes with their neighbors [23]. Reniers and 
Telea observed that the junction between two skeleton paths has high potential to be a 
good place for separating two parts [24, 25]. A surface attribute related to MAT is pro-
posed in [3], called Shape Diameter Function (SDF). SDF measures the local diameter of 
the object at the surface points by sampling the rays fired from the surface point inward 
to the other side of the mesh and averaging the length of those rays sampled. They also 
proposed a hierarchical segmentation method by fitting k Gaussian functions to the his-
togram of SDF values, and clustering the mesh faces according to their corresponding 
Gaussian functions. However, the fitting of the global histogram can not reflect the dif-
ference between the object parts and some small parts with no salient feature may be 
segmented. The segmentations generated by using different number of Gaussian func-
tions do not have consistent part correspondence and the part boundaries may not always 
lie on meaningful regions. 

An iterative approach for decomposing the object into several parts is based on the 
k-means clustering [26]. Shlafman et al. used k-means clustering to segment the object 
into a user-specified number of components [17]. This work was later refined to achieve 
hierarchical segmentation [5]. However, the geodesic distance used in [5] describes only 
the protrusion of object parts and hence the resultant hierarchical segmentation tends to 
cut the object along the longest parts at the higher level of the hierarchy, which may not 
meet the concept of perception. Moreover, the method is usually suitable only for objects 
having obvious core-salient features. The challenge to the k-means clustering methods is 
that the value of k needs to be given a priori. Liu and Zhang overcame such problems by 
applying the spectral analysis on the affinity matrix constructed using the mesh faces [18]. 

Another segmentation approach was based on the fitting of primitives. Attene et al. 
extended the hierarchical face clustering [4] and replaced the clustering metric by other 
similarity measures for the predefined primitives, such as spheres, cylinders and planes 
[27]. Mortara et al. detected the parts with tubular shape from the whole object [28]. 
They extracted the core part by excluding all the tubular parts from the object to com-
plete the segmentation. 

Pose-invariant mesh segmentation has attracted more attention in recent years. Such 
works focused on finding the consistent segmentation over different poses of a model. 
Katz et al. transformed the original model into a pose-invariant representation using mul-
ti-dimensional scaling and then used spherical mirroring to extract the core of the object 
and feature points to segment the objects [6]. In character animation, the pose-invariant 
segmentation can be achieved by finding the rigid components during the animation 
[29-31]. However, such methods are usually suitable only for articulated models and the 
requirement of animation sequences also poses some restrictions on the usability. 

Golovinskiy and Funkhouser [32] defined a surface function called partition func-
tion that indicates how likely each edge is to lie on the boundary of a random segmenta-
tion drawn from a set of segmentations. Based on the partition function, a cut is associ-
ated with a consistency measure as the length-weighted average of the partition function 
values of its edges. The most consistent cuts defined as the set of cuts with highest con-
sistency are used for finding the part boundaries. Chen et al. proposed a benchmark for 
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quantitative evaluation of mesh segmentation algorithms [33]. The benchmark includes a 
data set with 4,300 manually generated segmentations for 380 object meshes in 19 cate-
gories. It also provides software for producing four quantitative metrics for the compari-
son of segmentation algorithms.  

3. VOLUME BASED MESH SEGMENTATION 

3.1 Overview 

The goal of our segmentation scheme is to utilize the volume information for seg-
mentation. The Minimum Slice Perimeter (MSP) function [1] is a surface function that 
encodes the internal volume information around the surface point. We observed that 
neighboring surface regions with similar volume tend to be grouped into a part and con-
sequently the gradient of the MSP function directly implies the potential regions for de-
riving part boundaries. The proposed scheme begins by computing the MSP values for 
each face of the mesh and deriving the gradient of the MSP function. The segmentation 
process then finds a set of segmentation regions by applying a threshold value to the gra-
dient of MSP function. Each segmentation region divides the object into two or more 
potential object parts. We then test the saliency of the potential parts and obtain some 
most significant segmentation regions. Finally, a cut is derived within each selected seg-
mentation region which separates the object into two parts. Fig. 1 illustrates the segmen-
tation process. 

 
 
 
 
 
 
 
 
(a) MSP.          (b) MSP gradient.    (c) Segmentation regions.   (d) Segmented parts. 

Fig. 1. Steps of the mesh segmentation process. 

The selection of the most significant parts directly implies that a hierarchical seg-
mentation can be obtained easily by performing the segmentation process iteratively. 
Such a hierarchical segmentation possesses a property that parts at the same level will 
have similar saliency and parts at a higher level have higher saliency than parts at lower 
levels. 

 
3.2 Minimum Slice Perimeter Function 

The object’s local volume is a valuable surface property for describing the shape of 
the object. To associate the internal volume information with the mesh surface, we use a 
recently developed MSP function that is derived from the concept of short-cut [2] and 
approximates the best possible short-cut for a surface point as the planar slice that passes 
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through the point and perpendicular to the surface and has the smallest perimeter of the 
intersection slice with the mesh surface. 

We define the MSP function for a surface point p as the minimum perimeter of the 
planar slices passing through p and perpendicular to the surface at p as in Eq. (1). 

 
( ) plane( , )min

n
p n p= ∩MSP M    (1) 

where plane(n, p) represents a plane passing p with normal n. The minimum perimeter of 
slices aims to serve as a good approximation of the local volume around the surface point. 
Since the short cut is not necessarily perpendicular to the surface, requiring the planar 
slice perpendicular to the surface may be too strong for obtaining a good approximation 
of the short cut, especially around the tip of the protrusion parts. In the implementation, 
we relax the requirement and allow planar slice to be parallel to the direction within a 
normal cone of the surface point.    

Fig. 2 demonstrates the MSP distribution on several models. The color ranging from 
blue to red represents the MSP value in ascending order. As we can see that the core 
parts have higher MSP value than the salient parts for the articulated models and, for 
models having complex topological structures, parts can be distinguished easily based on 
the MSP distribution. In Fig. 3, MSP and SDF are compared. Both MSP and SDF can 
reveal the relative volume size well for cylindrical parts, but the MSP performs better for 
the object parts that are highly non-cylindrical, such as the palm in Fig. 3. The SDF in 
general measures the thickness of the object part and hence represents only part of the 
volume information. Moreover, the MSP describes the changes in shape better than SDF 
since there exists large gaps in MSP value between the palm and the fingers while the 
SDF tends to blur the function value within such regions.    
 

 
 
 
 
 
 
 

(a) Hand.     (b) Dinosaur.    (c) Armadillo.           (d) Santa.        (e) Nepture.  
Fig. 2. The MSP on different models. 

 
 
 
 
 
 
 

   (a) MSP.                      (b) SDF. 
Fig. 3. Coloring of MSP and SDF on the olive hand model. 
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3.3 Segmentation Regions Finding 

Computing the gradient of MSP function  The gradient of MSP function represents 
the rate of volume change in the neighborhood of the surface point. As shown in Fig. 4, 
there are large gaps in volume’s size between the body and the neck and between the 
body and front limbs of the camel model, which are revealed in the distribution of MSP 
function (Fig. 4 (a)) and its gradient (Fig. 4 (b)). Computing the gradient of MSP func-
tion on a piecewise linear polygon mesh is not as trivial as that on the continuous surface. 
To compute the gradient of MSP function at a surface point x, we first derive a differ-
ence-vector for every edge in a neighborhood of x and then compute the MSP gradient 
vector at x as the average of all difference-vectors. The difference-vector for an edge is 
the vector in the direction of the edge vector and with the magnitude as the difference of 
the MSP values at its two endpoints. 
 
 
 
 
 
 
 
 

 (a) MSP.                  (b) Gradient of MSP. 
Fig. 4. MSP and its gradient on the camel model. 

 

The gradient of MSP function at x is finally the magnitude of the averaged MSP dif-
ference-vector at x. Its detail equation is as follows, 

1MSP ( ) (MSP( ) MSP( )) ,
| | i j

e B
x e e e

B ∩
∇ = −∑   (2) 

where B is the neighborhood of x with a user-specified range, ei and ej are two end points 
of the edge e, possibly clamped to be within B, and⎯e is the unit vector of the edge e. 
Such a formulation is similar to the method for computing the curvature tensor in Alliez 
et al. [34]. For efficiency consideration, we define B as the surface region within the 
sphere centering at x with a user-specified radius. 
 
Deriving an appropriate threshold value  The segmentation regions are defined as the 
surface regions where the gradient of MSP is above a specific threshold value. An ap-
propriate threshold value is hard to find in practice. A smaller threshold value will 
enlarge the segmentation regions, making the computation of a proper cut boundary more 
difficult. For a large threshold value, the segmentation region may not form in loops, 
even using extrapolation. To decide an appropriate threshold value automatically, we 
consider the cumulative function for the surface area with respective to the MSP gradient 
as follows, 

0
( ) ( ) ,

y
A V a v dv= ∫  (3) 
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where a(v) denotes the area of the surface region having MSP gradient as v and A(V) is 
the total area of the surface region that has the MSP gradient less than or equal to V. A(v) 
is a monotonically increasing function, representing the changes of cumulative surface 
area with respect to the MSP gradient. A good threshold value will be the MSP gradient 
value that indicates a sudden drop on the value of A(v) when the MSP gradient decreases. 
Hence, by considering A(v) as a 2D curve segment, the desired threshold value will be at 
the position where the curvature is maximal. Figs. 5 (a) and (b) illustrate the graph of A(v) 
and its curvature for the horse model, respectively. The segmentation regions extracted 
using the derived threshold value is shown in Fig. 5 (c).    
 
 
 
 
 
 
 
 
 
 

(a) A(v).                 (b) Curvature of A(v).       (c) Segmentation regions.  
Fig. 5. A(V), curvature of A(V), and segmentation regions derived for the camel model. 

 

Loop closing for segmentation regions  Since the cut boundary is extracted within the 
segmentation region, a segmentation region must form a loop. The segmentation region 
derived by applying threshold on MSP gradient in general does not guarantee to form a 
loop. We apply extrapolation to close those segmentation regions into loops. For a seg-
mentation region that does not form a loop, a region growing process is performed start-
ing from the region boundary, and in each iteration the face with the largest MSP gradi-
ent is added to the segmentation region until the newly added face connects to another 
region or close the loop. After closing up a loop, the faces within the newly grown region 
are peeled away iteratively in the decreasing order of their MSP gradients until a ribbon 
region with one face width left between the two newly connected segmentation regions. 
At this point, these two segmentation regions are merged. The merging process is exe-
cuted iteratively until all segmentation regions form in loops. Fig. 6 illustrates the loop 
closing process. 

 
 
 
 
 
 
 
 
 
 (a) Original segmentation regions.  (b) Region extrapolation.     (c) Grown region peering.  

Fig. 6. The loop closing process. 
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3.4 Significant Segmentation Pairs Selection 

The segmentation region derived using the gradient of MSP represents the strength 
of the part boundary, but does not reveal any salience information of parts it separated. 
However, the salience of segmented parts associated with the segmentation regions may 
range from detail feature to global structure. 

There may have more than two parts associated with a segmentation region. Thus 
for a segmentation region, we define a segmentation pair to be two parts sharing the 
same segmentation region. The part saliency theory states that the salience of a 3D part 
depends on three factors: its size related to the whole object, the boundary strength, and 
the degree of protrusion [16]. Since we have derived the segmentation regions using 
MSP gradient, the local volume of an object part can be approximated by the average 
MSP value within the part region. The strength of boundary between a segmentation pair 
can be described as the difference of the averaged MSP values of the two parts. In order 
to measure the protrusion of the object part, we use the salience metric proposed by Gal 
and Cohen-Or [35] due to its computational efficiency and practicability for identifying 
surface features. Thus, we assign a salience-measure to each of segmentation pair (pa, pb) 
as follows, 

 
S(pa, pb) = min(MSP(pa), MSP(pb))min(S(pa), S(pb))||MSP(pa) − MSP(pa)||,  (4) 

where pa and pb are the two parts sharing the segmentation region, S(p) = Σf∈pArea(f)Cur- 
vature(f)2 denotes the saliency of the part p, and MSP(p) is the averaged MSP value of 
the part p. We use the Gaussian curvature in saliency computation since it has better de-
scription for the protrusion of object part. 

To find the most significant segmentation pairs, we sort the value of S for all seg-
mentation pairs in ascending order into a sorted sequence {S*(i)}, and seek an index k 
such that S*(k) − S*(k − 1) is the maximum; that is, look for the largest gap among the 
sorted S*(i). Those segmentation pairs that have S value higher than S*(k − 1) will be 
chosen as the segmentation regions for the current hierarchy level. As shown in Fig. 7, 
there is a large gap in the histogram of S between the segmentation pairs 17 and 18, and 
segmentation pairs 18 to 21 are selected.   
 

 

 

 

 

 

(a) Salience-measure function histogram.            (b) Selected segmentation pairs. 
Fig. 7. Selection of the segmentation pairs. 
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3.5 Cut Boundary Extraction for the Selected Segmentation Pair 

Once a segmentation pair is selected, we next compute a cut boundary between 
parts by performing a modified graph cut [5]. We propose a hybrid capacity that com-
bines the gradient of MSP as well as angle difference as follows, 

( ), , ,

avg avg avg

,

,2( ) ( ) || ||
|| ||

0 cut

1cap( , ) , , ,
1 2

otherwise,

i j i j i j

i j k l k

i j
e e e

e

e

i j e E i j S T
θ
θ

<

∂
∂

∈∩⎧
⎪
⎪⎪= ∈ ≠
⎨

+ + +⎪
⎪
∞⎪⎩

MSP
MSP

   (5) 

where i and j are two faces on the object that are not in both the source region S and the 
target region T, ei,j denotes the edge between faces i and j, θ(ei,j), ∂MSP(ei,j), and ||ei,j|| are 
the dihedral angle of ei,j, the MSP difference across ei,j, and the edge length of ei,j, nor-
malized by the averaged dihedral angle (θavg), the averaged MSP difference (∂MSPavg), 
and the averaged edge length ||eavg||) over the object, respectively. The first equation in 
Eq. (5) allow the current cut path cutl to lie along the cuts cutk, k < l, that have been gen-  

erated previously. The ,

avg

|| ||
|| ||

i je
e

 in Eq. (5) is a compensated term aiming to straighten the  

cut boundary since the path generated by using the tip of MSP gradient may not always 
be smooth.  
 
3.6 Hierarchical Segmentation 

The proposed segmentation can be adapted easily to a hierarchical scheme by itera-
tively performing the segmentation process described in previous sections. For each level 
of hierarchy, the selection of the most significant segmentation pairs ensures that the 
selected parts will have similar salience significance while having large differences com-
pared to the remaining parts. Thus we obtain a top-down hierarchical segmentation that 
decomposes the object into parts into levels that reveal the salience significance down 
from the global structure to local features. Our segmentation regions are found by apply-
ing a threshold value to the cumulative function shown in Eq. (3). In order to capture 
more boundaries in finer levels, for each level we ignore surface area nearby the part 
boundaries derived in previous levels in computing Eq. (3). As a result, a lower threshold 
value on the histogram can be obtained to enlarge the segmentation regions. Fig. 8 illus-
trates the segmentation regions found in three levels for the camel model. We observe 
that the threshold value applied decreases as the segmentation level gets more deep (see 
the numbers inside the parentheses) and the segmentation regions for smaller features, 
such as the mouth and the fingers, are found in finer levels. Fig. 9 reveals the segmenta-
tion results of the camel model corresponding to the segmentation regions in Fig. 8. 
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(a) Level 1 (0.148).            (b) Level 2 (0.102).          (c) Level 3 (0.07). 
Fig. 8. Segmentation regions at three levels on the camel models. 

 

 

 

 

 
 

           (a) Level 1.                  (b) Level 2.                 (c) Level 3. 
Fig. 9. Hierarchical segmentation of the camel model in three levels. 

4. EXPERIMENTAL RESULTS 

By using the volume information encoded in the MSP function, the proposed seg-
mentation scheme can handle models of different topological types. Fig. 10 demonstrates 
the segmentation result for models shown in Fig. 2. Observed that the cut boundaries are 
located along the regions where there exists a large gap in MSP value and in the mean-
time follow the object’s local features and, moreover, the salience-measure ensures that 
the most visually significant parts are segmented. The dinosaur (Fig. 10 (b)) and arma-
dillo (Fig. 10 (c)) models have complex surface details and hence it is difficult to locate 
correct cut boundaries based on minima-rule alone. Since the MSP function is less sensi-
tive to the surface detail noise, we can generate meaningful parts and reasonably good 
boundaries using the proposed hybrid capacity on these two models. The nepture (Fig. 10 
(e)) model has genus higher than 1 and does not have obvious core-salient structure. 
Such kind of model can hardly be handled well using segmentation methods based on the 
global shape properties such as averaged geodesic distance [5, 6]. On the other hand, the 
proposed method finds no difficulty on such models since the volume information en-
coded by MSP function is less global and provides enough cues for identifying the parts 
from the models. Some smooth artifacts on cut boundaries may still be observed on some 
segmentation results such as the cut boundaries between the hind legs and the body of the 
camel (Fig. 9) and between the thighs and the body of the armadillo (Fig. 10 (c)) and of 
nepture (Fig. 10 (e)). In such regions, the tip of MSP gradient has large amount of dis-
turbance and twice of compensation term in Eq. (5) may be not enough for yielding 
smooth boundaries. Moreover, we assume that the internal volume is uniform within the  
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 (a) Hand.       (b) Dinosaur.       (c) Armadillo.      (d) Santa.         (e) Nepture. 
Fig. 10. The segmentation result of different models. 

object part while noticeable volume change exists between parts. For models with some 
adjacent parts that have no noticeable volume change between them, our segmentation 
scheme may fail to separate them into different parts, such as the case in Fig. 10 (e) where 
the hand and trident are not separated. 

In Fig. 11, we compare the proposed method to other methods provided in the seg-
mentation benchmark [33]. Cup and chair models do not have obvious core-salient struc-
ture on which the core extraction [6] and K-means [17] algorithms fail to produce good 
segmentations. The segmentation using SDF is based on a global fitting of the histogram 
function and is unable to reflect the local changes in object volume, leading to biased 
segmentation boundaries. Moreover, the SDF cannot correctly describe the non-cylin- 
drical part and generates improper segments on the cup model. The randomized cuts 
method [32] generates good segmentation results for most of the models. However, its 
performance strongly depends on the existing segmentation methods it employs. For 
example, in [32] the randomized cuts method employs methods based on the local cur-
vature and the geodesic distance, and in consequence, it may not generate good segmen-
tations for models with complex local features. Fig. 12 shows the segmentation result of 
dinosaur model using the proposed scheme and the randomized cuts [32]. The proposed 
segmentation can tolerate the complex local features of the dinosaur model and segments 
the models into parts with similar salience significance. On the other hand, randomize 
cuts algorithm produces improper segmentation boundaries at the neck, the body, and the 
tail. We also perform a benchmark study of the proposed method against others using the 
segmentation benchmark [33]. The benchmark study is obtained by performing the com-
parison based on 20 models selected from the object database of the segmentation bench- 
mark (two models from each object category). Fig. 13 reveals that the proposed segmen-
tation scheme always yields lower error than others for the four metrics proposed in [33]. 

Since the interior volume of a model is almost constant during animation, the pro-
posed segmentation scheme is inherently pose invariant. We list the segmentation result 
of the animated centaur model in four poses in the top of Fig. 14. The bottom of Fig. 14 
illustrates the average error rate of MSP function for each of the four poses. For each 
pose, the MSP’s average error rate is computed by averaging the differences in MSP val-
ue between the pose and all other poses. The MSP is almost invariant to the change of 
pose, except in some joint regions where very small deviation of MSP value may exist. 

We decompose the dinosaur and armadillo models into a hierarchy of four levels, as 
shown in Fig. 15. The columns from left to right indicate the levels in ascending order. 
The most significant parts, such as the body of armadillo and the four limbs, are decom-
posed at the first level. As going down in the hierarchy, we observe that parts at the same 
level have similar salience significance and parts in lower levels have less salience sig- 
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(a) MSP.                           (b) Randomized cuts. 

Fig. 12. Comparison of dinosaur result using MSP and randomized cuts [32]. 
 
 

MSP Randomized Cuts 

Fig. 11. Comparison of the segmentation methods. 

SDF Core Extraction K-Means 
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(a) Cut discrepancy.                    (b) Hamming distance. 
 
 
 
 
 
 
 
 
                (c) RandIndex.                      (d) Consistency error.  

Fig. 13. Comparison of dinosaur result using MSP and randomized cuts [27]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     pose 0     pose 1    pose 2     pose 3 
Avg. error rate  0.012     0.009    0.11     0.015 

Fig. 14. Segmentation and average error rate for different poses of the animated centaur model. 
 

nificance. Fig. 16 depicts the histogram plots of salience-measure for the dinosaur model. 
The parts having similar meaning tend to have similar value of salience-measure and will 
be decomposed at the same level. Fig. 17 lists the hierarchical segmentation result using 
SDF [3]. The boundaries of core part for the dinosaur and armadillo are varying among 
different levels and moreover, parts at the same level might differ greatly in salience sig-
nificance and parts at lower levels may not have less salience significance. 
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  Fig. 15. Hierarchical segmentation result of the dinosaur and armadillo models. 

(a) Level 1. 
Fig. 16. Histograms of the salience-measure at four levels for the dinosaur model. 

(b) Level 2. (c) Level 3. (d) Level 4. 

Fig. 17. Hierarchical segmentation result of the dinosaur and armadillo models using SDF [3]. 
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5. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, we have proposed a new hierarchical segmentation scheme that de-
composes an object into several levels of meaningful parts. The segmentation hierarchy 
obtained possesses some desired properties. For example, components on a higher level 
reveal higher degree of salience than their descendant parts and the components on each 
level of hierarchy have similar degree of salience. Moreover, the number of boundaries 
on each level of the hierarchy is determined automatically. The segmentation regions are 
found by using the gradient of Minimum Slice Perimeter (MSP) function [1]. MSP func-
tion is a new volume-based surface function that is capable of encoding more global vo-
lume information around a surface point than previous MAT related functions. We have 
also evaluated the visual significance of a segmentation region by taking into account the 
salience information of the parts adjacent to it and based on that salience measure we 
select some most perceptually significant segmentation regions for each level of the seg-
mentation hierarchy. The information encoded by MSP function is more global than sur-
face functions that represents local geometry detail, such as curvature, and less global 
than functions such as geodesic function. We have performed a benchmark study using 
the segmentation benchmark [33] and found that the proposed method performs better 
than the methods supported in the benchmark. 

The cutting threshold for the largest gap on the sorted salience histogram can dis-
tinguish the most significant segmentation pairs from others. However, the salience- 
measure defined as the combination of MSP and other local properties is still not good 
enough and may result in some improper segmentation results. A better metric for de-
scribing the salience of the object parts is expected. Moreover, the minimum perimeter 
slice used for computing the MSP value is originated from the short-cut rule [2] and pro-
vides hints for evaluating how good an object part is. We are working on the design of a 
new metric for evaluating the goodness of an object part based on the observation that to 
be a good part all minimum perimeter slices of points inside an object part tend to fall 
inside the part region. 
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