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We propose a method to optimize the effective magnetoelectric voltage coefficient of
fibrous composites made of piezoelectric and piezomagnetic phases. The optimization of
magnetoelectricity is with respect to the crystallographic orientations and the volume frac-
tion for the two materials. We show that the effective in-plane (a�E;11) and out-of-plane
(a�E;33) coupling constants can be enhanced many-fold at the optimal orientation compared
to those at normal orientation. For example, we show that the constants are 101 and 5
times larger for the optimal orientation of CoFe2O4 fibers in a BaTiO3 matrix of the opti-
mized volume fraction compared to the normal orientation, while they are 43 and 5 times
larger for BaTiO3 fibers in a CoFe2O4 matrix. The predictions are in good agreement with
the finite element analysis.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetoelectric (ME) materials, which show a polariza-
tion induced by an applied magnetic field, or conversely, a
magnetization induced by an applied electric field, have
been the focus of recent research due to their coupling be-
tween the electric and magnetic fields. This make them
particularly appealing and promising for a wide range of
applications, such as ME data storage and switching, mag-
netic field detectors, and amplification and frequency con-
version between the electric and magnetic fields (Fiebig,
2005). However, the ME effect in single phase materials
is rather weak or cannot be observed at room temperature
(Astrov, 1960; Rado and Folen, 1961). Composite materials,
on the other hand, offer an alternative option for improve-
ment of the ME coupling, as explained in recent reviews by
Eerenstein et al. (2006) and Nan et al. (2008). This much
stronger ME effect could be realized in a composite made
of piezoelectric and piezomagnetic/magnetostrictive
phases using product properties: an applied magnetic field
creates a strain in the piezomagnetic/magnetostrictive
material which in turn creates a strain in the piezoelectric
material, resulting in an electric polarization.
. All rights reserved.

uo).
A variety of models have been proposed to predict the
effective magnetoelectroelastic moduli of the multiferroic
composite. The estimates of the effective properties of
ME composites are usually obtained by various approxi-
mate mean-field models (Nan, 1994; Benveniste, 1995;
Wu and Huang, 2000). The exact solutions for local fields
are available for simple microstructures such as a single
ellipsoidal inclusions (Huang and Kuo, 1997; Li and Dunn,
1998a), periodic arrays of circular/elliptic fibrous ME com-
posites (Kuo, 2011; Kuo and Pan, 2011) and laminates
(Srinivas et al., 2001; Bichurin et al., 2003), etc. A homoge-
nization method was employed for calculating the effec-
tive properties of periodic ME fibrous composites
(Aboudi, 2001; Camacho-Montes et al., 2009), while
numerical methods based on the finite element analysis
have also been developed to address ME composites with
more general microstructures (Liu et al., 2004; Lee et al.,
2005). However, much of this theoretical development
limits itself to the situation where the poling direction
(magnetic axis) of the piezoelectric (piezomagnetic) mate-
rial is either normal to or along the layer (fiber) direction.
Further, many of these works assume transverse isotropy
or uniaxial symmetry.

In the work of Li and Dunn (1998b), they used Eshelby’s
pioneering approach to study the fields in and around inclu-
sions and inhomogeneities in anisotropic solids exhibiting
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Fig. 1. The fibrous composite configurations.

Fig. 2. A schematic representation of a unit cell. (a) A square array. (b) A hexagonal array.
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full coupled-field behavior. Later, Li (2000a) developed a
numerical algorithm to evaluate the magnetoelectroelastic
Eshelby’s tensor for the general material symmetry and
ellipsoidal inclusion shape. Recently, experiments by Yang
et al. (2006) and Wang et al. (2008) showed that single crys-
tals are attractive and the effective ME coefficient of the
laminate can depend sensitively on the crystallographic ori-
entation of the material. Srinivas et al. (2006) developed a
mean-field Mori–Tanaka model to calculate the ME cou-
pling of matrix-based multiferroic composites, emphasing
the effects of shape and orientation distribution of second
phase particles. In addition, Kuo et al. (2010) proposed a
simple framework to optimize the effective magnetoelectric
response of a piezoelectric-magnetostrictive bilayer. The es-
sence of the concept is that the induced electric field in the
piezoelectric phase could be increased if the orientation and
volume fraction of the piezoelectric layer can be carefully
chosen. They have used it to show that, for anisotropic
materials as in single crystals, the optimal ME response is
obtained for non-trivial orientations.



Table 1
Material parameters of BaTiO3 and CoFe2O4 (Li and Dunn, 1998a).

Property BaTiO3 CoFe2O4

C11 (GPa) 166 286
C12 (GPa) 77 173
C13 (GPa) 78 170
C33 (GPa) 162 269.5
C44 (GPa) 43 45.3
e15 (C/m2) 11.6 0
e31 (C/m2) -4.4 0
e33 (C/m2) 18.6 0
q15 (N/Am) 0 550
q31 (N/Am) 0 580.3
q33 (N/Am) 0 699.7
j11 (nC2/Nm2) 11.2 0.08
j33 (nC2/Nm2) 12.6 0.093
l11 (lNs2/C2) 5 590
l33 (lNs2/C2) 10 157
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Motivated by these advances, in this paper we optimize
the effective ME voltage coefficient of a multiferroic fibrous
composite without any assumptions on the symmetry of
the underlying materials and without any assumptions
on the crystallographic orientations of the materials. We
give the basic equations and Euler transformations regard-
ing the magnetoelectroelasticity in Section 2.1. In Section
2.2, we derive a micromechanical model for the multiferro-
ic composites. We introduce the finite element analysis in
Section 2.3, which is used for comparison with the micro-
mechanical approach. This methodology is illustrated in
Section 3 using composites of cobalt ferrite (CoFe2O4) and
barium titanate (BaTiO3). We show that the optimal orien-
tations can be non-trivial and the enhancement to be
many-fold over the normal orientations.
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Fig. 4. The in-plane ME voltage coefficient of the CFO fibers in a BTO matrix for various orientations of CFO and BTO. The subscripts i and m denote the
inclusion and matrix, respectively. Note that this coefficient depends only on the Euler angles b and c and is independent of a. The optimized constant
occurs at both phases poled along the same direction.
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2. Model

2.1. Basic equations

Consider a perfectly bonded magnetoelectric circular fi-
brous composite made of piezoelectric and piezomagnetic
materials as shown in Fig. 1. The response of the composite
in a Cartesian frame with the x3 direction normal to the
plane can be described by the following general equations
(Alshits et al., 1992)

rij ¼ Cijklekl � elijEl � qlijHl;

Di ¼ eiklekl þ jilEl þ kliHl;

Bi ¼ qiklekl þ kilEl þ lilHl;

ð1Þ

where rij and eij are the stress and strain; Di and Ei are the
electric displacement and electric field vectors; Bi and Hi

are the magnetic flux and magnetic field vectors; Cijkl is
the elastic stiffness (fourth-order tensor), eijk is the piezo-
electric moduli (third-order), qijk is the piezomagnetic
moduli (third-order), jij is the permittivity (second-order),
lij is the permeability (second-order) and kij is the magne-
toelectric coefficient (second-order). The summation con-
vention is used. The symmetry conditions satisfied by the
moduli are given by Nye (1985).

The strain eij, electric field Ei, and magnetic field Hi are
respectively defined by the displacement ui, electric poten-
tial u, and magnetic potential w via
eij ¼
1
2

ui;j þ uj;i
� �

; Ei ¼ �u;i; Hi ¼ �w;i: ð2Þ
Here the comma in the subscript denotes partial
derivative.

To obtain the effective properties of this medium, we
need to solve for equilibrium equations



0
45

90
135

180

0

45

90

135

180

-10

-5

0

5

10

γi (deg)γm (deg)

α* E,
33

 (V
/c

m
O

e)

Normal =  1.2288V/cmOe
Max.     = -6.2079V/cmOe
( α,β,γ ) = (α,90o,γ)
f = 0.94

Fig. 5. The out-of-plane ME voltage coefficient of the CFO fibers in a BTO matrix for various orientations of CFO and BTO. The subscripts i and m denote the
inclusion and matrix, respectively. Note that this coefficient depends only on the Euler angles b and c and is independent of a. The optimized constant
occurs at both phases poled along the same direction.

92 H.-Y. Kuo, Y.-L. Wang / Mechanics of Materials 50 (2012) 88–99
rij;i ¼ 0; Di;i ¼ 0; Bi;i ¼ 0; ð3Þ

along with the analogous interfacial conditions and appro-
priate boundary conditions.

The constitutive laws, strain-displacement and equilib-
rium equations can be rewritten in a more concise form as
follows (Alshits et al., 1992)

RiJ ¼ LiJMnZMn; ZMn ¼ UM;n; RiJ;i ¼ 0; ð4Þ

where
a11 a12 a13

a21 a22 a23

a31 a32 a33

0
B@

1
CA ¼

cos c cos b cos a� sin c sina cos c cos b sinaþ sin c cos a � cos c sin b

� sin c cos b cos a� cos c sina � sin c cos b sinaþ cos c cos a sin c sin b

sin b cos a sin b sin a cos b

0
B@

1
CA: ð7Þ
RiJ ¼
rij; J ¼ 1;2;3;
Di; J ¼ 4;
Bi; J ¼ 5;

8><
>:

ZMn ¼
emn; M ¼ 1;2;3;
�En; M ¼ 4;
�Hn; M ¼ 5;

8><
>:

UM ¼
um; M ¼ 1;2;3;
u; M ¼ 4;
w; M ¼ 5:

8><
>:

ð5Þ

The magnetoelectroelastic moduli are expressed as

LiJMn ¼

Cijmn; J;M ¼ 1;2;3;
eijn; M ¼ 4; J ¼ 1;2;3;
qijn; M ¼ 5; J ¼ 1;2;3;
eimn; J ¼ 4; M ¼ 1;2;3;
�jin; J ¼ 4; M ¼ 4;
�kin; J ¼ 4; M ¼ 5;
qimn; J ¼ 5; M ¼ 1;2;3;
�kin; J ¼ 5; M ¼ 4;
�lin; J ¼ 5; M ¼ 5;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð6Þ
where the upper case subscript ranges from 1 to 5 and the
lower case subscript ranges from 1 to 3. Repeated upper
case subscripts are summed from 1 to 5.

The equations above refer the material properties to the
fiber frame (Fig. 1). However, the material properties are
commonly described in the crystallographic frame and
we need to transform them to the fiber frame. To this
end, let us denote the crystal frame with primes and intro-
duce the rotation matrix aij. This is given in terms of the
three Euler angles a; b; cð Þ as follows (Arfken and Weber,
2001)
For the change of frame, the material parameters then fol-
low the tensor transformation rules for second-, third- and
fourth-order tensors

jij ¼ aimajnj0mn;

lij ¼ aimajnl0mn;

eijk ¼ aimajnakoe0mno;

qijk ¼ aimajnakoq0mno;

Cijkl ¼ aimajnakoalpC 0mnop;

ð8Þ

where the primed quantities j0ij;l0ij; e0ijk; q0ijk;C
0
ijkl

� �
denote

the material properties referred to the crystallographic
frame.

2.2. Effective moduli and Mori–Tanaka’s approach

We are interested in the effective behavior for a situa-
tion where we have a large number of inclusions. The
effective material properties are defined in terms of aver-
age fields,
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RiJ
� �

¼ L�iJMn ZMnh i; ð9Þ

where the angular brackets denote the average over the
representative volume element (unit cell in the case of
periodic composites), and L�iJMn denotes the effective
magnetoelectroelastic parameters of the composite. Due
to the linearity, the generalized strain in the inclusion for
a two-phase composite is (Srinivas et al., 2006)

ZMn ¼ AMnAb ZAbh i; ð10Þ

where AMnAb is the generalized strain concentration tensor
of the inclusion. As a result, the effective moduli can be
determined for a two-phase composite as

L�iJAb ¼ LðmÞiJAb þ f LðiÞiJMn � LðmÞiJMn

� �
AMnAb: ð11Þ

Here f is the volume fraction of the inclusion, and the
superscripts m and i denote the matrix and inclusion,
respectively.
The concentration tensor AMnAb can be determined by
the Mori–Tanaka’s approach as

AMnAb ¼ Adil
MnJi 1� fð ÞIJiAb þ fAdil

JiAb

h i�1
; ð12Þ

with the dilute concentration tensor Adil
MnAb given by

Adil
MnAb ¼ IMnAb þ SMnLkðLðmÞLkiJÞ

�1 LðiÞiJAb � LðmÞiJAb

� �h i�1
; ð13Þ

where SMnAb is the magnetoelectroelastic Eshelby tensor,
which is a function of the magnetoelectroelastic moduli
of matrix, the shape and orientation of the inclusion, and
is described by Li and Dunn (1998b).

SMnAb ¼
1

8p
LiJAb

R 1
�1

R 2p
0 GmJinðzÞ þ GnJimðzÞ
� 	

dhdn3; M ¼ 1;2;3;

2
R 1
�1

R 2p
0 G4JinðzÞdhdn3; M ¼ 4;

2
R 1
�1

R 2p
0 G5JinðzÞdhdn3; M ¼ 5:

8>><
>>:

ð14Þ

In the above equation, zi ¼ ni=ai (no summation on i), ai is
the semi-axis of size and n1 and n2 can be expressed in
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terms of n3 and h by n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

3

q
cos h and

n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

3

q
sin h. In addition GMJin ¼ ziznK�1

MJ ðzÞ, where

K�1
MJ is the inverse of KJR ¼ ziznLiJRn. Li and Dunn (1998a)

have obtained the closed-form expressions of magneto-
electroelastic Eshelby’s tensors for the aligned elliptic cyl-
inder inclusion in a transversely isotropic medium.
However, for the piezoelectric and piezomagnetic materi-
als with arbitrary poling direction and magnetic axes as
discussed in this work, we resort to Gauss quadrature
numerical method to calculate SMnAb. The integral (14) then
is approximated by the weighted sum of function values at
certain integration points (Li, 2000a).

2.3. Finite element analysis

In this section we introduce the finite element analysis
which is used for comparison with the Mori–Tanaka’s
approach. We first choose an appropriate representative
volume element (RVE), a periodic unit cell, which captures
the major features of the underlying microstructure. There
are five possible ways of packing cylinders a regular array
in two dimensions (See Kittel, 2005 for instance). Here we
concentrate on the two lattices, rectangular and hexagonal
arrays (Fig. 2).

Because of the periodicity in the composite structure,
the displacement ui, the electric potential u and the mag-
netic potential w in any point of the unit cell can be ex-
pressed in terms of those at an equivalent point in
another RVE such that the periodic boundary conditions

UM d; x2; x3ð Þ ¼ UM �d; x2; x3ð Þ þ UM;1
� �

2d;

UM x1;d; x3ð Þ ¼ UM x1;�d; x3ð Þ þ UM;2
� �

2d;
UM x1; x2;dð Þ ¼ UM x1; x2;�dð Þ þ UM;3

� �
2d;

ð15Þ

are satisfied for a square array. Here UM is defined in (5)
and 2d is the length of the unit cell. Similarly, the periodic
boundary conditions for a hexagonal array are
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UM d; x2; x3ð Þ ¼ UM �d; x2; x3ð Þ þ UM;1
� �

2d;

UM x1;
ffiffiffi
3
p

d; x3

� �
¼ UM x1;�

ffiffiffi
3
p

d; x3

� �
þ UM;2
� �

2
ffiffiffi
3
p

d;

UM x1; x2;dð Þ ¼ UM x1; x2;�dð Þ þ UM;3
� �

2d:

ð16Þ
In order to determine the effective properties of the multif-
erroic composite, the strain, electric field, and magnetic
field states are applied individually to the unit cell. The
boundary conditions have to be applied to the unit cell in
such a way that, apart from one component of the strain,
electric field, or magnetic field UM;i

� �
in Eq. (15) for square

arrays or (16) for hexagonal arrays, all other components
are made equal to zero. Then each effective coefficient
can be determined by (9). We perform the finite element
analysis using the software COMSOL Multiphysics.
3. Numerical results and optimization

We consider two systems of interest. For the piezoelec-
tric material, we choose the widely used BaTiO3 ceramic,
while we choose CoFe2O4 as the piezomagnetic phase
which has been studied by other researchers. Both of them
are with 6 mm symmetry. We consider square and hexag-
onal arrays in finite element analysis, and both cases, i.e.,
both CFO fibers in a BTO matrix and BTO fibers in a CFO
matrix. The independent material constants of these con-
stituents are given in Table 1 in Voigt notation, where
the x1x2 plane is isotropic and the poling direction/mag-
netic axis is along the x3-direction.

In our study, we are particularly interested in the effec-
tive magnetoelectric (ME) response. The induced voltage is
proportional to the applied magnetic field and the constant
of proportionality is the effective ME voltage coefficient. It
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combines the coupling and dielectric coefficients, and is
defined by

a�E;ij ¼ k�ij=j
�
ij; ð17Þ

where there is no summation for the repeated indices. We
seek to optimize this ME voltage coefficient with respect to
the crystallographic orientation of the materials. Specifi-
cally we consider the in-plane (a�E;11) and out-of-plane
(a�E;33) coupling constants. However, this is a highly nonlin-
ear problem, therefore we resort to a brute-force approach
where we create a fine grid of Euler angles and exhaus-
tively compare the values on this grid.

3.1. Piezomagnetic fibers in a piezoelectric matrix

To check the correctness of our model, we first perform
a numerical computation for CFO fibers in a BTO matrix
with 6 mm material symmetry about the fiber axis. Fig. 3
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Fig. 11. The off-diagonal ME voltage coefficients of the BTO fibers in a CFO matri
voltage coefficient a�E;32.
shows the ME voltage coefficients for this composite. The
finite element analysis is estimated for discrete volume
fractions and stops around f ¼ p=4 and f ¼ p=2

ffiffiffi
3
p

for
the square and hexagonal arrays, respectively, when the
inclusions touch. The prediction of the Mori-Tanaka’s ap-
proach is in good agreement with the result of the finite
element analysis. The maximum ME voltage coefficient
a�E;11 is �0:0244 V/cmOe at volume fraction f ¼ 0:98, while
the maximum a�E;33 ¼ 1:2288 V/cmOe at volume fraction
f ¼ 0:94. Note that the results of the hexagonal array are
closer to the Mori–Tanaka’s estimation than those of the
square array. This is because a hexagonal array is a closed
packing structure, and the Mori–Tanaka’s model allows the
inclusion to fulfill the matrix. In addition a square array
lacks the transversely isotropy that this composite pos-
sesses (Li, 2000b).

We now turn to the optimization of this composite. For
each orientation, we follow the procedure developed in
0.5 0.6 0.7 0.8 0.9 1

ion of Inclusion

 
MT
SQU
HEX

0o,69o,90o)/CFO(0o,69o,90o)

0.5 0.6 0.7 0.8 0.9 1

ion of Inclusion

 

MT
SQU
HEX

0o,69o,90o)/CFO(0o,69o,90o)

x for various fiber volume fraction. (a) ME voltage coefficient a�E;23. (b) ME



98 H.-Y. Kuo, Y.-L. Wang / Mechanics of Materials 50 (2012) 88–99
Section 2 to obtain the magnetoelectric voltage coefficient.
The reference volume fraction is f ¼ 0:98 for calculating
optimal a�E;11, while it is chosen as 0:94 when calculating
optimal a�E;33 since these happen to be optimal at the nor-
mal cut. The orientation of both materials are arbitrary.

Fig. 4 shows the ME voltage coefficient a�E;11 with re-
spect to the crystallographic orientation of CFO and BTO.
It happens to be optimal when the poling direction of pie-
zoelectric phase coincides with the magnetic axis of
the piezomagnetic phase. We observe that the maximum
of �2:4823 V/cmOe occurs at Euler angles a; b; cð Þ ¼
ða;90�;90�Þ, where a is arbitrary. This degeneracy of opti-
mal orientation reflects the 6 mm symmetry. Further, if
a ¼ 0, it is equivalent to the poling direction/magnetic axis
along 010½ �. Significantly, the optimized value of
�2:4823 V/cmOe is almost one hundred and one times
higher than �0:0244 V/cmOe, which is the value of the
normal cut where the c axis of the CFO and BTO is along
the fiber axis.

We show how the ME voltage coefficient a�E;33 depends
on its orientation in Fig. 5. The maximum value is
�6:2079 V/cmOe at the optimal orientation a; b; cð Þ ¼
a;90�; cð Þ of both phases, and this is as much as five times

higher than the value of 1:2288 V/cmOe at the normal cut.
Fig. 6 shows the effect of volume fraction f on the ME

voltage coefficients. The piezoelectric phase is poled along
one of the optimized directions, say a; b; cð Þ ¼ ð0;90�;90�Þ
or equivalently 010½ �, and the piezomagnetic phase is along
the same optimized magnetic axis. The maximum value is
obtained at piezoelectric material almost vanish at volume
fraction f ¼ 0:98 and 0:92 for ME voltage coefficient a�E;11

and a�E;33, respectively. The maximum value of a�E;11 is
�2:4823 V/cmOe while that of a�E;33 is �6:2357 V/cmOe
both of these evaluated at their optimal orientations.

3.2. Piezoelectric fibers in a piezomagnetic matrix

We now turn to the composite made of BTO fibers in a
CFO matrix. Similarly, we begin with the case of the mate-
rial symmetry about the fiber axis, i.e. along 001½ �. The
maximum a�E;11 is �0:0306 V/cmOe at f ¼ 0:34 and a�E;33 is
1:1494 V/cmOe at f ¼ 0:06 at their normal orientation
(Fig. 7).

Figs. 8 and 9 show the magnetoelectric voltage coeffi-
cient a�E;11 and a�E;33 as a function of orientation for the case
where the volume fraction is corresponding to their opti-
mal value at the normal cut. We find that the maximum
coupling coefficient is �1.3384 V/cmOe with a; b; cð Þ ¼
a;69�;90�ð Þ or a;111�;90�ð Þ for a�E;11. The plot for a;111�;ð

90�Þ is similar to Fig. 8 but with 180� reverse with respect
to b. For a�E;33, the maximum value is �5:7986 V/cmOe with
a;90�; cð Þ. If we choose a ¼ 0 and c ¼ 0, the optimized

direction is equivalent to 100½ �.
Fig. 10 shows the effect of fibrous volume fraction on the

ME voltage coefficients. For the optimized volume fraction,
the numbers are �1:3441 V/cmOe and �5:8250 V/cmOe
ðf ¼ 0:08Þ, respectively. All of these are evaluated at their
respective optimal orientation. Note that although the dif-
ference between the results of finite element analysis and
Mori–Tanaka’s method is larger in Fig. 10(a), the trend is
similar for both methods. One reason of the deviation is
that because the ME voltage coefficient is an indirect calcu-
lated value through Eq. (17). The effective permittivity j�11

approaches to zero hence is sensitive when calculating
a�E;11. Further, the magnetoelectric coefficient k�11 of this
case has larger difference between the two approaches.

Finally, we observe that there are off-diagonal elements
of a�E;23 and a�E;32 when the poling direction/magnetic axis is
at the orientation a; b; cð Þ ¼ a;69�;90�ð Þ. Fig. 11 shows how
these coefficients depend on the volume fraction. Remark-
ably, the maximum a�E;23 is 469:6768 V/cmOe ðf ¼ 0:25Þ,
while that of a�E;32 is �5:7340 V/cmOe ðf ¼ 0:50Þ.

4. Concluding remarks

In this work, we have proposed a theoretical framework
to compute the effective magnetoelectric response of a
piezoelectric–piezomagnetic fibrous composite. We have
used it to show that, for anisotropic materials as in single
crystals, the optimal ME response is obtained for non-triv-
ial orientations. For the CFO fibers in a BTO matrix, the
highest in-plane magnetoelectric voltage coefficient a�E;11

at its optimized crystallographic orientation is 2.4823 V/
cmOe, which is 101 times larger than that of a fibrous com-
posite made with the normal cut type CFO and BTO single
crystals. The out-of-plane ME voltage coefficient, a�E;33, on
the other hand, can be increased around five times to
6:2079 V/cmOe. For the BTO fibers in a CFO matrix, the
in-plane and out-of plane ME voltage coefficients can be
increased around 43 times and 5 times respectively com-
pared to the normal orientation. The dependence of the
magnetoelectric voltage coefficient with respect to the vol-
ume fraction f was also determined when both phases
poled along the optimized direction. The coefficients var-
ied with the volume fraction and were optimized when
the piezoelectric phase approaches zero for the case of
CFO fibers in a BTO matrix. Finally, the results are com-
pared to finite element analysis and show good agreement.
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