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Abstract — This paper presents an efficient VLSI architecture 

of in-loop deblocking filter (ILF) with high efficiency data 
access system for supporting multiple video coding standards 
including H.264 BP/MP/HP, SVC, MVC, AVS, and VC-1. 
Advanced standards, such as H.264 MP/HP, SVC, and MVC, 
adopt Macro Block Adaptive Frame Field (MBAFF) to enhance 
coding efficiency which results in the performance bottleneck of 
deblocking filter due to complex data access requirement. This 
design challenge has not been discussed in previous works 
according to our best knowledge. Therefore, we develop a 
Prediction Data Management (PDM) to manage the input 
prediction data order of deblocking filter for different coding 
types (like frame/field) and multiple standards. We also design 
an extended output frame buffer module to solve the system bus 
architecture restriction (like 1K boundary and burst length) and 
achieve high efficiency data access by using MB-based scan 
order. By using these techniques, we can solve the data 
accessing design challenge and reduce 67% bus latency. After 
being implemented by using 90 nm CMOS technology, the 
proposed work can achieve real-time performance requirement 
of QFHD (3840×2160@30fps) when operated at 156MHz at the 
cost of 50.6K gates and 2.4K bytes local memory. The maximum 
operating frequency of the proposed design, i.e. 370MHz, is 
higher than the required real-time operating frequency so that 
voltage scaling may be adopted to reduce power consumption. 1 

Index Terms —High efficiency, Deblocking filter, Multiple 
video standards 

I. INTRODUCTION 

Deblocking filter plays an important role in current video 
coding applications, including MPEG4, H.264, SVC, MVC, 
AVS, and VC-1 and so on. Similar to MPEG, each standard 
adopts a transform-based coding with quantization, which 
induces quantization errors on each block boundary. The 
deblocking filter is proposed to remove the blocking effect to 
enhance video quality, especially in low bit rates. Fig. 1 shows 
the H.264 encoding flow. Since the deblocking filter is in the 
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encoding loop, it is also called in-loop deblocking filter. In order 
to deal with the high quality video applications in HDTV, there 
are some new coding tools introduced in H.264 main profile 
(MP)/ high profile (HP) protocol for deblocking filter, including 
Macro Block Adaptive Frame/Field (MBAFF) coding and 8x8 
transform, which not only improve the coding quality, but also 
complicate the realization of deblocking filter. SVC and MVC 
are extended video standards from H.264 HP for supporting 
scalable and multi-view video, equipped with the same 
deblocking filter as H.264 HP. Besides H.264, the deblocking 
filter is also used in other coding standards like VC-1 and AVS. 
VC-1 [15] is a video codec specification that has been 
standardized by the Society of Motion Picture and Television 
Engineers (SMPTE) and is adopted in next-generation optical 
media applications. The deblocking filter in VC-1 is an in-loop 
filter arranged by frame-based orders, which means that all the 
horizontal edges should be filtered first and then followed by the 
filtering of vertical edges. In addition, Audio Video Coding 
Standard (AVS) is a video codec specification that has been 
standardized by China. The AVS deblocking filter presents an 
8x8 edge filter with the same filter order as that in H.264. 
Similarly, it has two modes for filtering. Therefore, a high-
performance deblocking filter architecture with flexibility to 
support multiple video coding standards is inevitable.  

 
Fig. 1. H.264 Encoding Flowchart 

Recently, there are many researches involved in designing the 
deblocking filter architectures [3]-[14]. All of them only 
supported a single standard and a single profile decoding. 
Among the H.264 baseline profile (BP) designs [3]-[5], the 
design [3] used a separate filter method with the original filter 
order defined by the standard. It filters all the vertical edges in a 
MB, and then filters all the horizontal edges. The design [4] 
used a raster scan order as the filter order to reduce the cycle 
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counts. Besides, the design [5] proposed a hybrid filter order to 
reuse the pixel without affecting the data dependency in the 
original filter order. It eliminated the cycle count for a MB and 
reduced the intermediate buffer cost. The works [13]-[14] are 
the H.264 deblocking filter design in recent years which focus 
on the low power and high efficiency by reducing the 
processing cycles. All of these previous H.264 deblocking 
designs support H.264 baseline profile (BP) only. In the VC-1 
deblocking filter design [6], a raster scan order is used as the 
filter order for reducing the cycle count. The design [7] used a 
RISC architecture for filtering VC-1. Similar to the design [3], 
the AVS design [8] used a large separate SRAM with the 
original filtering order defined by the standard. But, it needs 
additional cycles when the deblocking filter switches the 
vertical and horizontal edges. Moreover, the design [10] is the 
first deblocking filter design supporting multiple video 
standards. It proposed a hybrid filtering order to support the 
deblocking filters for both H.264 and MPEG4 by using in-loop 
filter of H.264 to realize post-loop filter of MPEG4. Most of 
these reference designs only can process small resolution videos, 
e.g. the QCIF (176x144), due to limitation of their local 
memory size. If higher resolution videos are demanded, it is 
necessary to increase their local memory size. 

In these designs [3]-[14], they did not mention about how the 
debolcking filter accesses the input data and writes out data. 
Most of these previous designs use the testbench to process the 
input and output data. Fig. 2 shows the filter order defined in 
H.264 standard and the filtered data after one MB deblocking 
(i.e. block 0-15). Since the bottom and right 4x4 block rows (i.e. 
block a-h) are used in deblocking filtering of next MB, these 
4x4 blocks cannot be written out to the external memory 
together with all the other blocks in hardware implementation. 
For writing out the filtered data in one MB, we need to use 16 
write commands at least by using INCR4 in AHB 2.0 protocol 
with bus latency per command. If  the data written to external 
memory address cross the 1K boundary, one write command 
needs to be separated into two commands, as denoted by the 
redline shown in Fig. 2. Therefore, we propose an output frame 
buffer to collect the filtered data into one complete MB before 
writing data out. It can avoid the cross 1K boundary problem. 
We also support the MB-based write out order in encoder to 
reduce write commands as well as bus latency. By using the 
MB-based scan order output frame buffer, we can reduce up to 
67% bandwidth. 

For supporting up to SVC/MVC/H.264 MP/HP coding tools, 
there are design challenges to be overcome. The major one is 
how to support the MBAFF tool when doing in-loop filtering 
(ILF). The MBAFF tool uses MB-pair structure in the encoding 
flow, which induces high complexity in H.264 decoding. Fig. 3 
shows the H.264 MBAFF coding flow using MB-pairs. In Fig. 
3, when decoding the current MBs, we need the reference 
information from the upper and left MBs that may be encoded 
in different MB frame or field modes. In this way, the 
complexity to arrange these reference data would become 
higher than that in H.264 BP, as indicated in Fig. 3. Therefore, 

we propose a prediction data management (PDM) scheme to 
process each kind of MB modes in MBAFF. Another challenge 
is to support the 8x8 transform coding in H.264 HP and AVS. It 
complicates the deblocking filter order to support both 4x4 
blocks and 8x8 blocks at the same time. 

 
Fig. 2. H.264 and AVS Deblocking Filter Order and Write Out Data 

In addition to the PDM scheme, we propose two more 
techniques including shared adder-based algorithm and 
integrated mode decision algorithm for reducing the local 
memory to achieve high data throughput rate as well. 
Encapsulating all of the proposed design techniques, the 
proposed design has been realized at the cost of 38.4K gates and 
672 bytes of local memory when operating at 370MHz, 
according to the 90nm CMOS technology. Moreover, the 
proposed design can achieve the data throughput rate of 160 
cycles per MB in average, which meets the real-time processing 
requirement for H.264 quadruple full HD resolution, i.e. 
QFHD(3840x2160@30fps) video decoding. As compared to the 
existing designs, the proposed design is the first one presenting 
efficient realization of deblocking filters which can handle the 
newly added complex coding tool, i.e. MBAFF for multiple 
video coding standards. We also propose a extended prediction 
data buffer (PDB) with the output frame buffer (OFB) which 
co-works with the proposed PDM to reduce the AHB bus 
bandwidth by avoiding the cross 1K boundary problem and 
increasing the burst length for real applications. 

 
Fig. 3. H.264 MBAFF Coding Flowchart 

The rest of this paper is organized as follows. In Section II 
we illustrate the proposed deblocking filter algorithm for each 
standard. In Section III we present the hardware architecture 
of the proposed design. In Section IV we show the 
implementation results and the performance comparison of the 
proposed design with the existing ones. Finally, conclusion is 
given in Section V. 
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II. PROPOSED DEBLOCKING FILTER ALGORITHM 

 To support multiple video coding standards, we classify all 
the deblocking filters into three types, i.e. H.264/SVC/MVC 
and VC-1 normal MB based on 4x4 blocks without MBAFF, 
H.264 HP/SVC/MVC and AVS based on 8x8 blocks, and 
H.264/SVC/MVC MBAFF based on 4x4 blocks, as presented 
in the following. 

A. Proposed deblocking filter algorithm for H.264/SVC/MVC 
and VC-1 normal MBs without H.264 MBAFF (4x4 blocks) 

All the H.264/SVC/MVC and VC-1 deblocking filters need to 
filter each edge of 4x4 blocks. As analyzed in the designs [3] and 
[8], using the raster scan filtering order can reduce more local 
buffer size and processing cycles. So, we adopt this concept to 
filter 4x4 edges for normal MBs. Fig. 4 shows the filter order in 
H.264/SVC/MVC, and Fig. 5 shows the filter order in VC-1 that 
is different from H.264/SVC/MVC because VC-1 needs to filter 
8x8 edges first. Since the AVS is based on the 8x8 transform 
coding, the filter order for AVS will be described in Section II 
(B). Before filtering, the H.264/SVC/MVC employs the 
boundary strength (BS) to denote the strength of the filtering 
edge for selecting appropriate filters. For example, BS = 0 means 
no need to filter, BS = 1, 2, 3 means a weak mode filter, and BS 
= 4 means a strong mode intra filter in H.264/SVC/MVC. 
Besides, VC-1 can also use a BS value to determine whether 
filtering is required or not.  Hence, we integrate the BS mode 
decision for multiple video coding standards, as shown in Fig. 6. 

 
Fig. 4. Proposed raster scan filter order for H.264/SVC/MVC normal MBs 

 
Fig. 5. Proposed raster scan filter order for VC-1 normal MBs 

 
Fig. 6.  Integrated mode decision for H.264/SVC/MVC, VC-1, and AVS 

To realize the deblocking filter operations, we find that there 
are some common items which can be shared by doing once in 
hardware for reducing the hardware cost. Moreover, since the 
deblocking filter for chrominance pixels is almost the same as 
that for luminance pixels, we can share the data path as well for 

filtering luminance and chrominance pixels. Fig. 7 shows the 
optimization steps of the intra strong filter by sharing the 
common terms. This method and architecture can be used in 
each standard. We can also share the same hardware 
architecture in different standards to reduce the hardware cost. 
The detailed architecture is introduced in section III (A). 

 
Fig. 7. Shared adder-based algorithm for intra strong filter 

B. Proposed deblocking filter algorithm for H.264 
HP/SVC/MVC and AVS 8x8 blocks 

Both H.264 HP/SVC/MVC and AVS standards adopt 8x8 
transform coding where the deblocking filter only filters the 8x8 
edges in MBs. Moreover, one 8x8 edge can be divided into two 
4x4 edges so that we can share the same filter hardware to 
process both the 4x4/8x8 edges. We use the same filter order 
from the normal filter by setting the BS=0 to skip the 4x4 edges. 
By using this skipping method, we can reduce the processing 
cycle and power consumption in H.264 HP/SVC/MVC and 
AVS. Fig. 8 shows the filter order for 8x8 edges. 

 
Fig. 8. Proposed raster scan filter order for H.264 HP and AVS normal MBs 

C. Proposed deblocking filter algorithm for H.264/SVC/MVC 
MBAFF MB pair (4x4 blocks) 

In H.264 MP/HP/SVC/MVC, frame/field MB modes and 
MBAFF are supported. The filtering algorithm is the same as 
the 4x4 blocks we mentioned in section II (A). There are four 
cases between the reference MB-pair and the current one, 
which can be classified as frame/frame, frame/field, 
field/frame, and field/field between the upper and current 
MBs, as shown in Fig. 3. These cases are also happened 
between the left and current MBs. There is a strong filter in 
MB boundary on which the data need to be filtered twice 
when the upper reference MB-pair is field and the current 
MB-pair is frame, as shown in Fig. 9(a) and 9(b). We propose 
a PDM scheme to efficiently process the first horizontal edge 
twice in strong filtering and other MBAFF cases, which is 
illustrated in more details in Section III (C). 
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Fig. 9. (a) Strong filter filters twice;  (b) Strong filter order         

III. PROPOSED DEBLOCKING FILTER ARCHITECTURE 

According to the proposed deblocking filter algorithm, we 
design the associated architecture, as shown in Fig. 10. Two 
dedicated SRAMs, illustrated as oblique line regions, are 
adopted to respectively store the reference data of the upper and 
left MB-pairs, which ensures an efficient data access for 
filtering MBAFF MBs. In addition, the proposed in-loop 
deblocking filter design contains the following components, i.e. 
a 1-D deblocking filter, two transpose units, and various data 
buffers. The controller is responsible for the following tasks, 
like deciding integrated BS values, providing the correct filter 
mode when filtering each standard, and writing out the filtered 
data to the output frame buffer. The proposed deblocking filter 
design with four pipeline stages can filter one MB for 160 
cycles in normal MB mode. Another extended module is 
prediction data buffer (PDB) which contains two buffers and a 
controller to manage the prediction data and the output data 
between the ILF and external memory by using AHB interface. 
The major components of the proposed deblocking filter 
architecture are introduced in detail in the following: 

 
Fig. 10. Proposed ILF and PDB hardware block diagram with four 
pipeline stages, where oblique line regions denote local memory  

A. Shared Adder-based 1-D Filter 

The 1-D deblocking filter module is the filter kernel in the 
proposed design. It is a 4-pixel edge filter, and realizes the 
filter operations in different video coding standards according 
to the BS values. There are two filter operations, including the 

intra filter and the standard filter. For intra filter, we find some 
common shared items that can be shared by doing once in 
hardware for reducing the hardware cost, as shown in Fig. 7. 
Since the intra strong filter for chrominance is almost the 
same as that for luminance pixels, we can share the data path 
for filtering luminance and chrominance pixels. For standard 
filter, Fig. 11 shows the shared standard filter architecture in 
the proposed design. The VC-1 filter formula is very similar 
to the H.264 standard filter. It needs to filter both the p0 and 
q0. But different from the H.264, VC-1 needs to use two same 
formulas to decide the delta value for the p0 and q0. Hence, 
we combine one formula into H.264’s path and use PE2 to 
calculate the other formula for VC-1 filtering. It can also share 
the data-path for doing the luminance and chrominance 
standard filtering operations. The data-path sharing concept 
could also be applied to the architecture in intra filter. 
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Fig. 11. Proposed shared standard filter architecture 

B. MBAFF Right Buffer 

MBAFF right buffer is used to store the rightest 4x4 block 
column in the current MB, which are used again as reference data 
for filtering on the next MB. For supporting the H.264 MBAFF 
and VC-1 coding, we have to store the two 4x4 block rows 
located at the right side of MB-pair or MB. The right buffer uses 
a 96x32-bit dual port SRAM which uses a controller to output 
calculated data with order according to the next MB mode. 

C. Prediction Data Management (PDM) 

According to above H.264 MBAFF algorithm presented in 
Section II, no matter the current MB-pair is field or frame 
mode, we have to store two 4x4 block rows to the external 
memory. Suppose the uncompleted filtered data from the 
upper MB are stored in external memory as described above, 
we still encounter order mismatch between the read access 
from external memory and the reference filter data of top 
boundary. As a result, there are four cases (frame/frame, 
frame/field, field/frame and field/field) that we must produce 
the correct input order for top boundary filter, as show in Fig. 
12. We propose the PDM scheme for the four cases of upper 
MB-pair/current MB-pair as follows. 
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Fig. 12. Data written to external memory for different MB-pair modes 

a) Frame/Frame Mode 

In this case, we adopt a “Preloading Parallel Buffer” 
scheme to reduce processing cycles and provide the correct 
reference input for top boundary filter. We use this scheme 
to get two 4x4 block row data from the upper MB for the 
current MB pair to filter. For example, if the current MB 
pair is at (x, y) as shown in Fig. 13, the proposed method 
starts loading the prediction data from MB pair at (x+1, y-
1). Then, if the current MB pair is changed into (x+1, y), the 
preload buffer will write the upper 4x4 block prediction row 
at MB pair (x+1, y-1) to reference frame memory through 
the transpose unit. Then, the reference input of top boundary 
filter will obtain 4x4 block prediction row at MB pair (x+1, 
y-1) from PDB at the same time. This scheme is also used in 
VC-1 mode. 

 
Fig. 13. Proposed “Preloading parallel buffer” scheme 

b) Frame/Field Mode 

In this case, we adopt a “Mixed Preloading Parallel Buffer” 
scheme to reorder the prediction data from upper MB-pair. 
First, preloading is the same as that in frame/frame case in 
order to store the first eight 4x4 blocks from upper MB-pair. 
Second, we mix the byte locations from the preload buffer (0, 
2) bytes and PDB (4, 6) bytes to provide the correct order for 
filtering, as illustrated in Fig. 14.  Finally, four bytes (1, 3, 5, 
7) will be written back to the preload buffer for providing the 
reference input for top boundary filter of bottom MB. This 
case can also be used in VC-1 since it also needs to store two 
rows of 4x4 blocks. 

c) Field/Field Mode 

This case is easy for implementation because the orders for 
read access from external memory and the reference filter for 
top boundary are the same. 

 
Fig. 14. Mixing operation in frame/field mode 

d) Field/Frame Mode 

As described in Section II, the major reason of adopting 
different filter orders is to simplify the controller of the 
preload buffer. Our idea is whether the current MB-pair is in 
frame mode or field mode, as long as the top MB pair is in 
field mode, the preload buffer controller will not operate and 
turn the task into PDB controller. We propose a “Dual 
Rearrangement Strong Buffer” scheme denoted as DRSB and 
a “Strong filter order” algorithm in the proposed design. Two 
16x32bits FIFOs are used to store the current two 4x4 block 
rows, and one FIFO is shared with temporal buffer. After 
filtering edge 7 in Fig. 9 (b), we mix byte position of dual 
buffer output to apply to filter edges 8~11 in Fig. 9 (b) and 
restore unfiltered bytes to another buffer. Then, we read bytes 
1, 3, 5 and 7 from one buffer in order to apply to filter edges 
12~15 in Fig. 9 (b). Eventually, the output of filtering edges 
12~15 in Fig. 9 (b) will be mixed again according to the order 
of byte in turn. Moreover, this byte order (0, 1, .., 7) in DRSB 
will be applied to filter edges 16~19 in Fig. 9 (b). These steps 
are shown in Fig.15 (a)-(d) on after filtering each edge.  
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(a) “DRSB” arrangement when finishing filtering edge 7 

 
(b) “DRSB” arrangement when starting filtering edge 8 

 
(c) “DRSB” arrangement when finishing filtering edge 11 

 
(d) “DRSB” arrangement when starting filtering edge 15 

Fig. 15. DRSB arrangement processing flow 



C.-A. Chien et al.: High Efficiency Data Access System Architecture for Deblocking Filter Supporting Multiple Video Coding Standards  675 

D. Output Frame Buffer (OFB) 

Prediction data buffer (PDB) contains two buffers and a 
controller to manage the prediction data and the output data. 
The first buffer is a prediction buffer for getting the upper MB 
prediction data from external memory. Therefore, the 
proposed design will not be limited on any targeted resolution 
and also reduce the local memory size. 
 The second buffer is output frame buffer (OFB). 
According to the write out data problem we mentioned in Fig. 
2, we use an output frame module in the PDB to resolve this 
problem. We use this buffer to collect the filtered data into a 
completed MB for writing out. Fig. 16 shows the block 
diagram of the proposed OFB. We use four banks to solve 
different field or frame MB types by interleaving storing the 
MB data into frame type for display. The proposed frame 
output buffer includes four SRAMs. The output data of ILF 
are in 4x4 blocks, but the external memory is connected to a 
64-bit data bus. So the data have to be merged to 64 bits 
before being written out to external memory. Therefore, 
different banks, i.e. bank0 and bank1, are used for storing the 
luminance data for top MB, while the bank2 and bank3 are 
used for storing the luminance data for bottom MB. The data 
flow is described as follows. First, the 4x4 blocks of data in 
MB(n) are input and written to the locations with addresses {0, 
2, 4, 6} in bank0. Then, the following blocks are written to the 
locations with addresses {0, 2, 4, 6} in bank1 and addresses 
{1, 3, 5, 7} in bank0 consecutively. While decoding the 
MB(n+1), the data are written to the locations with addresses 
{1, 3, 5, 7} in bank1, and the data in MB(n) are all ready for 
being written out to external memory. The detailed flow is 
illustrated in Fig. 17 for luminance data in non-MBAFF frame. 
As for the chrominance data, the Cb and Cr data also use 
different banks for being merged from 32 bits to 64 bits data. 
In addition, the luminance and chrominance data will not 
input simultaneously. So, the input buffer (SRAM) can be 
shared to reduce the SRAM size. However, the frame buffer is 
organized by interleaving Cb and Cr data, which results in that 
the Cb and Cr data have to be merged to 64 bits before being 
written out. Therefore, the SRAM is used in different banks of 
order for accessing the Cb and Cr data simultaneously. The 
order for Cb data is {bank0, bank1}, and the order for Cr data 
is {bank1, bank0}. For MBAFF frame decoding, there are 
four input cases between the current MB pair and upper MB 
pair, as the OFB input data shown in Fig. 18. 

 
Fig. 16. Block diagram of the proposed output frame buffer (OFB) 

The buffer can also support the ILF output in MBAFF frame 
by extending the size of bank0 and bank1 for bottom MB data 
in the MB pairs. However, the bottom MB block is not used in 
non-MBAFF frame or field pictures. So, the bank2 and bank3 
are only used for bottom MB and they can be disabled while the 
current frame is not MBAFF coded frame for saving 
unnecessary power consumption. To simplify the data flow in 
MBAFF frame, the upper MB pair of data are reordered 
according to the field mode flag of the current MB pair. 
Therefore, the input data of the upper MB pair are reordered to 
frame mode data if the current MB pair is in frame mode, and 
the same if the current MB pair is in field mode.  

 
Fig. 17. Example of luminance data flow in the frame reorder buffer for 
non-MBAFF frames  

 
Fig. 18. Four input data cases between the current MB pair and the upper 
MB pair in MBAFF frames 

Without using the proposed PDB buffer, deblock filter needs to 
access data over 1K boundary when writing out predicted data. 
Hence, 16-pixel data cannot be written out to external memory by 
using one INCR4 command through 32-bit AHB bus. Instead, four 
INCR1 commands are required where each INCR1 command 
transmits 4-pixel data. By using the proposed output frame buffer, 
we can avoid this problem by controlling the write out data which 
never cross a MB in the same command. So we can use INCR4 
command for all data in a MB. Such improvement can reduce the 
number of writing commands from 64 into 16 in each MB 
luminance decoding when meet the cross 1K boundary problem, 
which reduces 75% AHB command number. This cross 1K 
boundary problem will appear when deblocking large resolution 
case like HD1080 or QFHD, as shown in Fig. 19.   
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Fig. 19. Raster scan orders with/without OFB 

Besides, the proposed OFB also has another advantage. For 
example, if we use the traditional deblocking filter write out 
order without OFB in 64-bit bus interface, we will waste 64-
bit unused data and increase one write out command, as the 
redline shown in Fig. 20. By using the proposed OFB, we can 
avoid this problem in 64-bit interface and it is also suitable in 
extended bus data width (i.e. 64-bit, 128-bit). 

 
Fig. 20. MB-based scan order for using OFB 

Since the deblocking filter in encoder is used for the 
reconstructed reference frame without using for display, we 
can optimize our OFB to write out filtered MB into the MB-
based order, as shown in Fig. 21. By using this memory 
placement order, we can increase the AHB command burst 
length from INCR4 into INCR16 and further reduce the 
number of writing commands from 16 to 4 in each MB 
luminance encoding, which also reduces 75% command 
number, as shown in Fig. 22.  

 
Fig. 21. MB-based scan order for using OFB in encoding 

 
Fig. 22. The write commands when using raster scan and MB-based scan 
order with OFB 

IV.  IMPLEMENTATION AND PERFORMANCE EVALUATION 

The proposed design has been implemented in Verilog and 
synthesized according to a 90nm CMOS technology. The synthesis 
result shows that the proposed design can achieve the maximum 
speed at frequency 370 MHz with the cost of 38.4K gates and 672 
bytes of local memory. The extended prediction data buffer (PDB) 
module can achieve the maximum speed at frequency 645 MHz 
with the cost of 12.2K gates and 1.75K bytes of local memory, as 
shown in Table I. Furthermore, when running at 156 MHz, the 
proposed design achieves enough real-time processing capability 
for video resolution up to QFHD (3840x2160@30fps). Since the 
maximum working frequency is much higher, we can use voltage 
scaling method to save power dissipation. Moreover, in order to 
thoroughly verify the proposed design in each standard, we have 
integrated the proposed design with an AMBA interface. In 
addition, we ensure the correct input/output behavior of the 
proposed design by automatically comparing the associated test 
patterns dumped from the reference software. We also integrate the 
proposed design in a H.264 decoder hardware, as shown in Fig. 23 
(redline block). Fig. 24 shows the decoder that integrates the 
proposed deblocking filter and output frame buffer decodes H.264 
video on a FPGA platform in real-time. 

TABLE I 
SYNTHESIS RESULTS BY 90NM CMOS TECHNOLOGY 

Design Gate Count 
Local Memory 

Size 
(Bytes) 

Working 
Frequency 

(MHz) 
In-loop 

deblocking filter 
(ILF) 

38.4K 672 370 

Prediction data 
buffer (PDB) 

12.2K 1792 645 

Total 50.6K 2464 370 
  

 
Fig. 23. H.264 decoder comprising the proposed deblocking filter design 

Table II shows the comparison of the proposed design with 
the existing designs. As compared to the existing designs, the 
proposed design is the first one presenting the realization of in-
loop deblocking filters handling the complex H.264 MP/HP 
coding tools, and supporting SVC, MVC, VC-1, and AVS 
standards. Moreover, the proposed design also requires fewer 
local memory for all resolutions. By using the proposed four-
stage pipelined architecture, we can also achieve high 
throughput than other designs. With the proposed PDM and 
OFB, the deblocking filter can be used in any system 
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architecture for real-time applications. Table III shows the 
evaluation of the required memory bandwidth in real cases with 
the proposed OFB. If we use MB-based scan order without 
using the OFB architecture, it will increase the number of bus 
commands since the write out shape is not a complete MB shape. 
So it will take about 27.5 times of processing cycles than the 
traditional raster scan. By using the proposed OFB, we can 
avoid the cross 1K boundary problem and reduce the number of 
commands (for both raster scan and MB-based scan). By 
reducing 75% commands required in MB-based scan order, we 
can also reduce 67% bus latency (assuming bus delay 
cycle/command = 30) compared to that in the traditional raster 
scan deblocking filter. Thus, we can achieve high efficiency 
data access by using the proposed architecture. 

 
Fig. 24. H.264 realtime decoding with the proposed deblocking filter 
design on a FPGA platform 

V.  CONCLUSION 

A high efficiency data access VLSI architecture for 
multiple-standard in-loop deblocking filters has been 
presented. First, we analyze the MBAFF algorithm in the 
H.264 deblocking filter so that the reference data can be 
reconfigured as baseline profile reference data for the 1-D 
filter. Therefore, we can share the same 1-D filter architecture 
for supporting several different video coding protocols, i.e. 
H.264, SVC, MVC, VC-1, and AVS. Second, we use the same 
filter order to support deblocking filtering of both H.264 8x8 
blocks and AVS by controlling the BS values. Third, we use a 
PDM to control MB data for different MB types to support 
both interlaced frame and MBAFF frame. Two internal 
buffers are utilized to store the MBAFF reference data for 
reducing the data access from external memory. This buffer 
management can be used in the deblocking filtering for other 
standards such as VC-1 and AVS. Then, we reduce the bus 
latency by avoiding the cross 1K boundary problem and 
increase the bus burst length by using MB-based scan order. 
By using these techniques, we can achieve 67% reduction in 
processing cycles. After being implemented by using a 90nm 
CMOS technology, the proposed work reaches a maximum 
frequency of 370 MHz. This high clock rate enables the 
proposed work to save power consumption by scaling down 
supply voltage as long as enough performance capability is 
achieved. 

TABLE III 
HIGH EFFICIENCY MEMORY ACCESS THROUGH THE PROPOSED OFB 

Mode Design 
Scan 

Order 
Burst 

Length 

Command number 
per frame 

(HD1080 luminance) 

Processing Cycle 
per frame 

(HD1080 luminance) 

Suitable Bus 
Interface 

Comparison 
with  mode A 

A Without OFB Raster 1 or 4 
(1x119+4x1)x1088 = 

133824 
((30*+4)x119+(30*+1)x4) 

x1088 = 4536960 
32-bit 100% 

B Without OFB MB-based 1 or 16 (4*12+1)x8160 = 399840 
((30*+1)x4x12+(30*+16)) 

x8160 = 12517440 
32-bit 2750% 

C With OFB Raster 4 (1x120)x1088 = 130560 (30*+4)x1088 = 4439040 
32-bit/64-
bit/128-bit 

95% 

D With OFB MB-based 16 4x8160 = 32640 
(30*+16)x4x8160 = 

1501440 
32-bit/64-
bit/128-bit 

33% 

*: Assuming bus delay cycle per memory access command = 30 

TABLE II 
HARDWARE COMPARISONS WITH OTHER DESIGNS 

Design 
Support  
Standard 

Filter Core 
Number 

Synthesis  
Technology 

Processing 
Cycles per MB  
(worst case) 

Gate  
Count 

Memory 
 Requirement 
(Byte) 

Working 
Frequency 
(MHz) 

Huang [3] H.264 BP 1 0.25μm 614 20.66K 640 100 
Sheng [4] H.264 BP 1 0.25μm 446 24K 1000 100 
Liu [5] H.264 BP 1 0.18μm 250 19.64K 864+8N 100 
Tsai [13] H.264 BP 4 0.13μm 48 20.14K 256* 250 
Chung [14] H.264 BP 1 0.18μm 198 19.8K 1616 200 
Lee [6] VC-1 1 0.18μm 527 12.4K 1088 180 
Sheng [8] AVS JP 1 0.18μm N/A 30K 384 140 
Chen [9] AVS JP 1 N/A 168 N/A 388 N/A 

Liu [10] 
H.264 BP 
MPEG4 

1 0.18μm 250 19.64K 864+8N 100 

Proposed Design 

H.264 
BP/MP/HP 
SVC/MVC 
VC-1 
AVS JP 

1 90nm 160 
38.4K** 
50.6K*** 

672** 
2464*** 

370 

N: Frame width          *: Wihtout input buffer size              **: Without the proposed PDB            ***: With the proposed PDB 
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