
670 IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012

Contributed Paper
Manuscript received 04/15/12
Current version published 06/22/12
Electronic version published 06/22/12. 0098 3063/12/$20.00 © 2012 IEEE

High Efficiency Data Access System Architecture for Deblocking
Filter Supporting Multiple Video Coding Standards

Cheng-An Chien, Guo-An Jian, Hsiu-Cheng Chang, Kuan-Hung Chen, Member, IEEE,
and Jiun-In Guo, Member, IEEE

Abstract — This paper presents an efficient VLSI architecture

of in-loop deblocking filter (ILF) with high efficiency data
access system for supporting multiple video coding standards
including H.264 BP/MP/HP, SVC, MVC, AVS, and VC-1.
Advanced standards, such as H.264 MP/HP, SVC, and MVC,
adopt Macro Block Adaptive Frame Field (MBAFF) to enhance
coding efficiency which results in the performance bottleneck of
deblocking filter due to complex data access requirement. This
design challenge has not been discussed in previous works
according to our best knowledge. Therefore, we develop a
Prediction Data Management (PDM) to manage the input
prediction data order of deblocking filter for different coding
types (like frame/field) and multiple standards. We also design
an extended output frame buffer module to solve the system bus
architecture restriction (like 1K boundary and burst length) and
achieve high efficiency data access by using MB-based scan
order. By using these techniques, we can solve the data
accessing design challenge and reduce 67% bus latency. After
being implemented by using 90 nm CMOS technology, the
proposed work can achieve real-time performance requirement
of QFHD (3840×2160@30fps) when operated at 156MHz at the
cost of 50.6K gates and 2.4K bytes local memory. The maximum
operating frequency of the proposed design, i.e. 370MHz, is
higher than the required real-time operating frequency so that
voltage scaling may be adopted to reduce power consumption. 1

Index Terms —High efficiency, Deblocking filter, Multiple
video standards

I. INTRODUCTION

Deblocking filter plays an important role in current video
coding applications, including MPEG4, H.264, SVC, MVC,
AVS, and VC-1 and so on. Similar to MPEG, each standard
adopts a transform-based coding with quantization, which
induces quantization errors on each block boundary. The
deblocking filter is proposed to remove the blocking effect to
enhance video quality, especially in low bit rates. Fig. 1 shows
the H.264 encoding flow. Since the deblocking filter is in the

1 Cheng-An Chien, Guo-An Jian, and Hsiu-Cheng Chang are with the

Computer Science and Information Engineering Department, National Chung-
Cheng University, Chia-Yi, Taiwan (e-mail: {cca95m, chienka, changhsc}
@cs.ccu.edu.tw).

Kuan-Hung Chen was with National Chung-Cheng University, Chia-Yi,
Taiwan. He has joined the faculty of Electronic Engineering Department,
Feng-Chia University, Tai-Chung, Taiwan (e-mail: kuanhung@fcu.edu.tw).

Jiun-In Guo is a professor with the Electronics Engineering Department,
National Chiao-Tung University, Hsin-Chu, Taiwan (e-mail:
jiguo@nctu.edu.tw).

encoding loop, it is also called in-loop deblocking filter. In order
to deal with the high quality video applications in HDTV, there
are some new coding tools introduced in H.264 main profile
(MP)/ high profile (HP) protocol for deblocking filter, including
Macro Block Adaptive Frame/Field (MBAFF) coding and 8x8
transform, which not only improve the coding quality, but also
complicate the realization of deblocking filter. SVC and MVC
are extended video standards from H.264 HP for supporting
scalable and multi-view video, equipped with the same
deblocking filter as H.264 HP. Besides H.264, the deblocking
filter is also used in other coding standards like VC-1 and AVS.
VC-1 [15] is a video codec specification that has been
standardized by the Society of Motion Picture and Television
Engineers (SMPTE) and is adopted in next-generation optical
media applications. The deblocking filter in VC-1 is an in-loop
filter arranged by frame-based orders, which means that all the
horizontal edges should be filtered first and then followed by the
filtering of vertical edges. In addition, Audio Video Coding
Standard (AVS) is a video codec specification that has been
standardized by China. The AVS deblocking filter presents an
8x8 edge filter with the same filter order as that in H.264.
Similarly, it has two modes for filtering. Therefore, a high-
performance deblocking filter architecture with flexibility to
support multiple video coding standards is inevitable.

Fig. 1. H.264 Encoding Flowchart

Recently, there are many researches involved in designing the
deblocking filter architectures [3]-[14]. All of them only
supported a single standard and a single profile decoding.
Among the H.264 baseline profile (BP) designs [3]-[5], the
design [3] used a separate filter method with the original filter
order defined by the standard. It filters all the vertical edges in a
MB, and then filters all the horizontal edges. The design [4]
used a raster scan order as the filter order to reduce the cycle

C.-A. Chien et al.: High Efficiency Data Access System Architecture for Deblocking Filter Supporting Multiple Video Coding Standards 671

counts. Besides, the design [5] proposed a hybrid filter order to
reuse the pixel without affecting the data dependency in the
original filter order. It eliminated the cycle count for a MB and
reduced the intermediate buffer cost. The works [13]-[14] are
the H.264 deblocking filter design in recent years which focus
on the low power and high efficiency by reducing the
processing cycles. All of these previous H.264 deblocking
designs support H.264 baseline profile (BP) only. In the VC-1
deblocking filter design [6], a raster scan order is used as the
filter order for reducing the cycle count. The design [7] used a
RISC architecture for filtering VC-1. Similar to the design [3],
the AVS design [8] used a large separate SRAM with the
original filtering order defined by the standard. But, it needs
additional cycles when the deblocking filter switches the
vertical and horizontal edges. Moreover, the design [10] is the
first deblocking filter design supporting multiple video
standards. It proposed a hybrid filtering order to support the
deblocking filters for both H.264 and MPEG4 by using in-loop
filter of H.264 to realize post-loop filter of MPEG4. Most of
these reference designs only can process small resolution videos,
e.g. the QCIF (176x144), due to limitation of their local
memory size. If higher resolution videos are demanded, it is
necessary to increase their local memory size.

In these designs [3]-[14], they did not mention about how the
debolcking filter accesses the input data and writes out data.
Most of these previous designs use the testbench to process the
input and output data. Fig. 2 shows the filter order defined in
H.264 standard and the filtered data after one MB deblocking
(i.e. block 0-15). Since the bottom and right 4x4 block rows (i.e.
block a-h) are used in deblocking filtering of next MB, these
4x4 blocks cannot be written out to the external memory
together with all the other blocks in hardware implementation.
For writing out the filtered data in one MB, we need to use 16
write commands at least by using INCR4 in AHB 2.0 protocol
with bus latency per command. If the data written to external
memory address cross the 1K boundary, one write command
needs to be separated into two commands, as denoted by the
redline shown in Fig. 2. Therefore, we propose an output frame
buffer to collect the filtered data into one complete MB before
writing data out. It can avoid the cross 1K boundary problem.
We also support the MB-based write out order in encoder to
reduce write commands as well as bus latency. By using the
MB-based scan order output frame buffer, we can reduce up to
67% bandwidth.

For supporting up to SVC/MVC/H.264 MP/HP coding tools,
there are design challenges to be overcome. The major one is
how to support the MBAFF tool when doing in-loop filtering
(ILF). The MBAFF tool uses MB-pair structure in the encoding
flow, which induces high complexity in H.264 decoding. Fig. 3
shows the H.264 MBAFF coding flow using MB-pairs. In Fig.
3, when decoding the current MBs, we need the reference
information from the upper and left MBs that may be encoded
in different MB frame or field modes. In this way, the
complexity to arrange these reference data would become
higher than that in H.264 BP, as indicated in Fig. 3. Therefore,

we propose a prediction data management (PDM) scheme to
process each kind of MB modes in MBAFF. Another challenge
is to support the 8x8 transform coding in H.264 HP and AVS. It
complicates the deblocking filter order to support both 4x4
blocks and 8x8 blocks at the same time.

Fig. 2. H.264 and AVS Deblocking Filter Order and Write Out Data

In addition to the PDM scheme, we propose two more
techniques including shared adder-based algorithm and
integrated mode decision algorithm for reducing the local
memory to achieve high data throughput rate as well.
Encapsulating all of the proposed design techniques, the
proposed design has been realized at the cost of 38.4K gates and
672 bytes of local memory when operating at 370MHz,
according to the 90nm CMOS technology. Moreover, the
proposed design can achieve the data throughput rate of 160
cycles per MB in average, which meets the real-time processing
requirement for H.264 quadruple full HD resolution, i.e.
QFHD(3840x2160@30fps) video decoding. As compared to the
existing designs, the proposed design is the first one presenting
efficient realization of deblocking filters which can handle the
newly added complex coding tool, i.e. MBAFF for multiple
video coding standards. We also propose a extended prediction
data buffer (PDB) with the output frame buffer (OFB) which
co-works with the proposed PDM to reduce the AHB bus
bandwidth by avoiding the cross 1K boundary problem and
increasing the burst length for real applications.

Fig. 3. H.264 MBAFF Coding Flowchart

The rest of this paper is organized as follows. In Section II
we illustrate the proposed deblocking filter algorithm for each
standard. In Section III we present the hardware architecture
of the proposed design. In Section IV we show the
implementation results and the performance comparison of the
proposed design with the existing ones. Finally, conclusion is
given in Section V.

672 IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012

II. PROPOSED DEBLOCKING FILTER ALGORITHM

 To support multiple video coding standards, we classify all
the deblocking filters into three types, i.e. H.264/SVC/MVC
and VC-1 normal MB based on 4x4 blocks without MBAFF,
H.264 HP/SVC/MVC and AVS based on 8x8 blocks, and
H.264/SVC/MVC MBAFF based on 4x4 blocks, as presented
in the following.

A. Proposed deblocking filter algorithm for H.264/SVC/MVC
and VC-1 normal MBs without H.264 MBAFF (4x4 blocks)

All the H.264/SVC/MVC and VC-1 deblocking filters need to
filter each edge of 4x4 blocks. As analyzed in the designs [3] and
[8], using the raster scan filtering order can reduce more local
buffer size and processing cycles. So, we adopt this concept to
filter 4x4 edges for normal MBs. Fig. 4 shows the filter order in
H.264/SVC/MVC, and Fig. 5 shows the filter order in VC-1 that
is different from H.264/SVC/MVC because VC-1 needs to filter
8x8 edges first. Since the AVS is based on the 8x8 transform
coding, the filter order for AVS will be described in Section II
(B). Before filtering, the H.264/SVC/MVC employs the
boundary strength (BS) to denote the strength of the filtering
edge for selecting appropriate filters. For example, BS = 0 means
no need to filter, BS = 1, 2, 3 means a weak mode filter, and BS
= 4 means a strong mode intra filter in H.264/SVC/MVC.
Besides, VC-1 can also use a BS value to determine whether
filtering is required or not. Hence, we integrate the BS mode
decision for multiple video coding standards, as shown in Fig. 6.

Fig. 4. Proposed raster scan filter order for H.264/SVC/MVC normal MBs

Fig. 5. Proposed raster scan filter order for VC-1 normal MBs

Fig. 6. Integrated mode decision for H.264/SVC/MVC, VC-1, and AVS

To realize the deblocking filter operations, we find that there
are some common items which can be shared by doing once in
hardware for reducing the hardware cost. Moreover, since the
deblocking filter for chrominance pixels is almost the same as
that for luminance pixels, we can share the data path as well for

filtering luminance and chrominance pixels. Fig. 7 shows the
optimization steps of the intra strong filter by sharing the
common terms. This method and architecture can be used in
each standard. We can also share the same hardware
architecture in different standards to reduce the hardware cost.
The detailed architecture is introduced in section III (A).

Fig. 7. Shared adder-based algorithm for intra strong filter

B. Proposed deblocking filter algorithm for H.264
HP/SVC/MVC and AVS 8x8 blocks

Both H.264 HP/SVC/MVC and AVS standards adopt 8x8
transform coding where the deblocking filter only filters the 8x8
edges in MBs. Moreover, one 8x8 edge can be divided into two
4x4 edges so that we can share the same filter hardware to
process both the 4x4/8x8 edges. We use the same filter order
from the normal filter by setting the BS=0 to skip the 4x4 edges.
By using this skipping method, we can reduce the processing
cycle and power consumption in H.264 HP/SVC/MVC and
AVS. Fig. 8 shows the filter order for 8x8 edges.

Fig. 8. Proposed raster scan filter order for H.264 HP and AVS normal MBs

C. Proposed deblocking filter algorithm for H.264/SVC/MVC
MBAFF MB pair (4x4 blocks)

In H.264 MP/HP/SVC/MVC, frame/field MB modes and
MBAFF are supported. The filtering algorithm is the same as
the 4x4 blocks we mentioned in section II (A). There are four
cases between the reference MB-pair and the current one,
which can be classified as frame/frame, frame/field,
field/frame, and field/field between the upper and current
MBs, as shown in Fig. 3. These cases are also happened
between the left and current MBs. There is a strong filter in
MB boundary on which the data need to be filtered twice
when the upper reference MB-pair is field and the current
MB-pair is frame, as shown in Fig. 9(a) and 9(b). We propose
a PDM scheme to efficiently process the first horizontal edge
twice in strong filtering and other MBAFF cases, which is
illustrated in more details in Section III (C).

C.-A. Chien et al.: High Efficiency Data Access System Architecture for Deblocking Filter Supporting Multiple Video Coding Standards 673

Fig. 9. (a) Strong filter filters twice; (b) Strong filter order

III. PROPOSED DEBLOCKING FILTER ARCHITECTURE

According to the proposed deblocking filter algorithm, we
design the associated architecture, as shown in Fig. 10. Two
dedicated SRAMs, illustrated as oblique line regions, are
adopted to respectively store the reference data of the upper and
left MB-pairs, which ensures an efficient data access for
filtering MBAFF MBs. In addition, the proposed in-loop
deblocking filter design contains the following components, i.e.
a 1-D deblocking filter, two transpose units, and various data
buffers. The controller is responsible for the following tasks,
like deciding integrated BS values, providing the correct filter
mode when filtering each standard, and writing out the filtered
data to the output frame buffer. The proposed deblocking filter
design with four pipeline stages can filter one MB for 160
cycles in normal MB mode. Another extended module is
prediction data buffer (PDB) which contains two buffers and a
controller to manage the prediction data and the output data
between the ILF and external memory by using AHB interface.
The major components of the proposed deblocking filter
architecture are introduced in detail in the following:

Fig. 10. Proposed ILF and PDB hardware block diagram with four
pipeline stages, where oblique line regions denote local memory

A. Shared Adder-based 1-D Filter

The 1-D deblocking filter module is the filter kernel in the
proposed design. It is a 4-pixel edge filter, and realizes the
filter operations in different video coding standards according
to the BS values. There are two filter operations, including the

intra filter and the standard filter. For intra filter, we find some
common shared items that can be shared by doing once in
hardware for reducing the hardware cost, as shown in Fig. 7.
Since the intra strong filter for chrominance is almost the
same as that for luminance pixels, we can share the data path
for filtering luminance and chrominance pixels. For standard
filter, Fig. 11 shows the shared standard filter architecture in
the proposed design. The VC-1 filter formula is very similar
to the H.264 standard filter. It needs to filter both the p0 and
q0. But different from the H.264, VC-1 needs to use two same
formulas to decide the delta value for the p0 and q0. Hence,
we combine one formula into H.264’s path and use PE2 to
calculate the other formula for VC-1 filtering. It can also share
the data-path for doing the luminance and chrominance
standard filtering operations. The data-path sharing concept
could also be applied to the architecture in intra filter.

1

Reg

p3(ap)p2 p1 p0 q0 q1 q2 q3(aq) a0

+

>>1

+ +

<<1

-

>>1

clip

+

MUX

q1_o

<<1

-

>>1

clip

+

MUX

p1_o

tc0_table

Reg

+

+

+

MUX

1

clip

PE

MUX

+ p0_reg - q0_reg

p0_o q0_o

<<1

-

<<2

+

~

+

>>3

4

M
U

X

M
U

X

Reg

M
U

X

>>1

clip clip

-tc

tc

delta

0255 255

q0 p0

q2 p2

q1 p1

clip

tc0

tc0
-tc0-tc0

aq

ap

a0

PE2

Reg

MUX

M
U

X

0

RegReg RegReg

Delta/p2p1

q1q2

Reg

Fig. 11. Proposed shared standard filter architecture

B. MBAFF Right Buffer

MBAFF right buffer is used to store the rightest 4x4 block
column in the current MB, which are used again as reference data
for filtering on the next MB. For supporting the H.264 MBAFF
and VC-1 coding, we have to store the two 4x4 block rows
located at the right side of MB-pair or MB. The right buffer uses
a 96x32-bit dual port SRAM which uses a controller to output
calculated data with order according to the next MB mode.

C. Prediction Data Management (PDM)

According to above H.264 MBAFF algorithm presented in
Section II, no matter the current MB-pair is field or frame
mode, we have to store two 4x4 block rows to the external
memory. Suppose the uncompleted filtered data from the
upper MB are stored in external memory as described above,
we still encounter order mismatch between the read access
from external memory and the reference filter data of top
boundary. As a result, there are four cases (frame/frame,
frame/field, field/frame and field/field) that we must produce
the correct input order for top boundary filter, as show in Fig.
12. We propose the PDM scheme for the four cases of upper
MB-pair/current MB-pair as follows.

674 IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012

Fig. 12. Data written to external memory for different MB-pair modes

a) Frame/Frame Mode

In this case, we adopt a “Preloading Parallel Buffer”
scheme to reduce processing cycles and provide the correct
reference input for top boundary filter. We use this scheme
to get two 4x4 block row data from the upper MB for the
current MB pair to filter. For example, if the current MB
pair is at (x, y) as shown in Fig. 13, the proposed method
starts loading the prediction data from MB pair at (x+1, y-
1). Then, if the current MB pair is changed into (x+1, y), the
preload buffer will write the upper 4x4 block prediction row
at MB pair (x+1, y-1) to reference frame memory through
the transpose unit. Then, the reference input of top boundary
filter will obtain 4x4 block prediction row at MB pair (x+1,
y-1) from PDB at the same time. This scheme is also used in
VC-1 mode.

Fig. 13. Proposed “Preloading parallel buffer” scheme

b) Frame/Field Mode

In this case, we adopt a “Mixed Preloading Parallel Buffer”
scheme to reorder the prediction data from upper MB-pair.
First, preloading is the same as that in frame/frame case in
order to store the first eight 4x4 blocks from upper MB-pair.
Second, we mix the byte locations from the preload buffer (0,
2) bytes and PDB (4, 6) bytes to provide the correct order for
filtering, as illustrated in Fig. 14. Finally, four bytes (1, 3, 5,
7) will be written back to the preload buffer for providing the
reference input for top boundary filter of bottom MB. This
case can also be used in VC-1 since it also needs to store two
rows of 4x4 blocks.

c) Field/Field Mode

This case is easy for implementation because the orders for
read access from external memory and the reference filter for
top boundary are the same.

Fig. 14. Mixing operation in frame/field mode

d) Field/Frame Mode

As described in Section II, the major reason of adopting
different filter orders is to simplify the controller of the
preload buffer. Our idea is whether the current MB-pair is in
frame mode or field mode, as long as the top MB pair is in
field mode, the preload buffer controller will not operate and
turn the task into PDB controller. We propose a “Dual
Rearrangement Strong Buffer” scheme denoted as DRSB and
a “Strong filter order” algorithm in the proposed design. Two
16x32bits FIFOs are used to store the current two 4x4 block
rows, and one FIFO is shared with temporal buffer. After
filtering edge 7 in Fig. 9 (b), we mix byte position of dual
buffer output to apply to filter edges 8~11 in Fig. 9 (b) and
restore unfiltered bytes to another buffer. Then, we read bytes
1, 3, 5 and 7 from one buffer in order to apply to filter edges
12~15 in Fig. 9 (b). Eventually, the output of filtering edges
12~15 in Fig. 9 (b) will be mixed again according to the order
of byte in turn. Moreover, this byte order (0, 1, .., 7) in DRSB
will be applied to filter edges 16~19 in Fig. 9 (b). These steps
are shown in Fig.15 (a)-(d) on after filtering each edge.

4
0 1 32

5

12
8 9 1110

13

76

1514

4
0 1 32

5

12
8 9 1110

13

76

1514

(a) “DRSB” arrangement when finishing filtering edge 7

(b) “DRSB” arrangement when starting filtering edge 8

(c) “DRSB” arrangement when finishing filtering edge 11

(d) “DRSB” arrangement when starting filtering edge 15

Fig. 15. DRSB arrangement processing flow

C.-A. Chien et al.: High Efficiency Data Access System Architecture for Deblocking Filter Supporting Multiple Video Coding Standards 675

D. Output Frame Buffer (OFB)

Prediction data buffer (PDB) contains two buffers and a
controller to manage the prediction data and the output data.
The first buffer is a prediction buffer for getting the upper MB
prediction data from external memory. Therefore, the
proposed design will not be limited on any targeted resolution
and also reduce the local memory size.
 The second buffer is output frame buffer (OFB).
According to the write out data problem we mentioned in Fig.
2, we use an output frame module in the PDB to resolve this
problem. We use this buffer to collect the filtered data into a
completed MB for writing out. Fig. 16 shows the block
diagram of the proposed OFB. We use four banks to solve
different field or frame MB types by interleaving storing the
MB data into frame type for display. The proposed frame
output buffer includes four SRAMs. The output data of ILF
are in 4x4 blocks, but the external memory is connected to a
64-bit data bus. So the data have to be merged to 64 bits
before being written out to external memory. Therefore,
different banks, i.e. bank0 and bank1, are used for storing the
luminance data for top MB, while the bank2 and bank3 are
used for storing the luminance data for bottom MB. The data
flow is described as follows. First, the 4x4 blocks of data in
MB(n) are input and written to the locations with addresses {0,
2, 4, 6} in bank0. Then, the following blocks are written to the
locations with addresses {0, 2, 4, 6} in bank1 and addresses
{1, 3, 5, 7} in bank0 consecutively. While decoding the
MB(n+1), the data are written to the locations with addresses
{1, 3, 5, 7} in bank1, and the data in MB(n) are all ready for
being written out to external memory. The detailed flow is
illustrated in Fig. 17 for luminance data in non-MBAFF frame.
As for the chrominance data, the Cb and Cr data also use
different banks for being merged from 32 bits to 64 bits data.
In addition, the luminance and chrominance data will not
input simultaneously. So, the input buffer (SRAM) can be
shared to reduce the SRAM size. However, the frame buffer is
organized by interleaving Cb and Cr data, which results in that
the Cb and Cr data have to be merged to 64 bits before being
written out. Therefore, the SRAM is used in different banks of
order for accessing the Cb and Cr data simultaneously. The
order for Cb data is {bank0, bank1}, and the order for Cr data
is {bank1, bank0}. For MBAFF frame decoding, there are
four input cases between the current MB pair and upper MB
pair, as the OFB input data shown in Fig. 18.

Fig. 16. Block diagram of the proposed output frame buffer (OFB)

The buffer can also support the ILF output in MBAFF frame
by extending the size of bank0 and bank1 for bottom MB data
in the MB pairs. However, the bottom MB block is not used in
non-MBAFF frame or field pictures. So, the bank2 and bank3
are only used for bottom MB and they can be disabled while the
current frame is not MBAFF coded frame for saving
unnecessary power consumption. To simplify the data flow in
MBAFF frame, the upper MB pair of data are reordered
according to the field mode flag of the current MB pair.
Therefore, the input data of the upper MB pair are reordered to
frame mode data if the current MB pair is in frame mode, and
the same if the current MB pair is in field mode.

Fig. 17. Example of luminance data flow in the frame reorder buffer for
non-MBAFF frames

Fig. 18. Four input data cases between the current MB pair and the upper
MB pair in MBAFF frames

Without using the proposed PDB buffer, deblock filter needs to
access data over 1K boundary when writing out predicted data.
Hence, 16-pixel data cannot be written out to external memory by
using one INCR4 command through 32-bit AHB bus. Instead, four
INCR1 commands are required where each INCR1 command
transmits 4-pixel data. By using the proposed output frame buffer,
we can avoid this problem by controlling the write out data which
never cross a MB in the same command. So we can use INCR4
command for all data in a MB. Such improvement can reduce the
number of writing commands from 64 into 16 in each MB
luminance decoding when meet the cross 1K boundary problem,
which reduces 75% AHB command number. This cross 1K
boundary problem will appear when deblocking large resolution
case like HD1080 or QFHD, as shown in Fig. 19.

676 IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012

Fig. 19. Raster scan orders with/without OFB

Besides, the proposed OFB also has another advantage. For
example, if we use the traditional deblocking filter write out
order without OFB in 64-bit bus interface, we will waste 64-
bit unused data and increase one write out command, as the
redline shown in Fig. 20. By using the proposed OFB, we can
avoid this problem in 64-bit interface and it is also suitable in
extended bus data width (i.e. 64-bit, 128-bit).

Fig. 20. MB-based scan order for using OFB

Since the deblocking filter in encoder is used for the
reconstructed reference frame without using for display, we
can optimize our OFB to write out filtered MB into the MB-
based order, as shown in Fig. 21. By using this memory
placement order, we can increase the AHB command burst
length from INCR4 into INCR16 and further reduce the
number of writing commands from 16 to 4 in each MB
luminance encoding, which also reduces 75% command
number, as shown in Fig. 22.

Fig. 21. MB-based scan order for using OFB in encoding

Fig. 22. The write commands when using raster scan and MB-based scan
order with OFB

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

The proposed design has been implemented in Verilog and
synthesized according to a 90nm CMOS technology. The synthesis
result shows that the proposed design can achieve the maximum
speed at frequency 370 MHz with the cost of 38.4K gates and 672
bytes of local memory. The extended prediction data buffer (PDB)
module can achieve the maximum speed at frequency 645 MHz
with the cost of 12.2K gates and 1.75K bytes of local memory, as
shown in Table I. Furthermore, when running at 156 MHz, the
proposed design achieves enough real-time processing capability
for video resolution up to QFHD (3840x2160@30fps). Since the
maximum working frequency is much higher, we can use voltage
scaling method to save power dissipation. Moreover, in order to
thoroughly verify the proposed design in each standard, we have
integrated the proposed design with an AMBA interface. In
addition, we ensure the correct input/output behavior of the
proposed design by automatically comparing the associated test
patterns dumped from the reference software. We also integrate the
proposed design in a H.264 decoder hardware, as shown in Fig. 23
(redline block). Fig. 24 shows the decoder that integrates the
proposed deblocking filter and output frame buffer decodes H.264
video on a FPGA platform in real-time.

TABLE I
SYNTHESIS RESULTS BY 90NM CMOS TECHNOLOGY

Design Gate Count
Local Memory

Size
(Bytes)

Working
Frequency

(MHz)
In-loop

deblocking filter
(ILF)

38.4K 672 370

Prediction data
buffer (PDB)

12.2K 1792 645

Total 50.6K 2464 370

Fig. 23. H.264 decoder comprising the proposed deblocking filter design

Table II shows the comparison of the proposed design with
the existing designs. As compared to the existing designs, the
proposed design is the first one presenting the realization of in-
loop deblocking filters handling the complex H.264 MP/HP
coding tools, and supporting SVC, MVC, VC-1, and AVS
standards. Moreover, the proposed design also requires fewer
local memory for all resolutions. By using the proposed four-
stage pipelined architecture, we can also achieve high
throughput than other designs. With the proposed PDM and
OFB, the deblocking filter can be used in any system

C.-A. Chien et al.: High Efficiency Data Access System Architecture for Deblocking Filter Supporting Multiple Video Coding Standards 677

architecture for real-time applications. Table III shows the
evaluation of the required memory bandwidth in real cases with
the proposed OFB. If we use MB-based scan order without
using the OFB architecture, it will increase the number of bus
commands since the write out shape is not a complete MB shape.
So it will take about 27.5 times of processing cycles than the
traditional raster scan. By using the proposed OFB, we can
avoid the cross 1K boundary problem and reduce the number of
commands (for both raster scan and MB-based scan). By
reducing 75% commands required in MB-based scan order, we
can also reduce 67% bus latency (assuming bus delay
cycle/command = 30) compared to that in the traditional raster
scan deblocking filter. Thus, we can achieve high efficiency
data access by using the proposed architecture.

Fig. 24. H.264 realtime decoding with the proposed deblocking filter
design on a FPGA platform

V. CONCLUSION

A high efficiency data access VLSI architecture for
multiple-standard in-loop deblocking filters has been
presented. First, we analyze the MBAFF algorithm in the
H.264 deblocking filter so that the reference data can be
reconfigured as baseline profile reference data for the 1-D
filter. Therefore, we can share the same 1-D filter architecture
for supporting several different video coding protocols, i.e.
H.264, SVC, MVC, VC-1, and AVS. Second, we use the same
filter order to support deblocking filtering of both H.264 8x8
blocks and AVS by controlling the BS values. Third, we use a
PDM to control MB data for different MB types to support
both interlaced frame and MBAFF frame. Two internal
buffers are utilized to store the MBAFF reference data for
reducing the data access from external memory. This buffer
management can be used in the deblocking filtering for other
standards such as VC-1 and AVS. Then, we reduce the bus
latency by avoiding the cross 1K boundary problem and
increase the bus burst length by using MB-based scan order.
By using these techniques, we can achieve 67% reduction in
processing cycles. After being implemented by using a 90nm
CMOS technology, the proposed work reaches a maximum
frequency of 370 MHz. This high clock rate enables the
proposed work to save power consumption by scaling down
supply voltage as long as enough performance capability is
achieved.

TABLE III
HIGH EFFICIENCY MEMORY ACCESS THROUGH THE PROPOSED OFB

Mode Design
Scan

Order
Burst

Length

Command number
per frame

(HD1080 luminance)

Processing Cycle
per frame

(HD1080 luminance)

Suitable Bus
Interface

Comparison
with mode A

A Without OFB Raster 1 or 4
(1x119+4x1)x1088 =

133824
((30*+4)x119+(30*+1)x4)

x1088 = 4536960
32-bit 100%

B Without OFB MB-based 1 or 16 (4*12+1)x8160 = 399840
((30*+1)x4x12+(30*+16))

x8160 = 12517440
32-bit 2750%

C With OFB Raster 4 (1x120)x1088 = 130560 (30*+4)x1088 = 4439040
32-bit/64-
bit/128-bit

95%

D With OFB MB-based 16 4x8160 = 32640
(30*+16)x4x8160 =

1501440
32-bit/64-
bit/128-bit

33%

*: Assuming bus delay cycle per memory access command = 30

TABLE II
HARDWARE COMPARISONS WITH OTHER DESIGNS

Design
Support
Standard

Filter Core
Number

Synthesis
Technology

Processing
Cycles per MB
(worst case)

Gate
Count

Memory
 Requirement
(Byte)

Working
Frequency
(MHz)

Huang [3] H.264 BP 1 0.25μm 614 20.66K 640 100
Sheng [4] H.264 BP 1 0.25μm 446 24K 1000 100
Liu [5] H.264 BP 1 0.18μm 250 19.64K 864+8N 100
Tsai [13] H.264 BP 4 0.13μm 48 20.14K 256* 250
Chung [14] H.264 BP 1 0.18μm 198 19.8K 1616 200
Lee [6] VC-1 1 0.18μm 527 12.4K 1088 180
Sheng [8] AVS JP 1 0.18μm N/A 30K 384 140
Chen [9] AVS JP 1 N/A 168 N/A 388 N/A

Liu [10]
H.264 BP
MPEG4

1 0.18μm 250 19.64K 864+8N 100

Proposed Design

H.264
BP/MP/HP
SVC/MVC
VC-1
AVS JP

1 90nm 160
38.4K**
50.6K***

672**
2464***

370

N: Frame width *: Wihtout input buffer size **: Without the proposed PDB ***: With the proposed PDB

678 IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012

REFERENCES
[1] C. A. Chien, H. C. Chang, and J. I. Guo, “A High Throughput In-Loop De-

blocking Filter Supporting H.264/AVC BP/MP/HP Video Coding,” Proc.
IEEE APC-CAS, pp.312-315, Dec. 2008.

[2] C. A. Chien, H. C. Chang, and J. I. Guo, “A High Throughput Deblocking
Filter Design Supporting Multiple Video Coding Standards,” Proc. IEEE
ISCAS, pp.2377-2380, May 2009.

[3] Y. W. Huang, T. W. Chen, B.Y. Hsieh, T. C. Wang, T. H. Chang, and L. G.
Chen, “Architecture design for deblocking filter in H.264/JVT/AVC,” Proc.
IEEE ICME, vol.1,pp. I - 693-6, July 2003.

[4] B. Sheng, W. Gao, and D. Wu, “An Implemented architecture of deblocking
filter for H.264/AVC,” Proc. IEEE ICIP, vol.1, pp. 665-668, Oct. 2004.

[5] T. M. Liu, W. P. Lee, T. A. Lin, and C. Y. Lee, “A memory-efficient
deblocking filter for H.264/AVC video coding,” Proc. IEEE ISCAS, pp.
2140-2143, May 2005.

[6] Y. L. Lee, and T. Nguyen, “Analysis and Integrated Architecture Design for
Overlap Smooth and In-Loop Deblocking Filter in VC-1,” Proc. IEEE ICIP,
vol.5, pp. 169-172, 2007.

[7] R. Citro, M. Guerrero, J. B. Lee, and M. Pantoja, “Programmable
Deblocking Filter Architecture for a VC-1 Video Decoder,” IEEE Trans.
Circuits Syst. Video Technol., vol. 19, No.8, pp.1227-1233, Aug. 2009.

[8] B. Sheng, W. Gao, and D. Wu, "A Platform-based Architecture of Loop
Filter for AVS,“IEEE ICSP, vol. 1, September 2004.

[9] Q. Chen, Q. M. Yi, and M. Shi, “High-Performance Deblocking Filter
Design and Implementation for AVS HDTV Applications,” Proc. IEEE
WiCOM, pp. 1-4, 2011.

[10] T. M. Liu, W. P. Lee, and C. Y. Lee, “An in/post-loop deblocking filter with
hybrid filtering schedule,” IEEE Trans. Circuits Syst. Video Technol., vol. 17,
No.7, pp.937-943, Jul. 2007.

[11] Y. X. Zhao, and A. P. Jiang, “A novel parallel processing architecture for
deblocking filter in H.264 using vertical MB filtering order,” Proc. ICSSIC T,
pp.2028-2030, Shanghai, 2006.

[12] K.Y. Min and J. W. Chong, “A memory and performance optimized
architecture of deblocking filter in H.264/AVC,” Proc. ICMUE, pp.220-225,
Seoul Korea, April 2007.

[13] T. H. Tsai, and Y. N. Pan, “High Efficient H.264/AVC Deblocking Filter
Architecture for Real-time QFHD,” IEEE Trans. Consumer Electron., vol.
55, no. 4, pp. 2248-2256, Nov. 2009

[14] H. C. Chung, Z.Y. Chen, and P. C. Chang, “Low Power Architecture Design
and Hardware Implementations of Deblocking Filter in H.264/AVC,” IEEE
Trans. Consumer Electron., vol. 57, no. 2, pp. 713-719, May 2011

[15] Proposed SMPTE Standard for Television: VC-1 Compressed Video Bit-
stream Format and Decoding Process, “SMPTE 421M,” 2005.

BIOGRAPHIES

Cheng-An Chien was born in Taipei, Taiwan, R. O. C., in
1983. He received the B.S. degree and M.S. degree in
Department of Computer Science and Information Engineering
from National Chung Cheng University, Chia-Yi, Taiwan, in
2006 and 2008, respectively. He is currently working on his
Ph.D. degree in Department of Computer Science and
Information Engineering at National Chung Cheng University.
His research interests include video processing algorithm, 3D

display algorithm, VLSI architecture design, and digital IP design.

Guo-An Jian was born in Taichung, Taiwan, in 1980. He
received the B.S. and M.S. degrees in computer science from
National Chung-Cheng University, Chia-Yi, Taiwan, in
2003 and 2005, respectively. He is currently a Ph.D.
candidate in the Department of Computer Science and
Information Engineering, National Chung-Cheng University,
Chia-Yi, Taiwan. His research interests include software
optimization and parallel computing for video technology.

Hsiu-Cheng Chang was born in Tainan, Taiwan, R.
O. C., in 1981. He received the B.S. and M.S.
degrees in Department of Computer Science and
Information Engineering from National Chung
Cheng University, Chia Yi, Taiwan, in 2003 and
2005 respectively. He is currently working toward
the Ph.D. degree at the Graduate Institute of
Computer Science and Information Engineering,
National Chung Cheng University. His research

interests include video processing, VLSI architectures, digital IP design and
multimedia SOC design.

Kuan-Hung Chen received the B.S. and the M.S.
degrees from National Cheng Kung University,
Tainan, Taiwan, in 1998 and 2000, respectively.
Since September 2002, he started to pursue his
Ph.D. degree, and received the Ph.D. degree from
National Chung Cheng University, Chiayi, Taiwan
in March 2006. Then, he became a Post-doctorial
Fellow in the System-on-a-Chip (SoC) technology

research center and department of electrical engineering, National Chung
Cheng University. Since February 2007, he has been with the department of
electronic engineering, Feng-Chia University, Taichung, Taiwan, as an
Assistant Professor, where he became an Associate Professor in August
2011. He has received a scholarship from National Chip-Implementation-
Center (CIC), Taiwan, for his enthusiastic contribution on low-power
multimedia silicon intellectual property (SIP) designs in 2005. His research
interests include VLSI design for multimedia coding, 3D visual
computation, intelligent electronics, and related low-power technology for
the above VLSI designs.
Dr. Chen is the recipient of the Annual Paper Award, a.k.a. Professor Wen-
Zen Shen Memorial Award, from Taiwan IC Design Society (TICD) in
2006, and won the 2nd-Prize of the National Silicon Intellectual Property
(SIP) Design Contest, Taiwan twice in 2004, and 2005, respectively.

Jiun-In Guo received the B.S. and Ph.D. degrees in
electronics engineering from National Chiao Tung
University, Hsinchu, Taiwan, in 1989 and 1993,
respectively. He is currently a full Professor of the
Dept. of Electronics Engineering, National Chiao-
Tung University, Hsinchu, Taiwan. He has been the
Director of the Dept. of Computer Science, National
Chung-Cheng University, Taiwan during 2009-2011

and has been the Research Distinguished Professor of National Chung-
Cheng University since 2008. He joined the System-on-Chip (SOC)
Research Center in March 2003, to get involved in several Grand Research
Projects on low-power, high-performance processor design, and multimedia
IP/SOC design. He was the Director of the SOC Research Center, National
Chung-Cheng University, from 2005 to 2008. He was an Associate
Professor of the Dept. of Computer Science and Information Engineering,
National Chung-Cheng University, from 2001 to 2003, and an Associate
Professor of the Dept. of Electronics Engineering, National Lien-Ho
Institute of Technology, Miaoli, Taiwan, from 1994 to 2001. His research
interests include images, multimedia, and digital signal processing, VLSI
algorithm/architecture design, digital SIP design, and SOC design. He is
the author of over 160 technical papers on the research areas of low-power
and low cost algorithm and architecture design for DSP/Multimedia signal
processing applications.

