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The majority of the existing literature on simultaneous control charts, i.e. control charting mechanisms that
monitor multiple population parameters such as mean and variance on a single chart, assume that the process
is normally distributed. In order to adjust and maintain the overall type-I error probability, these existing
charts rely largely on the property that the sample mean and sample variance are independent under the
normality assumption. Furthermore, the existing charting procedures cannot be readily extended to non-
normal processes. In this article, we propose and study a general charting mechanism which can be used to
construct simultaneous control charts for normal and non-normal processes. The proposed control chart,
which we call the density control chart, is essentially based on the premise that if a sample of observations is
from an in-control process, then another sample of observations is no less likely to be also from the in-control
process if the likelihood of the latter is no less than the likelihood of the former. The density control chart is
developed for normal and non-normal processes where the distribution of the plotting statistic of the density
control chart can be explicitly derived. Real examples are given and discussed in these cases. We also discuss
how the density control chart can be constructed in cases when the distribution of the plotting statistic cannot
be determined. A discussion of potential future research is also given.

Keywords: hypothesis testing; likelihood function; multiple parameters; non-normal processes; Shewhart
control chart; simultaneous control chart

1. Introduction

The statistical control chart is perhaps the most widely used tool among the set of techniques, such as the Pareto
chart and cause-and-effect diagram, that form the core of statistical process control (SPC). First developed by
Shewhart (1925), the use of control charts to monitor process quality has become a common practice in many
industrial applications.

The development of control charts generally assumes that the quality characteristic to be monitored, be it
univariate or multivariate, follows a certain distribution and that various population parameters of that distribution
need to be monitored. For instance, under univariate normal processes, the X- and S-charts are specifically used to
monitor the process mean and process standard deviation, respectively.

In the literature, there are two primary approaches for developing control charting schemes for simultaneously
monitoring the process mean and variance. One approach is to combine two control charts, one for monitoring the
process mean and the other for monitoring the process variance. These charts include (i) the combination of
Shewhart �X (or X ) and R (MR or S) charts, see, e.g., Jones and Case (1981), Rahim (1989), Saniga (1989, 1991),
Costa (1993, 1998), Rahim and Costa (2000), Costa and Rahim (2000, 2002), Ohta et al. (2002), De Magalhães and
Moura Neto (2005), He and Grigoryan (2006); (ii) the combination of EWMA-type charts, see, e.g., Sweet (1986),
Domangue and Patch (1991), Gan (1995), Reynolds and Stumbos (2001); (iii) the combination of CUSUM-type
charts, see, e.g., Takemoto et al. (2003); and (iv) the combination of the generally weighted moving average
(GWMA)-type charts, see, e.g., Sheu et al. (2009), which developed a combined scheme consisting of a two-side
GWMA mean chart and a two-side GWMA variance chart for monitoring the process mean and variance,
respectively.
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The other approach is to use omnibus-type test statistics, i.e. combining charting statistics designed for different
parameters into a single control chart for simultaneously monitoring both process mean and variance. Cheng and
Thaga (2006) gave an overview of the existing studies which use a single chart to simultaneously monitor process
parameters. They summarised the control charts that have been developed into two categories. One is to
simultaneously plot two quality characteristics on the same chart, called the simultaneous control chart.
Examples of the simultaneous control chart include the Shewhart-type charts (White and Schroeder 1987, Spiring
and Cheng 1998); the EWMA-type chart (Domangue and Patch 1991); and the synthetic control chart with two-
stage testing (Costa et al. 2009). The other is to use a plotting variable to represent the process mean and variance,
called the single control chart. Existing control charts that fall into the single control chart category include (i) the
Shewhart-type charts (Cheng and Li 1993, Chao and Cheng 1996, Chen and Cheng 1998, Yeh and Lin 2002,
Hawkins and Zamba 2005, and Hawkins and Deng 2009); (ii) the EWMA-type charts (Xie 1999, Gan 2000 and
Chen et al. 2001, 2004); and (iii) the CUSUM-type charts (Thaga 2003 and Wu and Tian 2005). Other charts that
also rely on a single plotting statistic include the EWMA control chart based on a non-central chi-square statistic
(called NCS chart) proposed by Costa and Rahim (2004), a self-starting control chart based on the likelihood ratio
test (LRT), the EWMA procedure (SSELR) proposed by Li et al. (2010), an EWMA control chart based on the
generalised likelihood ratio test (GLRT) proposed by Zhang et al. (2010), and a control chart which integrates the
EWMA procedure with the GLRT statistic proposed by Zhou et al. (2010).

In addition, the semicircle control chart (Chao and Cheng 1996) plots two statistics against each other on a
semicircle, as indicated by the positions of the mean and the standard deviation. When an out-of-control signal
occurs, the chart would show which parameter has shifted from its target value. However, a disadvantage of
this chart is that it loses track of the time sequence of the samples. Hawkins and Deng (2009) developed a single
chart for simultaneously monitoring the mean and variance of a normal process based on the GLRT for testing
H0 :�¼�0 and �¼ �0. The proposed chart, which they called the GLR chart, was shown to outperform the
conventional X- and S-charts.

Zhang et al. (2010) mentioned that all of the aforementioned single charts are shown to have satisfactory
performance compared with the combination-type charts. Nevertheless, most of the existing control charts under
univariate normal processes, whether a single chart or two separate charts are used, make explicit use of the
property that the sample mean and sample variance are independent statistics, thus making it relatively easy to
control the overall type-I error probability. However, in many applications where the process is not normal or when
other non-independent statistics are used even for normal processes, it is sometimes difficult to control the overall
type-I error probability. Moreover, it is usually non-trivial to extend a control charting mechanism designed for
a specific underlying distribution to other types of distribution. Our main motivation in this article is to develop a
general control charting mechanism which can be used to combine the monitoring of multiple parameters into a
single chart. The proposed charting mechanism is general in that it can be applied to normal as well as non-normal
processes, while maintaining the overall type-I error probability. In essence, the construction of the proposed chart
is based on recognising that when the process is in control, the quality characteristic to be monitored follows a
specified probability density function. The proposed chart is then derived from the likelihood for testing the
hypothesis that the probability density function of a given sample is equal to the specified one. We will call the
proposed chart the density control chart.

The rest of the article is organised as follows. We first discuss in detail the general methodology of the density
control chart. A density control chart is specifically derived for normal processes. Hoping to demonstrate the
flexibility of the proposed density chart, we also apply the density control charting mechanism to a negative
exponential distribution which has been used to model certain processes commonly found in the semiconductor
manufacturing industry. Two real examples are given for the normal and negative exponential processes. There are
cases in which the distribution of the plotting statistic used in the density chart is too complex to derive. We propose
using simulations to approximate the control limit in these cases. This is further discussed using a Gamma and an
exponential distribution as examples. We conclude the article with some discussion of potential future research.

2. The general methodology

Let X denote the quality characteristic of interest. When the process is in control, we assume that X follows a certain
distribution whose density function is denoted as f (x; �1, �2, . . . , �p), where �1, �2, . . . , �p are population parameters.
These population parameters are assumed to be either known or can be reasonably estimated by b�1,b�2, . . . ,b�p
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using data obtained from Phase I control when the process was in control. When the Phase II monitoring begins,
independent samples of size n each are repeatedly taken from the process.

When the process is in-control, assuming that the true in-control parameter values are �1, �2, . . . , �p. For any
given sample of size n, x1, x2, . . . , xn from the in-control process, the joint likelihood is Lðx1, x2, . . . , xn;
�1, �2, . . . , �pÞ ¼

Qn
i¼1 f ðxi; �1, �2, . . . , �pÞ: Suppose that x

ð1Þ
1 , x

ð1Þ
2 , . . . ,xð1Þn are considered to be a sample from the in-

control process, and x
ð2Þ
1 , x

ð2Þ
2 , . . . , xð2Þn are another sample. If Lðx

ð1Þ
1 , x

ð1Þ
2 , . . . , xð1Þn ; �1, �2, . . . , �pÞ �

Lðx
ð2Þ
1 , x

ð2Þ
2 , . . . , xð2Þn ; �1, �2, . . . , �pÞ, then from the perspective of testing the hypothesis that H0: the process is in

control, the sample ðx
ð2Þ
1 , x

ð2Þ
2 , . . . , xð2Þn Þ provides an even stronger evidence of supporting that the process is in

control. In other words, if ðx
ð1Þ
1 , x

ð1Þ
2 , . . . , xð1Þn Þ comes from the in-control process, there is no reason not to support

the same conclusion when ðx
ð2Þ
1 , x

ð2Þ
2 , . . . ,xð2Þn Þ is observed. This line of thinking leads us to consider

LðX1,X2, . . . ,Xn; �1, �2, . . . , �pÞ

as the charting mechanism. Specifically, given a random sample x1, x2, . . . ,xn, one calculates the joint likelihood
L(x1, x2, . . . , xn; �1, �2, . . . , �p) and plots it against the sampling sequence. The control chart will signal when the
plotting statistic falls below the lower control limit (LCL), where the LCL is to be chosen such that

PðLðX1,X2, . . . ,Xn; �1, �2, . . . , �pÞ � LCLÞ ¼ �, ð1Þ

where � is a pre-determined probability of type-I error. For example, in a typical 3-� limit X-chart for normal
processes, the � is about 0.0027. Note that in the case when �1, �2, . . . , �p are unknown and have to be estimated
using Phase I data, the parameter estimates b�1,b�2, . . . ,b�p are treated as known in Phase II monitoring. Therefore, we

will use LðX1,X2, . . . ,Xn;b�1,b�2, . . . ,b�pÞ instead of L(X1,X2, . . . ,Xn;�1, �2, . . . , �p). Subsequently, in the case when the

parameters have to be estimated from Phase I data, we will continue to useb�1,b�2, . . . ,b�p to denote the true parameter
values in Phase II monitoring, if no confusion is caused.

We will call the proposed chart the density control chart since it relies on calculating the joint density of
the sample observations. The density control charting mechanism is quite general in that it can be applied to
any density function f (x; �1, �2, . . . , �p). However, in order to explicitly identify the LCL, one needs to know the
distribution of L(X1,X2, . . . ,Xn; �1, �2, . . . , �p) (or LðX1,X2, . . . ,Xn;b�1,b�2, . . . ,b�pÞ). In some cases, it is possible to
derive the distribution of the joint density. In the subsequent sections, we will discuss two such cases. One is the
most commonly used normal process and the other is based on a negative exponential distribution which has
been used to model certain processes in semiconductor manufacturing applications. As pointed out by one
referee, the LðX1,X2, . . . ,Xn;b�1,b�2, . . . ,b�pÞ is only an estimate of the true L(X1,X2, . . . ,Xn; �1, �2, . . . , �p), and
that the statement in (1) is only approximately true when the true parameters are replaced by their
corresponding estimates. Further, the likelihood estimate LðX1,X2, . . . ,Xn;b�1,b�2, . . . ,b�pÞ could be poor if the
parameter estimates b�1,b�2, . . . ,b�p obtained from Phase I data are poor, which will affect the performance of the
density control chart. For a recent review of the effects of parameter estimation on the control chart properties,
please see Jensen et al. (2006).

3. The density control chart under a normal process

We assume that when the process is in control, the quality characteristic X is distributed as Nð�0, �
2
0Þ, where �0 and

�0 are unknown. We also assume that m samples of size n each are available for estimating �0 and �0 and thatb�0 ¼
1
m

Pm
j¼1 Xj andb�20 ¼ 1

m

Pm
j¼1 s

2
j , where Xj and s2j are, respectively, the sample mean and sample variance of the jth

sample, j=1, 2, . . . ,m.
When the Phase II monitoring begins, it is customary, as in most of the existing literature, to assume that the true

in-control parameters �0 and �
2
0 are equal to b�0 and b�20 , respectively. For each sample of size n, x1, x2, . . . , xn, one

calculates

Lðx1, x2, . . . , xn;b�0,b�20Þ ¼ 1

ð2�Þn=2ðb�20Þn=2 exp �
Pn

i¼1ðxi � b�0Þ
2

2b�20
� �

and plots Lðx1, x2, . . . , xn;b�0,b�20Þ against the sampling sequence. The chart signals when

Lðx1, x2, . . . , xn;b�0,b�20Þ � LCL: ð2Þ

3906 H.-C. Chen et al.
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The LCL ¼ l ðb�0,b�20Þ is chosen such that

Pb�0,b�20 ðLðX1,X2, . . . ,Xn;b�0,b�20Þ � l ðb�0,b�20ÞÞ ¼ 1� �, ð3Þ

where � is pre-determined.
Note that given b�0 and b�20 , Xi’s are independent and identically distributed (i.i.d.) as Nðb�0,b�20Þ and thereforePn

i¼1ðxi � b�0Þ
2=b�20 is distributed as �2n, a chi-square distribution with n degrees of freedom. Straightforward

calculations show that the restriction in (3) leads to

l ðb�0,b�20Þ ¼ 1

ð2�Þn=2ðb�20Þn=2 exp
��2n,1��

2

( )
, ð4Þ

where Pð�2n � �
2
n,1��Þ ¼ 1� �. It should also be noted that under the normality assumption,

Lðx1, x2, . . . , xn;b�0,b�20Þ � LCL

if and only if Pn
i¼1ðxi � b�0Þ

2b�20 � �2n,1��: ð5Þ

Therefore, one can use the plotting statistic
Pn

i¼1ðxi � b�0Þ
2=b�20 and the chart signals if it exceeds �2n,1��. Note that

although the plotting statistic does depend on b�0 and b� 2
0 , the control limit does not.

Example 1: A vane operating example

The process control of vane operating, which is an important functional parameter of a component part in jet
aircraft engines, has been studied by Montgomery et al. (2004) who used statistical control charts to assess the
statistical stability of this manufacturing process. Twenty samples each of size 5 were collected in Phase I and used
to construct the X- and R-charts. The X-chart indicated that samples 6, 8, 11 and 19 were out of control, while the
R-chart indicated that sample 9 was out of control. Assuming that assignable causes can be identified and corrected
for these out-of-control samples, updated X- and R-charts were calculated using the 15 remaining samples, and no
additional samples were found to be out of control. For Phase II monitoring based on the 15 in-control Phase I
samples, the upper and lower control limits are 36.1 and 30.33, respectively, for the �X- chart, and 10.57 and 0,
respectively, for the R- chart.

We use this example to demonstrate how the density chart can be used in real life applications. For ease of
presentation, we construct the density chart based on the logarithm of the likelihood function. Based on the 15
Phase I samples, b�0 andb�20 were equal to 33.2133 and 3.3595, respectively. For Phase II monitoring, we generated 20
new samples, each of size 5. Of the 20 samples generated, sample 3 was generated from Nðb�0 þ 1:75b�0,b�20Þ, sample
10 from Nðb�0, ð2b�0Þ2Þ, and sample 18 from Nðb�0 þ 1:5b�0, ð1:5b�0Þ2Þ. The other 17 samples were generated from the
in-control process Nðb�0,b�20Þ. The X- and R-charts for 20 newly generated samples are shown in Figure 1. As can be
seen from Figure 1, only sample 3 was out of control on the X- chart and no sample was out of control on the
R-chart.

Setting the type-I error probability equal to 0.0027, the corresponding density control chart calculates, for each
sample x1, x2, . . . , x5, the plotting statistic

ln 0:0004885� exp
�
P5

i¼1ðxi � 33:2133Þ2

2� 3:2595

( ) !
,

and the chart signals if the plotting statistic falls below

LCL ¼ �
5

2
lnð2�b�20Þ � 1

2
�25,0:9973 ¼ �16:7267:

The density chart of the 20 generated samples is shown in Figure 2, which shows that samples 3, 10, and 18 were out
of control. It is interesting to point out that samples 10 and 18 were out-of-control in the density chart but not in the
X- and R-charts.

International Journal of Production Research 3907
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In the case of normal processes, one can actually use the statisticPn
i¼1ðxi � b�0Þ

2b�20
for diagnosing whether the mean or the variance or both are out of control. Rewrite the statistic asPn

i¼1ðxi � Xþ X� b�0Þ
2b�20 ¼
ðn� 1Þs2b�20 þ

nðX� b�0Þ
2b�20 , ð6Þ

where X ¼
Pn

i¼1 xi=n and s2 ¼
Pn

i¼1ðxi � XÞ2=n� 1. Given b�0, b�20 and �, the region

ðX, s2Þ :
ðn� 1Þs2b�20 þ

nðX� b�0Þ
2b�20 � �2n,1��

� �
ð7Þ

can be represented by a semi-circle whose center is at X ¼ �0 and S2
¼ 0 as shown in Figure 3.

Any sample which produces ðX, s2Þ that lies outside of the semi-circle indicates that the sample is out

of control. If s2 is closer to 0 while X is away from b�0, this is an indication that there is a possible mean shift.

On the other hand, if X is closer to b�0 while s2 is far away from 0, it is an indication that the variance

has changed. As can be seen from Figure 3, sample 3 was likely the result of an upward mean shift and sample

10 was mostly due to an increase in variance. Only sample 18 was likely due to changes both in mean

and variance. Note that the semi-circle discussed here is very similar to that studied in Chao and Cheng (1996). They

will be identical if �0 and �0 are assumed to be known. However, our proposed density chart has a much broader

appeal as it can be readily applied to other non-normal distributions.

0 2 4 6 8 10 12 14 16 18 20

30

31

32

33

34

35

36

37
UCL=36.1

CL=33.32

LCL=30.33

3

X̄ chart

Sample number

X̄

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

6

8

10

12
UCL=10.57

CL=5.8

LCL=0

R chart

Sample number

R

Figure 1. The �X- and R- charts of the vane operating example for 20 new generated samples.
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In a recent article, Hawkins and Deng (2009) proposed a simultaneous chart that is constructed based on the

generalised likelihood ratio test for testing the hypothesis that H0: �¼�0 and �¼ �0. The plotting statistic to be

calculated for each sample, assuming �0 and �0 are known under H0, is given as

G ¼ U2 þW� nlnðWÞ þ nlnðnÞ � n,

where

U ¼

ffiffiffi
n
p
ðX� �0Þ

�0
,

W ¼
ðn� 1Þs2

�20
:

They showed that the proposed chart, which they named the GLR chart, compared favourably to the

conventional X- and S-charts. Note that if the parameters �0 and �0 are replaced by the estimates obtained

from the Phase I data, then the test statistic proposed in (6) for the density control chart is equal to U2
þW.

However, the two plotting statistics, (6) and G, are intrinsically different. For any given sample in Phase II,

the plotting statistic of the density control chart under normality is essentially the likelihood function, while

the GLR test based G, on the other hand, calculates the generalised likelihood ratio for testing H0 : �¼�0

and �¼ �0 . In both plotting statistics, the mean and standard deviation are either assumed known or can be

estimated based on Phase I data.
We compare the performance of the density control chart with that of the GLR chart. We use the same data set

as in Example 1 and treat the in-control process as having a normal distribution with �0¼ 33.2133 and �20 ¼ 3:3595.
The out-of-control process is considered to be normally distributed with �¼�0þ � �0 and �¼ 	 �0 (	40).

Numerous combinations of (�, 	) are considered. The performance measure is based on the average run length

(ARL), where the run length is equal to the number of samples needed before the first out-of-control signal shows up

on a control chart. The in-control ARL is approximately equal to 370.
Note that for the density chart, the ARL can be calculated as

ARL ¼
1

p
,

30 31 32 33 34 35 36 37
0

2

4

6

8

10

12

14

16

1

2

3

4

5 6
7

8

9

10

11

12

13

14 15

16
17

18

19

20

Semi−circle chart

X̄

S
2

Figure 3. The semi-circle chart of the vane operating example
for 20 new generated samples.
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−20

−18

−16
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−12

−10

−8

LCL=−16.7267

3

10 18

Density chart

Sample number

lo
gL

Figure 2. The density control chart of the vane operating
example for 20 new generated samples.
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where

p ¼ P �2
n,n�

2

	2

�
�2n,1��
	2

 !
, ð8Þ

where �2k,a denotes a non-central chi-square distribution with k degrees of freedom and non-centrality parameter a

and �2n,1�� is the 1�� quantile of a central chi-square distribution with n degrees of freedom. The results of the

comparison are summarised in Table 1 and Table 2 for n¼ 5 and 10, respectively.
As can be seen from Tables 1 and 2, the density control chart is not effective in detecting a decrease in variance

(i.e. 	51). It is also less effective than the GLR chart in detecting small shifts in mean only (i.e. 	¼ 0, 15�� 1.25).

On the other hand, when there is a small increase in variance only (15	� 2, �¼ 0) or a small increase in variance

and a small shift in mean (15	� 2, 05�� 1), the proposed density chart is more effective than the GLR chart. It

should be noted that in most industrial quality control applications, it is more important that a control chart can

effectively detect quality deterioration as characterised by a shift in the mean (�40) or an increase in variance (	41)

or both. Therefore, as far as the performance under normal process is concerned, the density control chart

represents a viable alternative to the existing control charts for simultaneously monitoring process mean and

variance. Furthermore, while the existing charts are limited to normal processes, the density control chart can be

easily extended to non-normal processes (see Sections 4 and 5 for detailed discussion).
As mentioned earlier, replacing the parameters in the likelihood function by their estimates obtained from Phase I

data is likely to affect the performance of the density control chart. Under normal processes, here we examine via

simulations the effect of Phase I estimates on the performance of the density chart for n¼ 5, and various total

numbers of Phase I samples (m), assuming that �0¼ 0 and �0¼ 1. Givenm,m Phase I samples of size 5 each were first

generated, and b�0 andb�0 were calculated. These estimates were then used to evaluate theARL. Such a simulation was

then repeated 50,000 times, resulting in 50,000 ARLs, and the average of these 50,000 ARLs was calculated and

tabulated.

Table 1. The ARLs of the density control chart (DCC) and the GLR chart when n¼ 5 (�¼�0þ ��0, �¼ 	�0).

n¼ 5 	

� 0.87 1.00 1.15 1.52 2.00 2.15 2.30 2.55 2.75 3.00

0.00 DCC 4713.61 370.37 58.25 6.14 2.11 1.79 1.58 1.37 1.27 1.18
GLR 302.65 370.38 242.13 20.80 3.95 2.99 2.41 1.86 1.61 1.42

0.25 DCC 2222.05 239.33 45.54 5.71 2.07 1.77 1.57 1.36 1.26 1.18
GLR 225.47 236.30 142.30 17.41 3.79 2.90 2.36 1.84 1.60 1.41

0.50 DCC 495.44 91.75 25.35 4.71 1.96 1.70 1.52 1.34 1.25 1.17
GLR 101.06 87.09 52.34 11.43 3.37 2.67 2.23 1.78 1.56 1.39

0.75 DCC 104.93 31.92 12.69 3.63 1.81 1.60 1.46 1.31 1.23 1.16
GLR 35.04 28.91 19.61 7.02 2.85 2.37 2.04 1.69 1.51 1.36

1.00 DCC 26.41 12.10 6.54 2.76 1.65 1.50 1.39 1.27 1.20 1.14
GLR 12.12 10.67 8.40 4.42 2.38 2.07 1.84 1.58 1.44 1.32

1.25 DCC 8.51 5.36 3.69 2.13 1.49 1.39 1.31 1.22 1.17 1.13
GLR 4.90 4.71 4.21 2.95 1.99 1.80 1.66 1.48 1.37 1.28

1.50 DCC 3.59 2.84 2.33 1.71 1.36 1.30 1.25 1.18 1.14 1.11
GLR 2.46 2.53 2.48 2.13 1.69 1.58 1.50 1.38 1.30 1.23

1.75 DCC 1.97 1.80 1.66 1.43 1.25 1.22 1.19 1.14 1.12 1.09
GLR 1.56 1.65 1.69 1.64 1.47 1.41 1.36 1.29 1.24 1.19

2.00 DCC 1.36 1.34 1.31 1.25 1.17 1.15 1.14 1.11 1.09 1.07
GLR 1.20 1.26 1.32 1.36 1.31 1.29 1.26 1.22 1.19 1.15

2.25 DCC 1.12 1.13 1.14 1.14 1.11 1.10 1.10 1.08 1.07 1.06
GLR 1.06 1.10 1.13 1.20 1.20 1.19 1.18 1.16 1.14 1.12

2.50 DCC 1.03 1.04 1.05 1.07 1.07 1.07 1.06 1.06 1.05 1.04
GLR 1.01 1.03 1.05 1.10 1.12 1.12 1.12 1.11 1.11 1.09

2.75 DCC 1.01 1.01 1.02 1.03 1.04 1.04 1.04 1.04 1.04 1.03
GLR 1.00 1.01 1.02 1.05 1.07 1.08 1.08 1.08 1.08 1.07

3.00 DCC 1.00 1.00 1.01 1.01 1.02 1.03 1.03 1.03 1.03 1.02
GLR 1.00 1.00 1.00 1.02 1.04 1.05 1.05 1.05 1.05 1.05

3910 H.-C. Chen et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

5:
10

 2
8 

A
pr

il 
20

14
 



Table 3 summarises the effects of Phase I estimates on ARL under the true parameters. The results

reported in Table 3 indicate that using Phase I parameter estimates will increase the false alarm rate when the

process is in control, as evidenced by the decrease in the in-control ARL. Take m¼ 20 and n¼ 5 as an

example. The in-control ARL assuming that �0¼ 0 and �0¼ 1 are known is set at approximately 370. On the

other hand, if the parameters are replaced by estimates obtained from 20 Phase I samples of size 5 each, the

in-control ARL is only approximately 175.68. As the total number of Phase I sample increases, thus increasing

the total number of Phase I observations, the ARL becomes closer to the value obtained when assuming that

�0¼ 0 and �0¼ 1 are known. Note that these observations are consistent with what has been reported in the

literature. For example, Bischak and Trietsch (2007) argue that not only is the in-control ARL affected but

that the ARL itself may be a confusing performance measure when used with control charts with estimated in-

control parameters.

4. The density control chart under a negative exponential distribution

Suppose that the quality characteristic of interest of a process follows a negative exponential distribution having the

following density function

f ðx; �1, �2Þ ¼
1

�1
exp �

x� �2
�1

� �
, x � �2,

where �140 and �22R are unknown parameters. Given m samples of size n, let xij, i¼ 1, 2, . . . , n, j¼ 1, 2, . . . ,m,

denote the ith observation of the jth sample. One can estimate �1 and �2 by

b�1 ¼ 1

m

Xm
j¼1

b�1j ð9Þ

Table 2. The ARLs of the density control chart (DCC) and the GLR chart when n¼ 10 (�¼�0þ ��0, �¼ 	�0).

n¼ 10 	

� 0.87 1.00 1.15 1.52 2.00 2.15 2.30 2.55 2.75 3.00

0.00 DCC 9909.26 370.37 38.19 3.23 1.33 1.20 1.13 1.06 1.04 1.02
GLR 222.01 370.59 141.64 6.85 1.73 1.45 1.29 1.15 1.09 1.05

0.25 DCC 3644.81 213.03 28.51 3.01 1.31 1.20 1.12 1.06 1.04 1.02
GLR 114.84 131.64 59.49 5.78 1.69 1.43 1.28 1.14 1.08 1.05

0.50 DCC 485.09 63.13 14.30 2.51 1.27 1.17 1.11 1.05 1.03 1.02
GLR 27.18 25.64 15.80 3.91 1.56 1.36 1.24 1.13 1.08 1.04

0.75 DCC 63.26 17.14 6.50 1.99 1.21 1.14 1.09 1.05 1.03 1.01
GLR 6.64 6.58 5.30 2.55 1.41 1.28 1.19 1.10 1.06 1.04

1.00 DCC 11.68 5.62 3.22 1.59 1.15 1.10 1.07 1.04 1.02 1.01
GLR 2.40 2.54 2.42 1.78 1.28 1.20 1.14 1.08 1.05 1.03

1.25 DCC 3.45 2.47 1.89 1.32 1.10 1.07 1.05 1.03 1.02 1.01
GLR 1.35 1.45 1.49 1.37 1.17 1.13 1.09 1.06 1.04 1.02

1.50 DCC 1.64 1.47 1.34 1.16 1.06 1.04 1.03 1.02 1.01 1.01
GLR 1.07 1.11 1.15 1.16 1.09 1.08 1.06 1.04 1.03 1.02

1.75 DCC 1.15 1.13 1.11 1.07 1.03 1.02 1.02 1.01 1.01 1.00
GLR 1.01 1.02 1.04 1.06 1.05 1.04 1.03 1.02 1.02 1.01

2.00 DCC 1.02 1.03 1.03 1.03 1.02 1.01 1.01 1.01 1.01 1.00
GLR 1.00 1.00 1.01 1.02 1.02 1.02 1.02 1.01 1.01 1.01

2.25 DCC 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00
GLR 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.00

2.50 DCC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GLR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2.75 DCC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GLR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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and

b�2 ¼ minfb�21,b�22, . . . ,b�2mg, ð10Þ

where b�2j ¼ minfx1j, x2j, . . . , xnjg and b�1j ¼ 1=n
Pn

i¼1ðxij �
b�2jÞ, j=1, 2, . . . ,m, are the estimates of �2 and �1,

respectively, obtained from the jth sample.

When we consider b�1 and b�2 as the true �1 and �2, respectively, it is easy to see that for any given sample,

ðX1 �b�2Þ=b�1, ðX2 �b�2Þ=b�1, . . . , ðXn �b�2Þ=b�1 are i.i.d. as exp(1) and therefore
Pn

i¼1ðXi �b�2Þ=b�1 � �ðn, 1Þ, which is a

Gamma distribution. The inequality

LðX1,X2, . . . ,Xn;b�1,b�2Þ � l ðb�1,b�2Þ

Table 3. The simulated ARLs of the density control chart (DCC) when the estimates obtained from Phase I data are used for
n¼ 5, m¼ 20, 25, 30 (�¼�0þ ��0, �¼ 	�0).

	

� 0.87 1.00 1.15 1.52 2.00 2.15 2.30 2.55 2.75 3.00

m¼ 20 n¼ 5
0.00 1292.97 175.68 38.16 5.39 2.03 1.74 1.55 1.35 1.25 1.18
0.25 689.79 121.28 30.84 5.05 2.00 1.72 1.54 1.34 1.25 1.17
0.50 196.34 53.28 18.48 4.24 1.90 1.66 1.50 1.32 1.24 1.17
0.75 53.66 21.43 10.03 3.35 1.76 1.57 1.44 1.29 1.22 1.15
1.00 16.93 9.25 5.57 2.60 1.61 1.47 1.37 1.26 1.19 1.14
1.25 6.54 4.56 3.34 2.05 1.47 1.37 1.30 1.22 1.17 1.12
1.50 3.15 2.61 2.21 1.67 1.35 1.29 1.24 1.18 1.14 1.10
1.75 1.88 1.74 1.62 1.41 1.25 1.21 1.18 1.14 1.11 1.09
2.00 1.35 1.33 1.31 1.24 1.17 1.15 1.13 1.11 1.09 1.07
2.25 1.13 1.14 1.14 1.14 1.11 1.10 1.09 1.08 1.07 1.06
2.50 1.04 1.05 1.06 1.07 1.07 1.07 1.06 1.06 1.05 1.04
2.75 1.01 1.02 1.02 1.04 1.04 1.04 1.04 1.04 1.04 1.03

m¼ 25 n¼ 5
0.00 1626.95 201.05 41.24 5.52 2.05 1.75 1.56 1.35 1.26 1.18
0.25 840.78 136.50 33.06 5.16 2.01 1.73 1.54 1.35 1.25 1.17
0.50 228.62 58.41 19.51 4.32 1.91 1.67 1.50 1.33 1.24 1.17
0.75 59.80 22.89 10.44 3.40 1.77 1.58 1.44 1.30 1.22 1.15
1.00 18.17 9.67 5.72 2.63 1.62 1.48 1.37 1.26 1.19 1.14
1.25 6.82 4.68 3.39 2.06 1.47 1.38 1.30 1.22 1.17 1.12
1.50 3.21 2.65 2.23 1.67 1.35 1.29 1.24 1.18 1.14 1.11
1.75 1.89 1.75 1.63 1.41 1.25 1.21 1.18 1.14 1.11 1.09
2.00 1.35 1.33 1.31 1.24 1.17 1.15 1.13 1.11 1.09 1.07
2.25 1.13 1.14 1.14 1.14 1.11 1.10 1.09 1.08 1.07 1.06
2.50 1.04 1.05 1.06 1.07 1.07 1.07 1.06 1.06 1.05 1.04
2.75 1.01 1.01 1.02 1.04 1.04 1.04 1.04 1.04 1.04 1.03

m¼ 30 n¼ 5
0.00 1890.74 219.66 43.39 5.61 2.06 1.76 1.56 1.36 1.26 1.18
0.25 967.30 148.40 34.71 5.24 2.02 1.74 1.55 1.35 1.25 1.18
0.50 255.97 62.55 20.33 4.38 1.92 1.67 1.51 1.33 1.24 1.17
0.75 65.01 24.10 10.77 3.43 1.78 1.58 1.45 1.30 1.22 1.16
1.00 19.23 10.02 5.85 2.65 1.62 1.48 1.38 1.26 1.20 1.14
1.25 7.06 4.78 3.44 2.07 1.48 1.38 1.31 1.22 1.17 1.12
1.50 3.27 2.68 2.25 1.68 1.35 1.29 1.24 1.18 1.14 1.11
1.75 1.90 1.76 1.63 1.42 1.25 1.21 1.18 1.14 1.11 1.09
2.00 1.35 1.33 1.31 1.24 1.17 1.15 1.13 1.11 1.09 1.07
2.25 1.12 1.13 1.14 1.14 1.11 1.10 1.09 1.08 1.07 1.06
2.50 1.04 1.05 1.06 1.07 1.07 1.07 1.06 1.06 1.05 1.04
2.75 1.01 1.01 1.02 1.04 1.04 1.04 1.04 1.04 1.04 1.03
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subject to

Pb�1,b�2 ðLðX1,X2, . . . ,Xn;b�1,b�2Þ � l ðb�1,b�2ÞÞ ¼ 1� �

yields

l ðb�1,b�2Þ ¼ 1b�n1 exp �
�22n,1��

2

( )
: ð11Þ

Therefore, for the negative exponential distribution, the density control chart plots, for any given sample of
observations x1, x2, . . . , xn,

Lðx1, x2, . . . , xn;b�1,b�2Þ ¼ 1b�n1 exp �
Pn

i¼1ðxi �
b�2Þb�1

( )
ð12Þ

and an out-of-control signal is detected as soon as the plotting statistic is below

LCL ¼
1b�n1 exp �

�22n,1��
2

( )
: ð13Þ

Alternatively, one may choose to use 1=n
Pn

i¼1ðxi �
b�2Þ as the plotting statistics. Note that given b�1 and b�2,

�20 ¼ 2
Pn

i¼1ðxi �
b�2Þ=b�1 is distributed as �22n, and that Lðx1, x2, . . . , xn;b�1,b�2Þ � LCL if and only if �20 � �

2
2n,1��. That

is, the density control chart in this case is equivalent to the chi-square control chart where the plotting statistic is
1=n

Pn
i¼1ðxi �

b�2Þ and
UCL ¼

b�1
2n
�22n,1��: ð14Þ

Given b�1 and b�2, and specific out-of-control parameters �1 and �2, it is also quite straightforward to calculate the
ARL of the density chart as ARL¼ 1/p, where the probability p is defined as

P �22n �
b�1
�1
�22n,1�� �

2nð�2 �b�2Þ
�1

 !
: ð15Þ

Here we look at simple cases when n=5 and 10. When the process is in control, we assumeb�1 ¼ 1:0 andb�2 ¼ 0, and
the in-control ARL is set at 370. The ARLs of different out-of-control scenarios are summarised in Table 4.

The ARL decreases when either the location parameter (�2) shifts or the scale parameter (�1) changes, or both.
Not surprisingly, the ARL decreases as the sample size increases. Moreover, the density chart seems to be more
effective in detecting changes in the scale parameter than shifts in the location parameter.

Example 2: A particle counts example

The semiconductor manufacturing processes often involve quality characteristics whose distributions are non-
normal. Levinson and Polny (1999) studied a set of particle counts data generated from an Applied Materials etcher.
See Levinson and Polny (1999) for a detailed account of the data set and its generation. A three-parameter Gamma
distribution with the following density function

f ðx; �1, �2, �3Þ ¼
1

�ð�3Þ�
�3
1

ðx� �2Þ
�3�1 exp �

x� �2
�1

� �
, x � �2

was fit and shown to be appropriate for the data set. The maximum likelihood estimates of the three parameters areb�1 ¼ 222:32, b�2 ¼ 34, and b�3 ¼ 1:172. Levinson and Polny (1999) also constructed a Shewhart chart for the mean
�¼ �1 �3þ �2 with n¼ 1, and the resulting control limits are LCL¼�362.63 and UCL¼ 951.79. They mentioned
that this classical X-chart has a serious problem since negative particle counts do not exist in practice.

Since the estimated b�3 is close to 1, the negative exponential distribution may provide a simpler but also
appropriate distribution to model the particle counts data. Here we use this example to demonstrate how the density
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control chart can be readily applied to a negative exponential distribution. We carried out both the chi-square

goodness-of-fit test and the Kolmogorov–Smirnov test for testing the hypothesis that the particle counts data follow

a negative exponential distribution, and the p-values were 0.2466 and 0.7889, respectively. Both tests did not provide

strong evidence to reject the hypothesis that the particle counts follow a negative exponential distribution.
A total of 12 samples each with size 4 were collected and the resulting estimates for �1 and �2 were b�1 ¼ 160:25

and b�2 ¼ 35:5, respectively. Based on the density chart described in (12) and (13), the plotting statistic in (12), for

each of the 12 samples with size 4, was calculated by

1

ð160:25Þ4
� exp �

P4
i¼1ðxi � 35:5Þ

160:25

( )
,

and the chart signals if the plotting statistic falls below

LCL ¼ 160:25�4 � exp
�28,0:9973

2

 !
¼ 0:0001153� 1010:

Since the 12 plotting statistics obtained from (12) and LCL are all very large (in the magnitude of 1010), for the chart

to be visible to the reader, these values are divided by 1010 and then transformed on log-scale. The density control

chart of the 12 samples (with the transformed LCL ¼ lnð0:0001153�10
10

1010
Þ ¼ �9:0683) is shown in Figure 4. It is evident

from Figure 4 that samples 2 and 6 are out of control.
In this case, we can use the plotting statistic described in (14) to help us diagnose the possible causes of any out-

of-control signal. Specifically, for a given sample x1, x2, . . . , xn, we denote v ¼ 1=n
Pn

i¼1ðxi � xð1ÞÞ and u¼ x(1), where

x(1)¼min {x1, x2, . . . , xn}. Given b�1 and b�2, the diagnostics can be carried out by looking at the equation

vþ ðu�b�2Þ ¼ b�1
2n
�22n,1��: ð16Þ

Here the v measures the variation of the sample and u�b�2 measures possible location shift. The diagonal line with

axes u and v from the above equation represents the control limit. Any sample producing a point lying above the

diagonal line is considered as an out-of-control sample. If the point is away from the line u ¼ b�2, it is an indication

Table 4. The ARL of the density control chart for the negative exponential distribution
(�1 is the scale parameter and �2 is the location parameter).

�2

�1 0.0 0.2 0.5 1.0 2.0 3.0

1.00 370.37 180.62 64.03 13.06 1.36 1.00
1.25 56.37 33.32 15.72 5.10 1.17 1.00
1.50 17.83 11.95 6.79 2.97 1.09 1.00
1.75 8.40 6.14 3.97 2.12 1.05 1.00

n¼ 5 2.00 5.01 3.91 2.77 1.71 1.03 1.00
2.25 3.47 2.84 2.15 1.48 1.02 1.00
2.50 2.66 2.25 1.80 1.34 1.01 1.00
2.75 2.17 1.90 1.58 1.25 1.01 1.00
3.00 1.87 1.67 1.44 1.18 1.01 1.00

1.00 370.37 115.49 23.55 2.97 1.00 1.00
1.25 35.10 15.95 5.64 1.64 1.00 1.00
1.50 9.25 5.35 2.67 1.26 1.00 1.00
1.75 4.16 2.83 1.77 1.12 1.00 1.00

n¼ 10 2.00 2.53 1.93 1.40 1.06 1.00 1.00
2.25 1.85 1.52 1.22 1.03 1.00 1.00
2.50 1.51 1.31 1.13 1.02 1.00 1.00
2.75 1.32 1.19 1.08 1.01 1.00 1.00
3.00 1.21 1.12 1.05 1.00 1.00 1.00
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that there is a possible mean shift. On the other hand, if the point is away from the line v¼ 0, it is an indication that
there is a possible change in the variance.

For the particle counts data, the equation turned out to be

vþ ðu� 35:35Þ ¼ 401:83:

The diagonal line with axes u and v, along with all 12 samples are shown in Figure 5. The two out-of-control
samples, sample 2 and sample 6 produced (u, v)¼ (207.0, 383.5) and (334.5, 175.9), respectively. Figure 5 indicates
that both samples 2 and 6 are due to mean shift and variance change. On the other hand, the level of mean shift
seems to be larger in sample 6 than in sample 2, while the degree of change in variance seems to be greater in sample
2 than in sample 6.

5. Approximate density control chart

In previous sections, we discussed situations in which the distribution of the plotting statistic of the density control
chart can be readily derived. However, in other applications it may be too complicated to derive such a distribution.
In general, given b�1,b�2, . . . ,b�p, if the distribution of LðX1,X2, . . . ,Xn;b�1,b�2, . . . ,b�pÞ is too complicated, one can
repeatedly generate samples from f ðx;b�1,b�2, . . . ,b�pÞ and calculate the likelihood of each of the, say, k generated
samples, which are denoted by l1, l2, . . . , lk. Then the LCL can be estimated as dLCL ¼ lð½k��þ1Þ, where
l(1)� l(2)� ��� � l(k) are the ordered statistics and [a] is the largest integer smaller than or equal to a.

Here we look at another distribution to illustrate the use of simulations to approximate the LCL. Suppose that a
quality characteristic follows a Gamma distribution having the following density function

f ðx; �1, �2Þ ¼
1

�ð�2Þ�
�2
1

x�2�1 exp �
x

�1

� �
, x4 0:

The Gamma distribution has been used to model a variety of lifetime data, including some situations involving the
negative exponential distributions. For the Gamma distribution, it is rather difficult to derive the distribution of the
likelihood function. Suppose that, based on the Phase I data, both of two parameters, �1 and �2, are estimated to
be equal to 2, i.e. b�1 ¼ b�2 ¼ 2. Based on these estimates and assume that the subgroup size is 5, we then generated
10 million samples of size 5 each and calculated, for each sample, the likelihood function

f ðx1, x2, . . . , x5;b�1 ¼ b�2Þ ¼ 1

ð�ð2ÞÞ525�2

Y5
i¼1

xi

 !2�1

exp �

P5
i¼1 xi
2

( )
:
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Figure 5. The chi-square control chart of the particle counts
example.
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example with the plotting statistics.
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From the 10 million likelihoods, we obtained dLCL ¼ lð27,000Þ. Using this dLCL, we then simulated the ARLs for

a variety of combinations of �1 and �2, including the in-control case when �1¼ �2¼ 2. The results are summarised

in Table 5. From Table 5, the results seem to indicate that the approximate density control chart is more effective in

detecting changes in the shape parameter (�2) than in the scale parameter (�1) in the case of the Gamma distribution.
As an additional example of using simulation to obtain the control limit for the approximate density control

chart, we assume that the estimates of �1 and �2 from Phase I data are both equal to 1, i.e. b�1 ¼ b�2 ¼ 1. Note that if

we treat these estimates as the true parameter values in Phase II, the corresponding Gamma distribution is

equivalent to a negative exponential distribution with scale parameter equal to 1 and location parameter equal to 0.

The simulated ARL values for this example are summarised in Table 6. The dLCL for this case was also obtained

based on 10 million simulated likelihood values. The approximate density control chart seems to be more effective

when the in-control parameter �1¼ �2¼ 1 than when the in-control parameters �1¼ �2¼ 2, in terms of producing

smaller ARL value for the same level of change in each parameter, in the case of the negative exponential

distribution than in the case of the Gamma distribution.

Table 6. The ARLs of the approximate density control chart for the negative exponential distribution (n¼ 5, �1 is the scale
parameter, and �2 is the shape parameter).

�2

�1 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

1.00 370.70 56.46 17.82 8.38 5.01 3.47 2.66 2.17 1.87 1.66 1.52 1.41 1.33
1.25 97.83 18.98 7.24 3.96 2.67 2.04 1.69 1.48 1.35 1.26 1.19 1.15 1.11
1.50 33.74 8.26 3.75 2.35 1.76 1.47 1.30 1.20 1.14 1.10 1.07 1.05 1.04
1.75 14.33 4.38 2.34 1.66 1.36 1.21 1.13 1.08 1.05 1.03 1.02 1.01 1.01
2.00 7.22 2.72 1.69 1.32 1.17 1.09 1.05 1.03 1.02 1.01 1.01 1.00 1.00
2.25 4.21 1.93 1.36 1.16 1.07 1.04 1.02 1.01 1.01 1.00 1.00 1.00 1.00
2.50 2.77 1.51 1.18 1.07 1.03 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00
2.75 2.01 1.28 1.09 1.03 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3.00 1.59 1.15 1.04 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3.25 1.34 1.08 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3.50 1.20 1.04 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3.75 1.11 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4.00 1.06 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5. The ARLs of the approximate density control chart for the Gamma distribution (n¼ 5, �1 is the scale parameter, and �2
is the shape parameter).

�2

�1 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

2.00 370.59 100.81 37.52 17.80 9.98 6.35 4.45 3.35 2.68 2.23 1.93 1.71 1.56
2.25 160.95 47.19 19.10 9.74 5.84 3.96 2.94 2.33 1.94 1.69 1.51 1.39 1.30
2.50 74.22 23.89 10.55 5.83 3.75 2.71 2.12 1.77 1.54 1.39 1.28 1.21 1.16
2.75 36.90 13.13 6.36 3.80 2.63 2.01 1.66 1.44 1.31 1.21 1.15 1.11 1.08
3.00 19.83 7.85 4.16 2.69 1.98 1.61 1.39 1.25 1.17 1.11 1.08 1.05 1.04
3.25 11.48 5.05 2.93 2.04 1.60 1.36 1.23 1.14 1.09 1.06 1.04 1.02 1.02
3.50 7.18 3.50 2.21 1.65 1.37 1.21 1.13 1.08 1.05 1.03 1.02 1.01 1.01
3.75 4.79 2.58 1.77 1.40 1.22 1.12 1.07 1.04 1.02 1.01 1.01 1.00 1.00
4.00 3.40 2.02 1.49 1.25 1.13 1.07 1.04 1.02 1.01 1.01 1.00 1.00 1.00
4.25 2.57 1.66 1.31 1.15 1.07 1.04 1.02 1.01 1.00 1.00 1.00 1.00 1.00
4.50 2.03 1.43 1.19 1.09 1.04 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00
4.75 1.69 1.28 1.12 1.05 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5.00 1.46 1.18 1.07 1.03 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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6. Conclusion and discussion

We have proposed and studied the density control chart which can be used to monitor multiple parameters
simultaneously on a single chart for any given type-I error probability. The approach of the density chart is quite
general which allows easy extensions to non-normal processes. We gave examples of non-normal processes and
demonstrated how the density chart can be constructed and applied in those cases.

Under the normality assumption, we compared the performance of the density chart with that of the GLR chart
of Hawkins and Deng (2009). The density chart performs better than the GLR chart when there is a small increase
in the variance. On the other hand, when there is a decrease in the variance and a small shift in the mean, the density
chart is ineffective. When only mean shifts but variance remains unchanged, the two charts have comparable
performance.

The density chart studied in the current article is a Shewhart type control chart. It is rather straightforward
to calculate the EWMA of the likelihoods in very much the same manner as those discussed in Yeh et al. (2005).
It would be worthwhile to study to what extent the EWMA density chart improves the performance of the Shewhart
type density chart.

It should be noted that, unlike most of the simultaneous charts that exist in the literature which assume n41, the
proposed density chart is also applicable when n¼ 1. It would be interesting to develop the density chart for
individual observations and compare it with some of the existing control charts such as the exponentially weighted
moving squared deviations chart studied in MacGregor and Harris (1993).

The generality of the density control charting mechanism lends itself nicely for multivariate processes, provided
that the density function is known. There have been some recent studies on simultaneously monitoring multiple
parameters for multivariate normal processes (see, for example, Cheng and Thaga 2005, Chen et al. 2005, Reynolds
and Chao 2006, and Machado et al. 2009). It would be worthwhile to extend the density chart to multivariate
normal and non-normal processes.
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