Ninth International Workshop on Microprocessor Test and Verification

Mining Unreachable Cross-timeframe State-pairs for Bounded Sequential
Equivalence Checking

Lynn C.-L. Chang and Charles H.-P. Wen
Dept. of Communication Engineering
National Chiao Tung University
Hsinchu, Taiwan 300
Email: tinger.cm95g @nctu.edu.tw and opwen@g2.nctu.edu.tw

Abstract

One common practice of checking equivalence for two
sequential circuits often limits the timeframe expansion
to a fixed number, and is known as bounded sequential
equivalence checking (BSEC). Although the recent advances
of Boolean satisfiability (SAT) solvers make combinational
equivalence checking scalable for large designs, solving
BSEC problems by SAT remains computationally inefficient.
Therefore, this paper proposes a 3-stage method to exploit
constraints to facilitate SAT solving for BSEC. The candidate
set are first accumulated by checking each composition
of functions derived by a data-mining algorithm for every
two cross-timeframe flip-flop states. Each candidate can be
further removed if it matches simulation data in history and
its validity is finally confirmed through gate-level netlist. The
verified set is feedbacked as constraints in SAT solving for
the original BSEC problem. Experimental results show a
40X speedup in average on ISCAS 89 circuits.

1. Introduction

Functional verification in VLSI includes an important
problem of determining equivalence for two circuit de-
scriptions during the design process. Such a problem can
be further divided into: combinational equivalence check-
ing (BEC) and sequential equivalence checking (SEC).
Due to the recent advances of Boolean satisfiability (SAT)
solvers, such as Zchaff[1], MiniSAT[2], C-SAT[3], SAT-
based method enables scalable and robust combinational
equivalence checking for large VLSI designs. However,
with increasing design complexity, the general problem of
checking the equivalence for two sequential circuits remains
intractable. Therefore, in sequential equivalence checking,
one common practice constrains the timeframe expansion to
a limited number and is as known as bounded sequential
equivalence checking (BSEC).

Constraint extraction is a technique, which has been
successfully applied in various electronic design automation
(EDA) problems, such as logic optimization and automatic
test pattern generation (ATPG). Authors in [4][S] propose an
approach of finding internal don’t-care states as constraints
and merging them according to observability for Boolean

1550-4093/08 $25.00 © 2008 IEEE
DOI 10.1109/MTV.2008.23

33

network optimization. Static and dynamic learning tech-
niques are applied in [6][7] to guide pair-wise implications
to assist test pattern generation.

Many recent studies also incorporate constraint extraction
techniques for BSEC problems. Authors in [8] use binary
decision diagram (BDD) techniques to estimate the reach-
ability of states and derive the don’t care set. Association
rule mining and logic implication are combined in [9][12]
to derive 3-node relations among all internal nodes to
accelerate SAT solving for BSEC problems.

Most of previous works focus on the relationship of
internal signals at one single timeframe. However, in [11],
the primary outputs and register inputs are shown to have
greater impact than internal signals, and in [9][12], con-
straints across multiple timeframes are effective for speeding
up SAT solving. Therefore, to avoid effort on internal signals
over lengthy timeframes, we propose a method as shown in
Figure 1 to only explore the relations of state-pairs across 2
timeframes and to derive a set of constraints for SAT solving
of BSEC problems. Furthermore, although the total number
of flip-flops is much smaller than that of internal signals,
exhaustive analysis of checking all state-pairs is inefficient
in time. Thus, multiple filtering strategies are incorporated
in our proposed method to reduce the number of state-pairs.
They are (1) functionality filtering, (2) historical filtering
and (3) structural filtering.

[- — - — - 3:stage constraint extraction__ __ _ .
1 - o . 1
y | functional | | historical |] structural | , |
1 filtering filtering filtering 1
1

constraint
insertion

1
Figure 1. Proposed method with constraint extraction

In stage 1, a data-mining algorithm statistically analyzes
the I/0 (including flip-flops) data that can be given or from
random simulation and derives the approximate functions
for each flip-flop state at one specific timeframes. A pair
of cross-timeframe flip-flops is said a unreachable state-pair
candidate which can be computed by the conjunction of
two Boolean functions for each flip-flop states. Once the
conjunctive Boolean function is not empty, it can be re-
moved from the candidate list. During the stage 2, historical
filtering checks each candidate against the simulation data to
prune false cases. Finally, the validity of unreachable state-
pairs in the candidate set is confirmed by structural filtering

IEEE
computer
pSOC|ety

where each candidate will be realized into one constraint
gate and appended to the unrolled 2-timeframe miter to form
an augmented circuit. If the augmented circuit is UNSAT,
such a constraint is proven to be true.

After 3-stage filtering, the final set of unreachable state-
pairs will be inserted as constraints for SAT solving of the
original BSEC problem. Our experimental results show that
the 3-stage filtering can reduce the total number of unreach-
able state-pair candidates sifinificantly and derive cross-
timeframe constraints efficiently. The proposed method also
reduces the runtime used by state-of-art SAT solvers remark-
ably on most ISCAS 89 circuits for BSEC problems.

The rest of the paper is organized as: Section 2 formulates
the problem of bounded sequential equivalence checking.
Section 3 proposes our method and discusses the techniques
for extracting cross-timeframe constraints in detail. Section 4
presents the experimental results and demonstrates the use-
fulness of the extracted constraints in SAT solving for BSEC
problems. Section 5 concludes the paper.

2. bounded sequential equivalence checking

Typically, the problem of sequential equivalence checking
(SEC) can be formulated as checking the output of the
miter circuit, which is composed of two finite-state machines
(FSMs), over multiple timeframes. Bounded sequential equi-
valence checking, however, is a special case of SEC prob-
lems and limits the timeframes to be checked to a fixed
number. Therefore, modeling of a BSEC problem as illus-
trated in Figure 2 consists of two steps: miter construction
and timeframe unrolling.

Py Py

= Hdo b
Q== E:

PIOMY Pyl

o R o B
::| I: G l::

1223

C. C.

vy

Figure 2. Bounded sequential equivalence checking
(BSEC) model

The miter is constructed by connecting every pair of two
corresponding outputs from FSMs by one XOR gate. The
miter is then unrolled to a limited number of timeframes,
say k, and forms the BSEC model. The combinational logic
is duplicated into k copies and outputs of flip-flops in one
timeframe are connected to corresponding inputs in next
timeframe. After unrolling miter circuit, one big OR gate
will connect the output of XOR gates from each timeframe.
Finally, the output of this OR gate will be set as 1. If the
BSEC model is UNSAT, then these two circuits are proven
to be equivalent over a bounded number of timeframes.
Otherwise, they are in-equivalent.

34

3. proposed method with constraint extraction

Since previous studies [8][9] that explore the constraints
among internal nodes for SAT solving may suffer from a
large number of constraint candidates, the proposed method
instead considers cross-timeframe state-pairs as candidates
and prunes the false cases on the basis of simulation data
and the gate-level netlist of the circuit.

Since each state-pair can be validated by running SAT
solving on the BSEC model, one intuitive method is to
enumerate all combinations of state-pairs for checking. How-
ever, given n and k are the numbers of flip-flops and the
number of timeframe unrolling, respectively, the combina-
tions for state-pairs will go up to 4 x C5*, where 4 represents
different cases of state-pairs including {00}, {01}, {10}, and
{11}. Running SAT solving for 4 x C}* times will be
prohibitively time-consuming and even worse than solving
the BSEC model directly. Therefore, a 3-stage constraint
extraction shown in Figure 1 integrates multiple filtering
strategies to help reduce the total number of state-pairs.

The first stage is functional filtering. A data-mining algo-
rithm called the support-confidence framework is devel-
oped to construct the approximate Boolean functions for
each flip-flop state at one specific timeframe by learning
the simulation data. Then, the cross-timeframe state-pair
could be a constraint candidate if the conjunction of Boolean
functions for two such flip-flop states is empty. Historical
filtering in the second stage scans through the simulation
data to prune the rare cases escaped from approximate
functional learned in the first stage. The final stage is struc-
tural filtering which validates the candidate through SAT
solving of the augmented miter circuit. Note that functional
filtering plays an important role in the proposed method and
needs generating as few candidates as possible to make the
historical filtering and structural filtering efficient in time.

The details of the proposed method, including 3-stage
constraint extraction, will be elaborated as follows.

3.1. functional filtering

Support-confidence

Design under mining algorithm

verification

,.
' i
1
1
1
! i
1
v . for functionality
! 1
1oy,
4 o
1 .
. : U
1 meiamet
1 Unreachable
i i state-pair | =—=>| Constraint
: .. H discovery candidates
1
1

Figure 3. Flow of functional filtering

The flow of functional filtering is illustrated in Figure 3.
First, two learning databases are constructed by collecting
simulation data across timeframes as shown in Figure 4. For
example, assume that the number of timeframe unrolling is
4. 1-timeframe database retrieves I/O data from each single
timeframe. 2-timeframe database collects input data from

every two consecutive timeframes but collects output data
only from the latter timeframe. A support-confidence mining
algorithm will be applied to extract functional information
based on these two databases and for each filp-flop state,
iteratively find the most frequent Boolean cubes, particularly

termed ruling cubes.

0 1 2). 3

2 timeframe
database

0

/

/
/ g
/ e
’ -
e sy
1 timeframe

database

Figure 4. Data collection from simulation

3.1.1. ruling cube generation. Each Boolean function of
one flip-flop state can be approximated by a set of Boolean
cubes. For example, in Figure 5, {t;} denotes the test set in
simulation database M and {c;} denotes the set of Boolean
cubes to be evaluated. For each cube c¢;, two corresponding
metrics, support and confidence (denoted as sup; and con f;),
are used to quantify the importance of such a cube. If both
sup; and con f; are larger than the threshold values, s, and
Yeonf, respectively, then the cube ¢; is a ruling cube and can
be used to construct the approximate Boolean function £
later. In contrast, those Boolean cubes that fail to satisfy the
support and confidence criteria will be dropped in F™.

For the support-confidence framework [15], the support
sup and the confidence conf denote the frequency and the
accuracy for one Boolean cube, respectively, on the basis of
the database M, and their formal definitions are given as
follows.

By XY
|M| | X|

where M denotes the set of total tests in the database, X
denotes the set of tests covered by one Boolean cube, Y
denotes the set of tests with the target output response (either
0 or 1) in M, and |.| denotes the size of one set.

sup = and conf =

X{ X, X3 X, X5Xg Y
t, |o11110] 1| ¢ [xxxx10| sup=35 conf=23
t, [101001]1
t, [011001] 0| c,[x10xxx]| sup=3/5 conf=2:3
t, [111010] 1
t; 1000010 0| c[x1xx1x| sup=25 conf=22

Figure 5. Example of support-confidence computation

Figure 5 shows an example for support-confidence com-
putation. Given the database M = {t1,...,t5}, the cube ¢;
satisfies t1, t4 and t5 and sup; is % However, since only #;
and ¢4 have the target output response (y = 1), confy is %
sup; and con f; of any other cube i can be computed in the
same manner. Moreover, suppose that sy, and Yeon s are

0.05 and 0.95, only c3 satsifies the support and confidence

35

criteia among three cubes and can be a ruling cube on the
basis of M in this example.

Support-confidence mining algorithm is proposed to de-
rive the set of ruling cubes for constructing the approximate
Boolean function for each flip-flip state. In Figure 5, c3 =
x1xx1x represents one ruling cube xox5 where 2 and x5 are
support literals which represent the most important variable
states in such a ruling cube. One ruling cube is geenrated by
adding the support literal one by one until no futher support
literal can be found.

According to [14], the impact of one variable state can
be achieved by comparing the impurity difference between
the original database M and the new M, split with respect
to one variable state v. Therefore, the gain value, g(.),
one popular impurity measure, is typically employed to
gauge such an impact. For two literals (z and T) of one
input variable and the database M, g(x) and ¢(T) can be
formulated as
nii

nio +nip +1

no1

dg(@) = ———
and (2) noo +no1 + 1

g9(x) =
where n1p is the number of tests with input variable z = 1
and output response y = 1, nyg is the number of tests with
x =1 and y = 0, ngy is the number of tests with z = 0
and y = 1, and ngg is the number of tests with x = 0 and
y=0.

Note that g(x) represents the ratio of the number of tests
with z = 1 and y = 1 to the number of all tests with z = 1 in
M; g(T) can be understood similarly. After the gain values
of all variable states are computed, the variable state with
maximum gain will be selected as the next support literal.

M M\,:l
X1XoXg | XoXg |

000|0 Xy | Xp | Xq oo X, | X3
001l0 Ngo 4 |3 |4 010 Ngo 1,0
0100 Moy 0o |10 1001 Noy 12
011|0 Nio 2 13|2 110 N |1]2
1001 LT 2 |11]2 Ny 1]0
1010 g(x) |2/5|1/5|2/5 g(x) [1/3] 0
1101 g | 0 |1/5 0 g(® |1/3|2/3
111|0

(a) (b)
Figure 6. Example for generating one ruling cube

Figure 6(a) illustrates the process for selecting the first
support literal. The original database M has three in-
puts, z1, T2, and x3. The values of {noo,nm,nlo,nll}
for each variable state is first computed. For example,
{noo,no1,n10,n11} for z1 is {4,0, 2,2}, and thus, g(z1) =
577 and 9(T1) = o771 9(x2), 9(T2), g(w3) and g(T3)
can be computed similarly. After all gain values are avail-
able, the variable state with the maximum gain is selected as
the support literal. If two variable states have the maximum
gain, the support literal can be selected arbitrarily. In our

example, both z; and x5 have the maximum gain 2, and

5

x1 is chosen arbitrarily to be the first support literal for the
ruling cube c.

Given Ysyp = 0.05 and Yeony = 0.95, for the current
rule cube ¢ = 1, sup., = My

y | TM]
W is 2. Since the current conf. is much lower
-

than 7y.ony, the ruling cube generation will continue to find
the next support literal as shown in Figure 6(b). Note that
the database M now becomes M, —; since the next support
literal needs to be selected on the basis of all tests with
xr] = 1in M.

Once the extracted Boolean cube ¢ meets sup. > Ysup
and confc > Yeons, it Will be accumulated in the set of
ruling cubes for constructing the approximate function of
one flip-flop state later. However, if no other variable state
can be selected and the current cube fails to meet the support
and confidence criteria, the cube will be dropped. To avoid
processing the same cubes, both the tests covered by ruling
cubes and dropped cubes will be removed from the database.

Algorithm 1 shows the overall algorithm to construct the
approximate function for one flip-flop state. Given database
M, N is the maximum number of support literals in one
ruling cube since the maximum number of literal to split
database M is logs|M|. F* is the target function to be
extracted and D is the set of current tests covered by F™.
The algorithm starts from constructing a Boolean cube rep-
resenting a sub-function f by adding one variable state one
at a time. SupportVariableSelect() is applied to select the
next suuport literal under f. When both the frequency fs,,)p
and the accuracy fcon s can meet the criteria, f is updated by
conjuncting itself with z. The algorithm keeps finding the
next support literal to update f until the current cube f has
met the ruling cube criteia in line 9 or included more than N
variable states in line 13. F'* continues accumulating ruling
cube f’s for one flip-flop state until F* covers a percentage
Yeov Of the total tests in the database M.

. 4 _
is g and conf. =

Algorithm 1 MineFun(): Mining Function from Data

1: N =logs|M]|;

2: ¥« 0,

3: while (|D| < | M| X yeo0)

4 f=1;

50 do {

6: x = SupportVariableSelect(M, f);

7: fefnmx

8: update(fsup7fconf); " Update fsup and fconf
9: if (fsup > Vsup && fconf > ’Yconf)
10: F*— F*U f;

11: update(D); // update by ruling cube
12: break;

13: } while (|f] < N);

14: if (fsup < Ysup && fconf < ’Yconf)

15: update(D); // update by dropped cube

36

3.1.2. unreachable state-pairs discovery. unreachable
state-pair discovery next conjuncts two functions for each
combination of state-pairs followed by performing SAT
solving on the conjunctive Boolean function. For example,
given FF and FF] as the functions for the states of flip-
flop p at timeframe ¢ and of flip-flop ¢ at timeframe j,
respectively, If f = FF; N FFg is UNSAT, there exists no
input test which can satisfy both flip-flop states concurrently.
Therefore, (F'F}}, FFJ) is a constraint candidate. Note that,
for each flip-flop p at timeframe k, the support-confidence
mining algorithm will run twice: one for ON state F'F*, and

the other for OFF state W’;)

3.2. historical filtering

After generating the initial set of cross-timeframe state-
pairs for constraint candidates, historical filtering prunes
those pairs that have already been seen in simulation data.
For example, given (ﬁ;,FF;“) as the constraint candi-
date to be checked, if flip-flop p in some timeframe k& has
the state value of 0 and flip-flop ¢ in some timeframe k + 1
has the state value of 1, then (ﬁ;, FF;“) will be removed
from the candidate set.

3.3. structural filtering

timeframe 0 timeframe 1

o

Figure 7. lllustration for structural filtering

At this stage, structural filtering is to ensure the validity
of each candidate under the unrolled 2-timeframe miter. For
example, if (ﬁ;, FFE!*1) is one of remaining constraints,
the inverted output of flip-flop p at timeframe O and the
output of flip-flop ¢ at timeframe 1 are connected by an
additional AND gate. Such an example is illustrated in
Figure 7. Next, SAT solving is performed on the unrolled
2-timeframe miter with enforcing 1 on the output of the
additional AND gate. If the result is UNSAT, (ﬁ;, FFIH)

is a true constraint; otherwise, (ﬁ;,FF;‘H) should be
removed.

Since structural filtering requires SAT solving, it is most
time-consuming stage in the constraint extraction. Therefore,
an upper bound to the number of constraints that can be
extracted is imposed considering the performance in time.

3.4. constraint insertion

Constraint insertion is the final step in the proposed
method. Given k as the number of timeframe expansion
in BSEC problems, each extracted constraint will be trans-
lated into multiple CNF clauses over k timeframes and

appended to the CNF of the original BSEC model. For
example, if (FF}, FFit!) is one proven constraint, CNF
clauses (FFg,FF51)(FF31,FFg)...(FFf_l,FFf) will be
appended to the original CNF for final SAT solving.

4. experimental results

The proposed method is implemented in C++. The ex-
periments are run on Linux equipped with a 2.4GHz CPU
and 2GB RAM. ISCAS 89 circuits are used as benchmarks
for bounded sequential equivalence checking. Each circuit is
re-synthesized by Design Complier from Synopsys. Zchaff
[1] is applied for SAT solving. The default number of tests
for simulation ranges from 1,000 to 5,000 depending on
the number of primary inputs of the benchmark circuits.
Ysup and Yeony are by default 0.05 and 0.95, respectively.
The number of upper bound for constraint state-pairs to be
inserted is 2, 000.

miter |# of PI|# of PO |# of FF |# of k # of FF x
in miter | timeframes | k-timframes

$298 3 6 28 40 1120

$349 9 11 30 40 1200

s713 35 23 36 30 1080

s832 18 19 10 30 300

s1196 |14 14 36 30 1080

s1488 |8 19 12 30 360

s4863 |49 16 169 15 3035

s15850 |77 150 1040 15 15600

$35932 | 35 320 3456 10 34560

s38584 | 38 304 2690 10 26900

Table 1. Characteristics of BSEC models for ISCAS 89

circuits

Table 1 shows the characteristics of BSEC models for
ISCAS 89 circuits used in the experiments. # of PI and # of
PO are the numbers of primary inputs and primary outputs
for each circuit, respectively. # of FF is the number of the
flip-flops in the original miter. k is # of timeframes to be
unrolled in the BSEC model. # of FF x k-timeframe denotes
the total numbers of the flip-flops in the BSEC model.

Table 2 demonstrates the effectiveness of 3-stage filtering
by reporting the numbers of constraint candidates across 2
timeframes after each filtering. Column 1 lists the name of
the benchmark circuits while column 2 represents the initial
number of candidates across 2 timeframes. Column 3, 4
and 5 denote the numbers of candidates after functional,
historical and structural filterings, respectively. Column 6
reports total runtime used for overall 3-stage constraint
extraction.

Table 3 shows the improvement of SAT solving for BSEC
problems. Column 1 lists the name of the benchmark circuits
and column 2 is the # of unrolled timeframes. Column 3, 4
and 5 denote the runtime of SAT solving without constraint,
runtime for SAT solving with constraints, the combined
runtime of mining and SAT solving, respectively. Column

37

miter # of constraint across 2 timeframes time
initial functional | historical | structural | (s)
filtering | filtering | filtering
$298 6160 2139 1606 32 9.13
s349 |7080 945 671 212 6.19
s713 10224 2929 2201 6 43.77
s832 | 760 84 68 32 5.69
s1196 | 10224 610 355 60 24.2
s1488 | 1141 409 298 74 16.02
s4863 227812 | 4081 1209 668 231.67
s15850 | 8648640 | 115429 4939 2000 1365.83
$35932 195537664 | 84169 2320 2000 1218.34
$38584 | 57878040 | 288373 3134 2000 1201.60
Table 2. Comparison of numbers of constraint
candidates

6 reports the speedups computed by the original runtime in
Column 3 divided by the new runtime in Column 5.

miter |k time | origin(s) | new(s) | mining | speedup
frames +new(s)
s298 |40 30.39 0.12 |9.25 3.29
s349 |40 21.88 0.2 6.39 342
s713 |30 346.48 |[56.78 [100.55 |[3.45
s832 |30 2028.65 [0.72 | 6.41 316.48
s1196 |30 96.19 55.78 |79.98 |1.20
s1488 |30 754.03 |5.68 [21.70 [34.75
s4863 |15 7725.44 (435 [236.02 |32.73
s15850 | 15 64860 [227.63|1593.46 [40.71
$35932 | 10 51744.3 | 173.78 | 1397.12 | 37.04
s38584 | 10 50464.3 [19.50 |1221.10|41.33

Table 3. Runtime for BSEC problems

Our experimental results show different speedups on
benchmark circuits with an average as 40X. Significant
improvement can be observed on the big circuits while minor
improvement can be observed on the small circuits.

1

515850
— — 535932
- - - 538584

0.8

06

0.4

|

\
i
1
A

Normalized time (s)

0.2

0 Lo

O \@u \(ﬁe \‘Sn \@e \@% (,SPQ(,?/& 'L“QQ fﬁe «&&5@%
of constraints

Figure 8. SAT solving time with different # of constraints

We further investigate the relations between the number
of constraints and runtime for SAT solving on three big
ISCAS 89 circuits. Figure 8 shows the result where Y-axis
represents the rurntime for new SAT solving normalized
to the original runtime used by SAT solving without any
constraint. Obviously, 35932 and s38584 converge fast and
only require 500 constraints while s15850 may require 1900
constraints to converge. However, since not each constraint
has same contribution to SAT solving, the efficiency of
solving BSEC may depend on the quality of constraints,

not the number of constraints. Therefore, how to select
enough good constraints to fast converge SAT solving is
worth investigation and can be a topic for future research.

5. conclusions

The general problem of checking functional equivalence
for two sequential circuit is still far from being solved. In
this paper, we proposed a method which integrates data
mining, simulation and structural analysis techniques to ex-
tract unreachable cross-timeframe state-pairs as constraints
to facilitate SAT solving for bounded sequential equivalence
checking (BSEC) problems. Experimental results shows
that the 3-stage filtering can derive the set of unreachable
cross-timeframe state-pairs efficiently. SAT solving with the
extracted constraints can speed up 3X to 300X on most
ISCAS 89 circuits. Future works include the quality analysis
of the extracted constraints and a better strategy to exploit
constraints efficiently.

References

[1] M.H. Moskewicz, C. E. Madigan, Y. Zhao, L. Zhang and S.
Malik, "ZChaff: Engineering an Efficient SAT Solver,” in Proc.
Design Automation Conf. (DAC), pp. 530-535, 2001.

[2] N. Een and N. Sorensson, ”’An Extensible SAT-Solver,” Theory

and Applications of Satisfiability Testing, pp. 502-518, 2003.

[3] F Lu, L. C. Wang and K. T. Cheng, A Circuit SAT Solver with

Signal Correlation Guided Learning.” in Proc. Conf. Design,

Automation and Test in Europe (DATE), pp. 892-897, 2003.

[4] H. Ichihara and K. Kinoshita, ”On Acceleration of Logic

Circuit Optimization using Implication Relations” in Proc.

Asian Test Symp. (ATS), pp.222-227, 1997.

[5]1 W. Kunz, D. Stoffel and P.R. Pradhan, "Logic Optimization

and Equivalence Checking by Implication Analysis”, in IEEE

Trans. CAD (TCAD), vol. 15, No. 5, pp. 266-281, 1993.

[6] M.H. Schulz, E. Trischler and T.M. Sarfret, "SOCRATES: A

Highly Efficient Automatic Test Pattern Generation System,” in

IEEE Trans. CAD (TCAD), vol. 7, No. 1, pp. 126-137, 1988.

[7]1 W. Kunz and P.R. Pradhan, ”Accelerated Dynamic Learning for

Test Pattern Generation in Combinational Circuits,” in IEEE

Trans. CAD (TCAD), vol. 12, No. 5, pp. 684-694, 1993.

[8] S. Safarpour, G. Fey, A. Veneris, and R. Drechsler, ”Utilizing

Don’t Care States in SAT-based Bounded Sequential Prob-

lems,” in Proc. VLSI Great Lakes Symposium, pp. 264-269,

2005.

[9] W. Wu and M. S. Hsiao. "Mining Global Constraints for Im-

proving Bounded Sequential Equivalence Checking,” in Proc.

Design Automation Conf. (DAC), pp. 743-748, 2006

[10] A. Mishchenko and R. K. Brayton, "SAT-Based Complete
Don’t-Care Computation for Network Optimization,” in Proc.
Conf. Design, Automation and Test in Europe (DATE), pp.
412-417, 2005.

38

[11] M. L. Case, V. N. Kravets, A. Mishchenko and R. K. Brayton,
“"Merging Nodes Under Sequential Observability,” in Proc.
Design Automation Cconf. (DAC), pp. 540-545, 2008.

[12] W. Wu and M. S. Hsiao. "Mining Global Constraints with
Domain Knowledge for Improving Bounded Sequential Equi-
valence Checking,” in IEEE Trans. CAD (TCAD), vol. 27,
No.1, pp. 197-201, Jan. 2006

[13] O. Guzey, L. C. Wang and J. Bhadra, “Enhancing signal
controllability in functional test-benches through automatic
constraint extraction,” in Proc. Int’l Test Conf. (ITC), pp. 1-10,
Oct, 2007

[14] H. P. Wen, L. C. Wang and J. Bhadra, ”An Incremental
Learning Framework for Estimating Signal Controllability in
Unit-Level Verification,” in Proc. Int’l Conf. Computer Aided
Design (ICCAD), pp. 250-257, 2007.

[15] R. Agrawal, T. Imielinski and Swami AN, "Mining Associa-
tion Rules between Sets of Items in Large Databases,” In Proc.
of the ACM SIGMOD Int. Conf. on Management of data, Jun.
1993.

