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Abstract

Ž .In integrated circuit IC fabrication, a wafer’s defects tend to cluster. As the wafer size increases, the clustering
Ž .phenomenon of the defects becomes increasingly apparent. When the conventional control chart c chart is used, the

clustered defects frequently cause many false alarms. In this study, we propose a neural network-based procedure for the
process monitoring of clustered defects in IC fabrication. The proposed procedure can reduce the phenomenon of the false
alarms caused by the clustered defects. A case study is also presented to show the effectiveness of the proposed procedure.
q 1997 Elsevier Science B.V.
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1. Introduction

Ž .An integrated circuit IC design, even when er-
ror-free, is subject to defects during manufacturing
and could ultimately produce a faulty chip. Global
defects damaging a large portion of the wafer are
frequently caused by mishandling and can be easily
detected. However, small defects such as minute
spots of extra material or missing material are often
difficult to detect. This paper examines small defects
having dimensions comparable to the size of transis-
tors. An increasing defect number implies a decreas-
ing IC yield. Therefore, the defect number must be
decreased to ensure that the more complex IC is still
functioning. Consequently, defect counts should be
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carefully monitored during the IC fabrication pro-
cess.

To monitor the defect of IC products, most manu-
facturers use control charts for their process control.

Ž .Control charts c charts are simple graphs based on
basic statistical theories to distinguish variations in a
process due to common causes with variations due to
special causes. During IC fabrication, the c chart for
the number of defects per sample is used to monitor
the manufacturing process. The c chart is con-
structed under the assumption that the number of
defects in a sample follows the Poisson distribution.

Ž .The Poisson assumption implies that i occurrence
of a defect in any location is independent of the

Ž .occurrence of defects in other locations and ii for
all locations in the sample, the likelihood of a defect

w xoccurring is the same 1 . If the Poisson assumption
holds, defects are uniformly scattered over a sample.

w xStapper 2 reported that a wafer’s defects tend to
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cluster. This clustering phenomena becomes more
evident as the wafer size increases. Consequently, a
defect in any location is no longer independent of
defects in other locations, i.e., the Poisson assump-
tion may be violated. Therefore, applying the Pois-
son-based c chart may be inappropriate when defects

w xtend to cluster. Albin and Friedman 1 indicated that
the c chart frequently produces a false alarm. That
is, sample measurements falling out of the upper
control limit appear to be a process out-of-control;
however, the process is actually in control and the IC
product’s yield still attains its normal value. Albin

w xand Friedman 1,3 recommended the use of the
Neyman type-A distribution for defect data. The
control limits derived from the Neyman type-A dis-
tribution are wider than the control limits calculated
with the Poisson distribution. Consequently, apply-
ing the Neyman-based c chart may reduce the false
alarms for a process that yields clustered defects.
However, the Neyman-based c chart cannot detect
the variation of the clustered defects within a wafer.
Furthermore, despite the increasing size of wafers
used today, the Neyman type-A model can only be
applied to small wafers, thereby limiting the use of
the c chart.

Defect clustering frequently causes a yield predic-
tion problem. When clustering occurs, defects are no
longer uniformly scattered over a wafer. Under this
circumstance, a large number of defects may not
necessarily lower the product’s yield and the conven-
tional c chart for monitoring defects may produce
too many false alarms. This paper presents a novel
approach to enhance the analysis of defect data.
Neural networks can be used to group observations
into clusters at a high computational rate. This capa-
bility enables their applications in manufacturing.
Although many efficient statistical clustering algo-
rithms are available, applying neural networks to
clustering problems has recently attracted much at-

w xtention 4 . Neural networks pose advantages over
classical statistical techniques since the former uti-
lize the parallel architecture of a neural network. In
this study, we propose a neural network-based proce-
dure to monitor the process of clustered defects in IC
fabrication. The proposed procedure can reduce the
phenomenon of the false alarms caused by the clus-
tered defects. A case study shows the proposed
procedure’s effectiveness.

2. Background information

2.1. Construction of the c chart

The conventional c chart is constructed on the
basis of the assumption that the number of defects in
a sample follows the Poisson distribution. The Pois-
son distribution is defined as follows:

eyll x

P Xsx s xs0, 1, 2, . . . 1Ž . Ž .
x!

where X represents the number of defects in a
sample and l represents the mean number of defects
per sample. Notably, the mean and variance of the
Poisson distribution are the same value. Given l, the
three sigma limits for the c chart can be constructed
by

'UCLslq3 l
, 2Ž .'LCLsly3 l

where UCL is the upper control limit and LCL is the
lower control limit. These control limits are for a c
chart such that the probability of a sample point is
outside the limits when the process that is in-control
is equal to 0.0027. Restated, an incorrect out-of-con-

Ž .trol signal or false alarm is generated in only 27
out of 10,000 points.

2.2. Neyman-based control chart

When the clustering phenomenon exists, the as-
sumption for Poisson-based c chart is not satisfied.
The consequence of incorrectly using a c chart leads
to a situation in which several out-of-control sample

w xpoints would appear. Albin and Friedman 1 listed
two possible causes for those out-of-control points:
Ž . Ž .i the process is indeed out of control or ii the
control limits are incorrectly calculated because they
are based on a Poisson assumption. Restated, the
process yields clustered defects. In their study, they
also proposed a procedure to distinguish the two
types of causes. Their procedure entailed removing
the outliers from the defective data and then testing
the hypothesis that the remaining data follow the
Poisson distribution. If the data follow the Poisson
distribution, the Poisson-based c chart is used. Oth-
erwise, a c chart based on the Neyman-type A
distribution is used.
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The Neyman distribution is a member of the
family of compound Poisson distributions. The un-
derlying assumptions for Neyman-type A distribu-

Ž .tion are: i the number of defect clusters is Poisson-
Ž .distributed with a mean l, and ii the number of

defects within each cluster is Poisson-distributed with
a mean f. Let X be the number of defects in a
sample. The Neyman distribution for X is expressed
as:

yl j yjf ke l e jf
P Xsk s P ks1, 2, . . .Ž . Ý

j! k!js1

3Ž .
The parameters l and f can be estimated from a set
of independent and identically Neyman-distributed
data, x , . . . , x , as1 n

2 2X S yXŽ .
ˆ ˆls and fs , 4Ž .

2 XS yX
2where X and S are the sample mean and sample

variance, respectively. With the estimated parameters
of l and f, the control limits for a c chart on the
Neyman distribution can be computed by selecting
UCL and LCL to satisfy
UCL LCLa a

P Xsk s1y and P Xsk s ,Ž . Ž .Ý Ý
2 2ks0 ks0

5Ž .
Ž . Ž .where P Xsk is given in Eq. 3 and a is the

significance level.
For the Neyman distribution, the mean of defects

Ž .is lf and the variance of defects is lf 1qf . The
variance-to-mean ratio in the Neyman distribution is
1qf, in contrast to that in the Poisson distribution,
which is 1. Therefore, the control limits from the
Neyman distribution are 1qf times as wide as the
Poisson-based control limits. Therefore, a Neyman-
based c chart can reduce some of the false alarms.

However, the Neyman-based c chart has the fol-
lowing limitations.

Ž .i Neyman-based c chart can only monitor the
variation of defects between wafers. It cannot detect
the variation of defects within a wafer. For instance,
two wafers have the same number of defects but
different defect distributions; one is random and the
other is clustered. The yield of the clustered defect
wafers might be higher than that of the other wafers.

Ž . w xii Stapper 2 reported that the Neyman model
has a lower limit, eyl, thereby limiting its use only
to small wafers.

Increasing the wafer’s size and complexity cause
the number of defects to increase and the defect
clustering phenomena to become more pronounced.
Therefore, a Neyman-based model may be inappro-
priate in some cases.

2.3. Test for randomness

Two methods are commonly used to analyze the
distribution of sample points on a surface: quadrat

w xmethod and distance method 5 . The quadrat method
divides the surface area into random or contiguous
quadrats of the same size. Since selecting random
quadrats affects the judgment of the distribution of
points on a surface, contiguous quadrats are used
herein for analyzing the samples. By using the points
in a quadrat as samples, the mean and variance can
be calculated for all the samples. Consequently, a

w xt-test statistic 6 developed by Greig-Smith can be
obtained as follows:

VrMy1
ts , 6Ž .(2r ny1Ž .

where M and V are the mean and variance for n
selected samples, respectively. The t-test statistic
follows a t-distribution with ny1 degrees of free-
dom. If a t value is greater than the right-side
critical value, t , then the distribution of pointsa ,ny1

on surface is not random, i.e., the points tend to
cluster.

3. Neural networks

Neural networks are composed of processing ele-
ments and connections. Each processing element
Ž .node has an output signal that fans out along
connections to each of the other processing elements.
The connections are characterized by their weights.
A node’s output depends on the threshold specified
and the transfer function. Common configurations of
neural networks are fully interconnected. The two
types of learning are supervised and unsupervised
learning. For supervised learning, a set of training
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input vectors with a corresponding set of target
vectors is trained to adjust the weights in a neural
net. For unsupervised learning, a set of input vectors
is proposed; however, no target vectors are specified.

Our approach towards the clustering problem is
based on unsupervised neural networks. Several
well-known unsupervised learning neural network
models are competitive learning, self-organizing

Ž .maps and adaptive resonance theory ART . Those
models are applied primarily in the area where pat-
terns are grouped into clusters. The major difference
between ART and other unsupervised neural net-
works is the former’s so-called vigilance parameter
Ž .r . In an ART, a degree of similarity between a
new pattern and the stored pattern is defined. This
similarity, which is compared to r, is a measure to
ensure whether the new pattern is properly classified
or not. The other unsupervised learning neural net-
works, which do not implement vigilance, may cause
a significantly different input pattern to be forced
into an inappropriate cluster. Accordingly, ART is
used in this study for the clustering problem.

ART has several variations. The fuzzy ART,
which incorporates fuzzy computations into the
ART-based neural network, is proposed in this work
for the clustering problem. Fuzzy ART can be used
for both binary and continuous valued input patterns,
and has a relative simpler architecture than other
variations of ART. Fig. 1 shows a simple representa-

w xtion of the structure for fuzzy ART 7 . The outline
w xof the fuzzy ART is briefly described as follows 8 .
Ž .Fuzzy ART consists of two layers: the input F1

Ž .and the output F2 layers. Each input I is presented
Ž .by an M-dimensional vector Is I , I , . . . , I ,1 2 M

w xwhere each component I is in the interval 0,1 .i
Ž .Each output category output node j is represented

w xFig. 1. A simple representation of fuzzy ART 7 .

Žby one set of weight vectors W s w , w , . . . ,j j1 j2
.w . Initially, w sw s PPP w s1, for all j.jM j1 j2 jM

To categorize input patterns, the output nodes
receive net input in the form of the following choice
function:

< <InWj
T s , 7Ž .j < <a q W0 j

where n is the fuzzy MIN operator defined as:

XnY 'min x , y , 8Ž . Ž . Ž .i i i

< <and the norm Ø is defined by
M

< < < <X ' x . 9Ž .Ý i
is1

The output node, u , with the highest value of T isj

selected to claim the current input pattern. That is,

T smax T 10� 4 Ž .u j

For node u to cluster the pattern, the match function
should exceed the vigilance parameter, i.e.,

< <InWu
Gr 11Ž .

< <I

If node u does not pass the similarity test, T is setu

to y1 to prevent the system from choosing the same
category again. The weight vector of the winning
node is updated as follows:

W new sb InW old q 1yb W old 12Ž . Ž .Ž .u u u

Ž .Fuzzy ART has three parameters: i the choice
Ž . w xparameter a )0, ii the learning rate bg 0,1 ,0

Ž . w xand iii the vigilance parameter rg 0,1 . Depend-
ing on the characteristic of the problem to be catego-
rized, these parameters are specified by the users.

4. Proposed procedure

Defect clustering invalidates the assumptions of
the Poisson-based c chart. Therefore, defect cluster-
ing must be analyzed when the c chart is con-
structed. In this study, we use fuzzy ART to find the
number of defect clusterings. Next, the location of
the defect clustering’s center is determined. Accord-
ingly, the total number of defects on a wafer is
adjusted. If the adjusted data adhere to the assump-
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tion of the Poisson distribution, the c chart is con-
Ž .structed by using the adjusted data for process

control. The neural network-based procedure for pro-
cess monitoring of clustered defects in IC fabrication
is described in the following.

Step 1: Obtain the wafer map by using the wafer
Ž .inspection system such as KLA 2110 .

Step 2: Identify the possible outliers and find the
causes of these possible outliers. Discard the outliers.

Step 3: Use the Greig-Smith’s t-statistic to test
whether wafer’s defect clustering exists. If a signifi-
cant clustering situation arises, go to Step 4; other-
wise, go to Step 7.

Step 4: Specify the vigilance parameter r and use
the fuzzy ART to find the number of clusters. Treat
all defects in a cluster as one defect and the location
of this defect as the location of the cluster’s center.

Step 5: Recalculate the number of defects on each
wafer. Repeat Step 3 to check whether the adjusted
Ž .reduced number of defects satisfies the assump-
tions for the Poisson distribution. If it does, go to
Step 6; otherwise, go to Step 4.

Ž .Step 6: Set lsmean of the adjusted reduced
number of defects in a wafer.

Fig. 2. Framework of the proposed procedure.

Step 7: Construct the c chart by using the follow-
ing limits:

'UCLslq3 l
13Ž .'LCLsly3 l

Because input attributes for fuzzy ART must lie
between 0 and 1, the normalization of input patterns

Ž .is necessary. Let x , y be the coordinates ofi i

defects in the wafer. In this study, x and y arei i

scaled between their minimum value and maximum
w xvalue as follows 7 :

x ymin xŽ .i
u si max x ymin xŽ . Ž .

14Ž .
y ymin yŽ .i

Õ si max y ymin yŽ . Ž .
Ž .where u , Õ are the scaled coordinates. Fig. 2i i

illustrates the proposed procedure’s framework.

5. Implementation

In this section, a case study is presented to
demonstrate the effectiveness of the proposed proce-
dure. The required data in this case study are ob-
tained from an IC manufacturing company in Tai-
wan. There are over 100 sequential process steps in
IC fabrication. When the wafer goes through the
process of ‘Metal 2 Etch,’ the coordinates of the
wafer’s defects are collected by using the KLA 2110
wafer inspection system. Once the wafer maps are
obtained, outliers should be evaluated. In this study,

w xwe use the F-spread method 9 to identify the
possible outliers. Let F and F be the first quartileL U

and the third quartile of the number of defects,
respectively. Any defect number greater than Ds

Ž . Ž .F q 1.5 F y F s 93 q 1.5 93 y 21 s 201 canU U L

be treated as a possible outlier. After analyzing the
causes of the possible outliers, we decided to discard
them and 111 wafers are left for further analysis.

Greig-Smith’s t-statistic is used to test whether
the wafer’s defects are randomly distributed. To
reduce the probability of rejecting a wafer with
randomly distributed defects, the significance level is
set at 0.01. Since 396 dies are contained on each
wafer, we have ny1s395. The critical value of t
is t s2.337. If the t value is )2.337, the0.01,395
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Table 1
The original and reduced number of defects and their corresponding t values for the 111 wafers

No. Number of defects t value Number of defects t value No. Number of defects t value Number of defects t value
Ž . Ž . Ž . Ž .before clustering after clustering before clustering after clustering

1 17 4.4 15 y0.50 57 19 3.8 16 y0.53
2 23 16 13 y0.43 58 29 20 19 y0.64
3 7 3.8 6 y0.18 59 35 73 20 y0.68
4 34 20 21 0.63 60 197 910 23 1.7
5 7 y0.21 random 61 48 51 27 1.2
6 40 12 29 0.95 62 34 14 25 1.4
7 50 13 38 0.91 63 56 130 12 y0.39
8 22 6.9 18 0.96 64 39 94 14 1.6
9 27 26 13 1.7 65 27 30 19 2.3

10 9 y0.28 random 66 61 220 15 1.4
11 33 30 19 y0.64 67 15 22 8 y0.25
12 12 y0.39 wcrandom 68 15 13 10 y0.32
13 13 1.7 random 69 20 2.1 random
14 9 2.8 8 y0.25 70 19 8.3 17 1.1
15 32 5.9 29 0.95 71 48 39 25 1.4
16 35 0.4 random 72 16 4.7 14 1.6
17 48 220 17 y0.57 73 107 91 35 y0.4
18 6 4.5 5 y0.14 74 54 140 25 y0.85
19 23 45 13 y0.43 75 108 440 22 0.53
20 10 2.5 9 y0.28 76 9 2.8 8 y0.25
21 42 3.9 39 2.3 77 21 0.63 random
22 25 0.27 random 78 184 16 135 0.45
23 18 2.5 16 y0.53 79 30 2.7 27 y0.93
24 9 y0.28 random 80 31 8 25 y0.85
25 28 82 10 y0.32 81 59 4.6 49 y1.10
26 10 2.5 9 y0.28 82 21 4.7 18 y0.6
27 30 y1 random 83 79 50 50 1.1
28 135 26 81 1.7 84 73 1.3 random
29 85 150 44 1 85 50 5 42 y0.12
30 97 380 22 0.53 86 45 2.8 42 0.55
31 45 14 34 0.48 87 49 61 29 y0.025
32 68 340 23 0.44 88 79 220 22 0.53
33 8 3.3 7 y0.21 89 12 y0.39 random
34 78 98 27 0.12 90 68 150 29 0.95
35 36 76 14 1.6 91 24 12 16 1.2
36 66 20 43 y0.18 92 13 6.1 11 y0.36
37 103 130 58 y0.57 93 19 y0.64 random
38 124 430 52 0.35 94 19 2.3 random
39 50 13 40 y0.68 95 21 0.63 random
40 79 200 20 0.73 96 23 1.7 random
41 47 180 18 y0.6 97 31 83 17 y0.57
42 72 7.6 63 1.4 98 16 y0.53 random
43 169 58 101 y0.77 99 18 10 14 1.6
44 93 6.1 83 0.14 100 25 4.8 21 y0.71
45 46 14 37 0.24 101 30 4.6 27 1.2
46 30 1.8 random 102 41 58 21 y0.71
47 24 8.6 19 y0.64 103 26 11 21 y0.71
48 26 6.7 24 1.5 104 52 130 19 y0.64
49 105 66 34 2.1 105 19 6.8 16 1.2
50 40 140 9 y0.28 106 44 55 25 0.27
51 24 18 18 y0.6 107 37 79 23 0.44
52 120 150 39 2.3 108 18 0.96 random
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Ž .Table 1 continued

No. Number of defects t value Number of defects t value No. Number of defects t value Number of defects t value
Ž . Ž . Ž .before clustering after clustering before clustering

53 29 8.7 22 0.53 109 16 1.2 random
54 108 370 26 1.3 110 20 6.4 16 y0.53
55 81 88 33 2.3 111 33 29 20 y0.68
56 30 20 22 y0.75

defects tend to cluster. When a wafer exhibits a
significant clustering phenomenon, the clustering
analysis should be performed. For instance, wafer

Ž .a32 has 68 defects and its t value is 340 )2.337 .
Fig. 3 displays the results of applying the fuzzy ART
for wafer a32 to form the clusters. According to this
figure, four new clusters are formed. The first cluster

Fig. 3. Clustering result for wafer a32.

contains 41 defects, the second cluster contains four
defects, and the third and fourth clusters have two
defects. Each of the four clusters is treated as one
defect, thereby reducing the number of defects from
68 to 24. The t value for the reduced defects is 0.44
Ž .-2.337 , indicating that they are randomly dis-
tributed. Table 1 lists the original and reduced num-
ber of defects and their corresponding t values for
the 111 wafers. Twenty wafers have randomly dis-
tributed defects.

When the phenomenon of the defect clustering is
removed, the average of the reduced number of
defects, 25.74, can be used to construct the c chart.

Ž .By using Eq. 13 , UCLs40.96. Fig. 4 plots the
adjusted data, i.e., the reduced number of defects, in
the c chart. Fourteen points above the UCL indicate
‘out-of-control’. To verify the effectiveness of the
proposed procedure, Fig. 4 also plots the estimated
yield for each wafer. The estimated yield is defined
by the percentage of the chip without defects in a

Fig. 4. Control chart for the proposed procedure.
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Ž .wafer. This figure reveals that the smaller larger
Ž .the reduced number of defects, the larger smaller

the estimated yield of a wafer. No false alarms occur
in Fig. 4.

6. Analysis and comparison

6.1. Analysis

Fuzzy ART is a network attempting to group
patterns into the proper number of clusters. In fuzzy
ART, all the parameters a , b and r may affect the0

number of clusters formed. The relationship between
the reduced number of defects and the estimated
yield of a wafer can be used to recognize the perfor-
mance of the clustering result. The stronger the
‘negative correlation’ between the reduced number
of defects and the estimated yield, the better the
performance of the clustering result. Through several
pilot runs, the values of a and b seem to have only0

a slight effect for the clustering result; therefore, they
are set at 0.01 and 0.5, respectively. To study the
vigilance parameter’s behavior on the performance
of the clustering result, we vary r from 0.7 to 1.0
and apply the fuzzy ART for 111 wafers to form the
clusters. Table 2 computes and lists the simple corre-
lation coefficients for the number of clusters and the
estimated yield. According to this table, reducing the
vigilance parameter influences the clustering result.
When r ranges between 0.95 and 0.99, a good
clustering performance can be obtained. In this study,

Table 2
Sensitivity analysis of the vigilance parameter

r Correlation coefficient

1.00 y0.751
0.99 y0.992
0.98 y0.994
0.97 y0.977
0.96 0.971
0.95 y0.947
0.90 y0.780
0.85 y0.613
0.80 y0.466
0.75 y0.353

00.70 y0.305

we recommend initially setting rs0.99. If the
wafer’s defects are not randomly distributed, we
progressively subtract the vigilance parameter 0.01
and repeat the clustering analysis by fuzzy ART until
the desired situation is reached. In this study, the 111
wafers all pass the randomness test at rG0.95.

6.2. Comparison

When the conventional c chart is used, the mean
of the number of defects for the 111 wafers is 44.50
and UCLs64.51. Fig. 5 plots the defect data in the
conventional c chart, showing that 24 points exceed
the Poisson UCL. As indicated in Fig. 5, 10 false
alarms occur: wafers a30, a32, a34, a40, a54,

Fig. 5. Control chart for defect data with Poisson and Neyman upper control limits.
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a55, a60, a75, a88 and a90. When the Neyman-
w xbased c chart suggested by Albin and Friedman 1,3

is constructed, the mean and the variance for the
number of defects for the 111 wafers are 44.496 and
1391.107, respectively, and the estimated parameters

ˆfor Neyman’s type-A distribution are ls1.470 and
f̂s30.264. By using as0.27%, UCLs194. Fig.
5 shows that one point exceed the Neyman UCL.
The Neyman-based control limits are wider than the
Poisson-based control limits and, therefore, can re-
duce some false alarms caused by the defect cluster-
ing. However, the Neyman-based c chart still cannot
avoid the contradiction with the yield. For instance,
the yields for wafers a28, a37, a42, a78 and a84
are extremely low; however, they are within the
control limits. Furthermore, the simple correlation
coefficients for the number of defects and the esti-

Žmated yield by using the two existing approaches
.and the proposed procedure are y0.75 and y0.99,

respectively, showing that the proposed procedure
has the larger negative correlation coefficient. Above
illustrations reveal that the proposed procedure yields
a better result than those of the other two ap-
proaches.

7. Conclusion

Ž .IC products have changed from large scale LSI
Ž .to very large scale VLSI since the mid-1970s. As

the wafer size increases, a wafer’s defects are no
longer randomly distributed; instead, they tend to
cluster. In this study, we propose a neural network-
based procedure for process monitoring of clustered
defects in IC fabrication. The fuzzy ART network
for the clustering analysis is used to adjust the
number of wafer defects, thereby allowing, not only
the adjusted number of defects to satisfy the assump-
tion of Poisson distribution, but also the conventional
c chart to be used also. The proposed procedure can
reduce the phenomenon of the false alarm caused by
the clustered defects. The effectiveness of the pro-
posed procedure is shown by using a case study.
Owing to the fuzzy ART’s high computational rate,

Žthe average execution time for each wafer from Step
.3 to Step 5 in the proposed procedure is less than 2

s on a 486 PC. With these advantages, the proposed
procedure can be written as a computer software that

can be used for the online process control in IC
fabrication.

Defects on nonpatterned wafers are frequently
monitored to assess equipment performance. On the
other hand, patterned wafer defects are monitored for
online control of the manufacturing process. Moni-
toring defects on a patterned wafer may, in the
future, become more important and advanced than
monitoring defects on a nonpatterned wafer. Never-
theless, the proposed procedure can be applied to
either patterned or nonpatterned wafers without any
modifications. In addition, the proposed procedure

Ž .can be applied to liquid crystal display LCD or
Ž .printed circuit board PCB production.
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