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Abstract. The theoretical expressions of two-frequency coherence of the MST radar 
returns from an atmospheric thin layer with sharp boundaries, which embeds within the 
radar volume and cannot be resolved by conventional radar techniques, are derived in 
this article. It shows that the derived frequency domain interferometry (FDI) coherence 
is not only the function of layer thickness and the components of radar wave vector, 
but also related to the wavenumber power spectrum of refractivity irregularities. A 
quantitative examination of the derived FDI coherence indicates that the effect of the 
irregularity power spectrum on FDI coherence is negligible for power law spectral 
model, while it cannot be ignored for other spectral forms, for example, a Gaussian 
model. The zenith angle dependence of FDI coherence is also investigated in this 
article. According to the observations made with Chung-Li VHF radar, it shows that 
the ratio of the observed FDI coherence at the vertical to that at 17 ø off-zenith angle is 
between 1.3 and 2.4. This feature can be illustrated satisfactorily by using the theory 
developed in this article. The effect of echoing mechanism on FDI coherence is also 
studied, showing that the expression of FDI coherence derived from the turbulent 
scattering theory can be treated to be identical to tfiat from the Fresnel reflection 
theory as long as the condition A k/k << 1 is met. This result implies that it seems to be 
impossible to identify the echoing mechanism of MST radar by using FDI technique. 
The problem of estimating the thickness of a thin layer having sharp boundaries by 

ß 2 2 
using a Gaussian function with the expression of exp (-Ak •r; ) is also discussed. It 
suggests that the pertinent formula used for layer thickness estimate is L = 2.364•r r. A 
comparison of this work with other results is also made in the text. 

1. Introduction 

It is well known that operating at one carrier 
frequency with a monostatic pulse radar makes it 
impossible to resolve an isolated, thin atmospheric 
turbulent layer which embeds within the scattering 
volume defined by the pulse length. However, the 
advent of the frequency domain interferometry 
(FDI) technique, first developed by Kudeki and 
Stitt [1987], provides us with the ability to detect 
such a thin layer by sending two closely spaced 
frequencies. With this technique, the thickness and 
the position of the thin layer can be estimated, 
respectively, from the magnitude (i.e., coherence) 
and phase of the normalized complex cross-corre- 
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lation function calculated from the two radar re- 

turns with slightly different operating frequencies. 
In view of its high potential in the observation of the 
atmospheric thin layer, the FDI technique has been 
employed successfully by many investigators on 
various MST radar to study the mesospheric, 
stratospheric, and tropospheric turbulent layer 
[Kudeki and $titt, 1987, 1990; Franke, 1990; Franke 
et al., 1992; Palmer et al., 1990; Chu and Franke, 
1991]. 

In deriving FDI equations for the estimate of the 
thickness and position of an atmospheric thin layer, 
the proper assumptions have to be made to obtain 
the analytical expression. Obviously, the assump- 
tion changes will result in different expressions of 
the FDI equation, implying that the suitability of a 
theoretical FDI equation is restricted by the condi- 
tions imposed in the derivation of theoretical equa- 
tion. An examination of the existing FDI theories 
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[Franke, 1990; Kudeki and Stitt, 1987, 1990] shows 
that a modeled turbulent layer weighted by a Gaus- 
sian function of the form exp [-(r - ro)2/2•r2], 
where ro is the height to the center of scattering 
layer and 2o-is defined as the layer thickness, is 
employed in deriving the normalized two-frequency 
cross-correlation function of the radar scattering 
fields. Strictly speaking, the FDI formula derived 
on the basis of the assumption of Gaussian model 
layer can be only used to estimate the thickness and 
position of a Gaussian layer. The error will be 
induced as such FDI formula is used to estimate a 

non-Gaussian turbulent layer, for example, uniform 
turbulent layer with sharp boundaries. In fact, 
abundant evidences of a turbulent layer with sharp 
boundaries existing both in atmosphere and in deep 
ocean have already been shown by many investiga- 
tors [Crain, 1955; Ottersten, 1969; Stewart, 1969; 
Barat, 1982; Gossard and Strauch, 1983; Gossard, 
1990]. If the estimation error is significantly large, 
the development of a more proper FDI equation for 
a sharp-edged layer is necessary. Furthermore, in 
developing the existing FDI theory, the contribu- 
tion due to the wavenumber power spectrum of the 
refractive index inhomogeneities to the normalized 
two-frequency cross-correlation function with 
closed frequency spacing is thought to be negligible, 
without providing any quantitative evidence. Al- 
though this speculation may be true for some forms 
of irregularity power spectrum, it may be incorrect 
for other specific spectral model. In order to access 
the role of irregularity power spectrum in the two- 
frequency coherence, the quantitative examination 
for the cases of various irregularity wavenumber 
power spectrum models is needed. Recently, the 
result of an oblique FDI experiment conducted by 
Palmer et al. [1992] provides an observational evi- 
dence showing a close connection between coher- 
ence and aspect sensitivity due to the anisotropy of 
refractivity irregularities. This feature can not be 
explained satisfactorily by using current FDI the- 
ory. In addition, in view of the fact that the echoing 
mechanisms involved in the MST radar returns are 

basically turbulent scattering and Fresnel reflec- 
tion, the question arises as to whether the existing 
FDI formula based on the turbulent scattering the- 
ory is valid in the estimate of the thickness and 
position of a partially reflecting layer with trans- 
verse coherent structure characterized by a sharp 
vertical refractive index gradient. Because the gov- 

erning equations are different, it seems intuitively 
that the FDI formula suitable for turbulent layer will 
be different from that for the partially reflecting 
layer. To clarify this question, a more extensive 
investigation on the theoretical FDI analysis is 
necessary. 

This paper is an attempt to answer the questions 
addressed above from observational and theoretical 

points of view. Because the absolute position of the 
atmospheric layer can not be determined by using 
the observed phase difference of two operating 
frequencies unless the radar phase has been cali- 
brated precisely, only the magnitude of normalized 
two-frequency cross-correlation function (i.e., FDI 
coherence) will be emphasized in this article. In 
section 2, by including the effect of irregularity 
power spectrum, an analytical expression for the 
normalized two-frequency cross-correlation func- 
tion between radar returns generated from a turbu- 
lent layer having sharp boundaries is derived. Ad- 
ditionally, on the basis of theoretical expression of 
the Fresnel reflection coefficient, the FDI coher- 
ence for a partially reflecting layer is also evaluated 
in this section. The contribution of the irregularity 
power spectrum to FDI coherence is examined in 
section 3 by substituting various forms of irregular- 
ity power spectrum into the derived FDI equations. 
It shows that for the power law spectral model the 
effect of irregularity power spectrum can be ig- 
nored, while for other spectral forms, for example, 
the Gaussian spectral model, it can not be ne- 
glected. The discussions on the zenith angle depen- 
dence of FDI coherence is made in section 4. It 

shows that the observed vertical FDI coherence is 

systematically larger than the oblique one, and this 
feature can be accounted for by using the theory 
developed in this article. In section 5, the effect of 
echoing mechanism on FDI coherence is investi- 
gated. Comparing the analytical expression of the 
FDI coherence for a turbulent layer with that for 
a spectral layer shows that the difference between 
these two FDI coherences is negligibly small, 
implying that it seems to be unlikely to discrimi- 
nate the echoing mechanism from FDI experi- 
ment. In section 6, the estimation of thickness of 
a thin layer with sharp edges is studied. Finally, 
the comparison of this work with other results is 
made in section 7. The conclusion is given in 
section 8. 
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2. Normalized Two-Frequency Cross- 
Correlation Function 

In this section, the analytical expressions of the 
normalized two-frequency cross-correlation func- 
tion of the MST radar returns from a thin atmo- 

spheric turbulent layer and a partially reflecting 
layer are derived. For mathematical simplicity, the 
following assumptions are made in the mathemati- 
cal manipulation: (1) the range weighting function is 
taken to be rectangular, (2) a narrow antenna beam 
with uniform distribution is considered, (3) the 
refractivity irregularities responsible for the radar 
returns are distributed uniformly in the illuminating 
volume, and (4) the center of the layer, if it exists in 
the radar volume, is located at the center of the 
radar volume at where the origin point is set. The 
mathematical derivations of the cross-correlation 

function are given as below. 

Case for Turbulent Scattering 

It is well known that if a pencillike radar beam 
operating at frequency f is used such that the 
horizontal dimension of the radar volume is smaller 

than the first Fresnel radius, the strength of the 
radar echo backscattering from the atmospheric 
refractive index random fluctuations, An, can be 
expressed as [Tatarskil, 1971; Doviak and Zrnic, 
1984] 

Gk2Ao exp (-i2kR) 
E(k, r)= 

2,rR 2 

'•v An(r) exp (-i2kas ' r) dv (1) 

where G is the antenna gain, k is the wavenumber 
(=2rrf/c), Ao is the amplitude of incident wave, as is 
the unit vector in the direction of radar beam, R is 
the range, and V is the scattering volume dependent 
on the layer thickness and radar beam width. Be- 
cause a sharp-edged layer with a thickness smaller 
than the vertical extent of radar volume is consid- 

ered and the effect of irregularity power spectrum is 
also taken into account in deriving FDI coherence, 
the integration limits of (1) should be finite, instead 
of infinite, as was taken by the earlier investigators. 
If the origin point is set at the center of scattering 
volume V, the upper and lower limits of the volume 
integration for (1) will be -Lx/2 and Lx/2, -Ly/2 
and Ly/2, and -Lz/2 and Lz/2, where L x, Ly, and L z 
are the dimensions of the scattering volume in the x, 

y, and z directions, respectively. We note that in 
carrying out the FDI experiment, a radar pulse with 
frequency f2 is usually transmitted a short time after 
a previous pulse with a slightly different carrier 
frequency fl. If the time interval between these two 
successive radar pulses is much shorter than the 
correlation time of refractivity fluctuations An, it is 
reasonable to assume that the refractivity irregular- 
ities responsible for the radar returns of these two 
transmitted pulses are identical. Accordingly, the 
cross-correlation function of the radar returns for 

these two pulses can then be expressed as follows: 

G2b2b a 2 ,•1,•2•o exp (-i2AkR) 
4,r2R 4 

'fvfv (An(rl)An(r2))exp(-i2kas'U)dv•dv2 1 2 

(2) 

where ( ) means ensemble average, the asterisk 
represents the complex conjugate, A k = k 2 - k 1 , 
and U - klrl + k2r2. If the atmospheric refractivity 
fluctuations are assumed to be stationary and ho- 
mogeneous, the autocorrelation function of An in 
(2), namely, (An(rl)An(r2)), can be represented by 
Bn(r 1 - r2). To proceed, the appropriate coordinate 
transformations are introduced in (2) such that the 
analytical form of the integration can be obtained. 
For that purpose, let the new variables of integra- 
tion {r and • be related to the old ones r• and r 2 by 
the transformations rr = (r 1 + r2)/2 and • = r l - r2. 
Substituting these relationships into (2) and rear- 
ranging it, we have 

(E1E•) = 
2/.2 2 2 

G,•lk2Aoexp(-i2AkR) fvfv 4rr2R• Bn(•) 

ß exp [-i(2kl + Ak)as ß • + 2Akas ß {r] dva dv• (3) 

Note that the integration limits for the new vari- 
ables {r and • in (2) are significantly different from 
those for the old ones r 1 and r 2 in (1). For example, 
the upper and lower limits of the integration for the 
variable of integration rr x, which is the component 
of {r in the x direction, are Lx/2 - Ixl/2 and -Lx/2 
+ Ixl/2, respectively, while the upper and lower 
integration limits for variable of integration • in the 
x component are L x and -Lx, respectively. The 
integration limits for other components are similar 
to those for the x component, except that the 
subscripts of the corresponding variables are differ- 
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ent. After performing the mathematical manipula- 
tion, (3) reduces to 

(E•E•) = Q •v Bn(•)P exp [-i(k• + k•)as ' •] dv• 
where 

(4) 

p __ 
sin [Akx(Lx -ixl>] sin [Aky(Ly -Iyl)] 

sin [Akz(Lz -i•1)] 

Akz 

O • 

A 21.2-2.,i2&kR 
onlK2C 

4•r2R 4 

If we assume that the correlation length of Bn(•J) is 
fairly smaller than the dimension of the scattering 
volume, and if (I>(K) is the Fourier transform of 
Bn(S), then (4) becomes 

(EiE2 *) = QVs•((2k• + Ak)as) 

ß sinc (AkxLx) sinc (AkyLy) sinc (AkzL z) (5) 

where 4•[(2k• + Ak)as] is the average spatial power 
spectrum of refractive index irregularities over the 
scattering volume Vs(= LxLyLz), and Ak x, Aky, 
and A k z are the wavenumber differences projecting 
on the x, y, and z axes, respectively. Because the 
normalized cross-correlation function S•2 of the 
signals E• and E 2 is defined as 

$12 = 12)(Ig212) (6) 
from (4) and (5) we then have 

•[(k• + k2)a•] 

Sn- •(2k•a•)•(2k2a,) 
ß sinc (Ak•L•) sinc (AkyLy) sinc (Ak•L•)e •2• (7) 

Equation (7) shows that by considedng the finite 
integration in performing mathematical manipula- 
tion, the norm•ized two-frequency cross-co.ela- 
tion for the radar returns from a uniform turbulent 

layer with sha• edges is not only the function of the 
dimension of scattering volume defined by radar 
beam width and layer thickness but also related to 
the components of wavenumber spacing in accor- 

dance with the sinc function. These theoretical 

results predict that FDI coherence as a function of 
layer thickness will vary with the zenith angle of 
radar beam, and the phase of the normalized cross- 
correlation function is not affected by the form of 
the refractive index spectrum. In addition, from (7) 
it is also indicated that the magnitude of S12 is 
associated with a three-dimensional wavenumber 

power spectrum of the refractive index inhomoge- 
neities, contradicting the predictions achieved by 
earlier investigators [Kudeki and Stitt, 1987; 
Franke, 1990]. This result indicates that the effect of 
reftactivity irregularities plays a role on FDI coher- 
ence, implying that the layer thickness estimated by 
using existing FDI equations may be inaccurate. 
Detailed discussions on the characteristics of (7) 
will be made in section 3. 

Case for Fresnel Reflection 

It is obvious that an EM wave will be partially 
reflected if it is incident normally to an atmospheric 
stable layer with a substantial gradient of refractive 
index cross the layer. If this layer is horizontally 
stratified, it can be shown that the theoretical partial 
reflection coefficient p of a vertically incident EM 
wave can be formulated as follows: 

P -- • L/2 dz e-i2kz dz (8) 

where the origin point is set at the center of the 
layer, L is the thickness of the stable layer, 
k(= 2•r/A) is the wavenumber of the incident EM 
wave, and dn/dz is the gradient of refractive index 
of the layer. We note from (8) that the magnitude of 
the partial reflection coefficient as the function of 
the incident wave frequency is determined by the 
Fourier component of dn/dz at the spatial scale of 
A/2. Because the Fresnel reflection echo strength is 
proportional to p, it is apparent that the FDI coher- 
ence of the Fresnel reflection echoes will be pro- 
portional to that of reflection coefficient. Accord- 
ingly, for two EM waves with slightly different 
frequencies reflecting from a stable layer, the cross- 
correlation function of the reflection coefficient 

(PIP2*) can thus be calculated from (8) analytically. 
Assume that the variation of the refractive index is 

statistically random across the stable layer. Then 
from (8), (P•P2*) can be expressed as 
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l fœ/2 fœa {dn(zl)dn(z2) I 
ß exp [-i2kl(zl - z2) + i2Akz2] dzl dz2 (9) 

where p• and P2 represent the reflection coefficients 
of the EM waves with wavenumber k l and k•., 
respectively. If the variation of refractive index in 
the z direction is thought to be a stationary process 
and the new variables of integration tr and 8 are 
introduced in (9) in such a way that the old ones z l 
and z•. are superseded in accordance with the rules 
8 = z l - z•. and rr = (zl + z•.)/2, rearranging (9) 
reduces the equation to [Papoulis, 1965] 

ß exp {-i2kl 8 + i2Ak[tr - (/5/2)]} do' d8 (lO) 

Where R n(8 ) is the autocorrelation function of ran- 
dom process n(z). We further assume that the 
correlation length of R n(8) is considerably smaller 
than the vertical extent of the illuminating region (or 
layer thickness). By employing the differential the- 
orem of the Fourier transform, namely, 

f :oo d2Rn(8) -- k2•(k) = d8 2' • e -ik• d8 (11) 

where •(k) is the Fourier transform of Rn(t•), (10) 
thus becomes 

(PlP•) = L(kl + k2)24)(kl + k2) sinc (AkL) (12) 

Similarly, 4)(k 1 q- k2) represents the average wave- 
number power spectrum of the reftactivity irregu- 
larities in the height coverage of the stable layer L. 
Following the definition of coherence shown in (6), 
the coherence of Pl and P2 can be expressed as 

•)(k 1 q- k2) (kl q- k2) 2 

P12 = •/•(2kl)•(2k2) 4klk2 
sinc (AkL) (13) 

Equation (13) indicates that if the finite limits are 
taken into account in performing the mathematical 
integration, the derived two-frequency coherence 
of the partial reflection coefficient is not only the 
function of power spectrum of the refractive index 
but also the function of layer thickness following 
the Sinc function form, which is quite similar to the 
turbulent layer case. A detailed comparison of the 

derived FDI coherence for the turbulent layer with 
that for the specular layer will be made in section 4 
in order to examine the echoing mechanism effect 
on the FDI coherence to what extent. In the follow- 

ing section, the effect of refractivity inhomogene- 
ities on FDI coherence will be investigated quanti- 
tatively. 

3. Effect of Wavenumber Power 

Spectrum of Irregularities 
In the preceding section, by carrying out the finite 

integration, we have derived the analytical expres- 
sions of the FDI coherence for the radar returns 

from a turbulent layer and partially reflecting layer, 
showing a close connection between the FDI coher- 
ence and wavenumber power spectrum of refractive 
index fluctuations. In order to investigate the effect 
of refractivity irregularities on the FDI coherence, 
the relevant wavenumber power spectral model has 
to be given in (7). Assuming that the theoretical 
wavenumber power spectrum of anisotropic irregu- 
larities is followed, the power law form, that is, 

(I)(k) (1 + •x2kx 2 + •y2ky2 + 72k2•V (14) 
where 

kx = k sin (0) cos ((b) 

ky = k sin (0) sin (4') 

kz = k cos (0) 

and 0 and 4• are the zenith angle and azimuth angle 
of the radar beam, respectively; C is a constant 
independent of the wavenumber; and •x, •y, and •z 
are the correlation lengths in the x, y, and z direc- 
tions, respectively. For the special case in which 
•Z < •'y = •'x = •'t, (14) can be expressed as 

c 

(I)(k) (1 + ;t2kt 2 + /'2k2]P (15) 
where kt 2 = kx 2 + ky 2. Substituting (15)into (7), we 
have 

S12 = E sinc (AkxLx) sinc (AkyLy) sinc (AkzLz)e i2a• 

(16) 

where 
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2 2 2 2 , p/2 (U + kt2• + A kzl)(L + kt22 + A kz2 ) 

E = ktl + kt2, + A2 zl + kz2 
2 2 

and U = (1/2•' t) :, A is the anisotropy of irregulari- 
ties and is defined as the ratio of •'z to •'t, and the 
subscripts 1 and 2 correspond to the operational 
frequencies fl and f:, respectively. Note that the 
expression of E is determined by the given wave- 
number spectrum of irregularities. For other theo- 
retical wavenumber spectral forms, such as the 
Gaussian spectral model, that is, 

ß (k) Cexp[ 2 2 2 2 2 2 = -(•'xk; q- •'yky q- •'zkz )] (18) 

where C is a constant, E can be expressed as 

2 2 E = exp (•'t2Akt 2 + •'zAkz) (19) 

where the condition that •x = •'y = •t has been 
assumed. Calculations show that the magnitude of 
E for the power law spectral form is almost equal to 
1 and insensitive to the values of •t, •'z, 0, and 4• as 
long as A k/k << 1, while the magnitude of E for 
Gaussian spectral form increase exponentially with 
•t, •'z, and 0. Figure 1 shows the variations of 
magnitude of E for Gaussian and power law wave- 
number spectra with frequency spacing, where 
solid and dashed lines represent magnitude of E for 
Gaussian and power law spectral models, respec- 
tively, and the spectral index of 11/6, •t of 50 m, •z 
of 3 m, f• of 50 MHz, and 0 of 17 ø are given in the 
calculation of E. It is clear from Figure 1 that for the 
power law spectral form the effect of refractivity 
irregularities on the FDI coherence is negligible. 
However, the irregularity effect may not be ignored 
for other spectral models, for example, the Gaus- 
sian type. It is conclusive from these results that 
because the effect of refractivity irregularities on 
the magnitude of S •2 cannot be ignored for a certain 
spectral form, the interpretation of the observed 
FDI coherence must be treated with some caution. 

4. Zenith Angle Dependence of 
FDI Coherence 

It is obvious from (16) and (19) that the theoreti- 
cal FDI coherence is the function of the compo- 
nents of the EM wave vector and the anisotropy of 
irregularities, implying the possible dependence of 
FDI coherence on zenith angle. By including the 
contribution due to irregularity power spectrum, 
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Frequency Spacing (MHz) 
1.0 

Figure 1. The comparison of the magnitude of E for the 
Gaussian model (solid line) with that for power law model 
(dashed line) (for explanation of E, see text). The param- 
eters used in the calculation of E are given as the spectral 
index of 11/6, •'t of $0 m, •'z of 3 m, fl of $0 MHz, and 0 
of 17 ø . 

the variations of FDI coherence versus zenith angle 
are plotted in Figure 2, where solid and dashed lines 
are the same as in Figure 1. The values of parame- 
ters used in Figure 2 are given as follows' f• of 50 
MHz, f2 of 50.5 MHz, layer thickness of 100 m, 
radar beam width of 3 ø, altitude of 6 km, •'z of 40 m, 
and •t of 5 m. Figure 2 shows that the FDI coher- 
ence for the Gaussian spectral model is greater than 
that for the power law spectral form, owing to the 
contribution of refractivity irregularities. The larger 
the correlation length of the irregularities, the 
greater will be the difference. Generally speaking, it 
is believed that the anisotropy of the refractivity 
inhomogeneities will lead to the aspect sensitivity of 
MST radar echo power [Gage and Balsley, 1980; 
Doviak and Zrnic, 1984; Woodman and Chu, 1989]. 
Because FDI coherence is related to •t and •'z, a 
possible connection between FDI coherence and 
aspect sensitivity can be inferred. A FDI experi- 
ment was conducted by using Chung-Li VHF radar 
on June 3, 1990, to investigate the zenith angle 
dependence of FDI coherence. The key radar pa- 
rameters were as follows' peak transmitted power 
of 35 kW, radar pulse length of 4/as, and coherent 
integration time of 0.15 s. The radar beam was 
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Figure 2. The comparison of the FDI coherence for 
Gaussian spectral model (solid curve) with that for the 
power law spectral model (dashed curve). The parame- 
ters used for the calculation are given as follows: fi of 50 
MHz, f2 of 50.5 MHz, layer thickness of 100 m, radar 
beam width of 3 ø, altitude of 6 km, •z of 40 m, and •t of 5 m. 

steered first toward the zenith and then toward the 

east at 17 ø off-vertical angle with the duration of 20 
min each. Two operating frequencies, 52 and 52.35 
MHz (corresponding to frequency spacing of 0.35 
MHz), were employed in this FDI experiment. 
Figure 3 shows the profiles of the observed vertical 
(dotted line with asterisks) and 17 ø off-zenith (solid 
line with open circles) echo power at the opera- 
tional frequency of 52.3 MHz, while Figure 4 pre- 
sents the height variations of the vertical and ob- 
lique FDI coherence. Note that the absence of the 
oblique coherence above 12 km is due to the poor 
data quality. Each profile shown in Figures 3 and 4 
is a 20-min average. Figure 3 shows that significant 
aspect sensitivity is observed below 10 km, in 
which extremely high aspect sensitivity can be seen 
at heights of 4, 7, and 9 km. Note that the enhance- 
ment of vertical echo power at around 18 km is due 
to high atmospheric stability of tropopause. Exam- 
ining the height variations of FDI coherence shown 
in Figure 4 indicates that the vertical coherence is 
systematically greater than the oblique one through 
the entire height range. Corresponding to the en- 
hancement of echo power at the height of 
tropopause, a salient peak can also be seen in the 

vertical profile of the coherence. In addition, it is 
noteworthy from Figure 4 that the vertical FDI 
coherences at the heights of 7 and 9 km, where the 
distinct layers exist, are significantly larger than the 
oblique ones in the ratios of 2.4 and 2.1, respec- 
tively. In order to account for this feature, the 
theoretical variations of FDI coherence with zenith 

angle for the cases of five different layer thicknesses 
are plotted in Figure 5 in accordance with (16). As 
indicated, with increasing zenith angle of the radar 
beam, the FDI coherence as the function of layer 
thickness decreases rapidly. Inspecting the behav- 
ior of the FDI coherence varied with the zenith 

angle shows that for the case of the 120-m layer 
thickness, the theoretical ratio of the FDI coher- 
ence at the zenith to that at 17 ø off-vertical angle is 
about 1.6, in good agreement with the observations. 
This result seems to suggest that the layer thickness 
at the heights of 7 and 9 km are about 120 m. In an 
analogous way, the layer thickness at the height of 
10 km can be estimated to be about 260 m. From 

Figures 3 and 4, it is also demonstrated that vertical 
and oblique FDI coherence are both large at the 
place where aspect sensitivity is significant. Palmer 
et al. [1992] also provides a distinct observational 
evidence showing a close connection between FDI 
coherence and aspect sensitivity. Irrespective of 
somewhat unrealistic property of Gaussian model, 
the relation between coherence and anisotropy of 
irregularities (i.e., aspect sensitivity) can be illus- 
trated qualitatively by (19). 

5. Effect of Echoing Mechanism 
In section 2 the theoretical FDI coherences for 

the echoing mechanisms of turbulent scattering and 
Fresnel reflection are derived. In order to examine 

quantitatively the extent of the effect of the echoing 
mechanism on the magnitude of the FDI coherence 
has, we assume that the propagation of the EM 
wave is in the z direction for the comparison of (7) 
with (13). In this special case the components of the 
wavenumbers in the x and y directions will be both 
zero, that is, kx = ky = 0, and (7) reduces to 

= sinc (AkL)e i2akR (20) S•2 •)(2 k•)•)(2 k2) 
where A k(= k: - k•) is the wavenumber difference, 
and L is the layer thickness. If the power law 
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Figure 3. The profiles of vertical (dotted line with asterisks) and 17 ø off-zenith echo power (solid 
line with open circles) at 20-min averages, each observed with the Chung-Li radar. 

spectral model of irregularities is chosen, from (20) 
the corresponding FDI coherence becomes 

sin (AkL) 
ISm21 = (21) 

AkL 

Comparing (20) with (13) shows that the FDI coher- 
ence for a turbulent layer is different slightly from 
that for a partially reflecting layer only by the factor 
(kl + k2)2/4klk2 . If the wavenumber spacing is so 
small that Ak/k• << 1, by using binomial expansion, 
(k• + k2)2/4k•k2 can be expressed as 

•1+- 1+ 

4kl k2 4 2 kl ,] 
(22) 

For a VHF radar, if the frequency spacing Af and 
operating frequency fl are set as 0.5 and 52 MHz 
respectively, we then have (Ak/kl) 2 • 0.0000925. In 
view of (k• + k2)2/4k•k2 • 1, (20) can be treated to be 
identical to (13), indicating that FDI coherence is 
insensitive to the echoing mechanism. This result also 
suggests that it seems to be impossible to identify 
the echoing mechanism by using the FDI technique. 
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Figure 4. The height variations of the FDI coherence at the vertical (dotted line with asterisks) and 
at 17 ø off-zenith angle (solid line with open circles) at 20-min averages, each observed with the 
Chung-Li radar. 

6. Estimation of Layer Thickness 
In section 4, with the help of theoretical curves, 

the layer thickness with large aspect sensitivity can 
be determined from the observed FDI coherence at 

different zenith angle. In this section the thickness 
of a layer with sharp boundaries estimated by using 
a Gaussian function is discussed. According to the 
earlier investigations, an exponential decrease of 
coherence with the square of wavenumber spacing 
A k and layer thickness L is predicted under the 

conditions in which the infinite integration is carried 
out and a Gaussian layer structure is assumed. In 
this article, by considering an atmospheric layer 
with distinct edges, the theoretical FDI coherence 
is obtained. It shows that a factor sinc (AkL) can 
always be found in the theoretical expressions of 
FDI coherence, no matter what the echo mecha- 
nism is. Apparently, this factor results from the 
consideration of an isolated atmospheric layer with 
sharp boundaries in performing the mathematical 
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Figure 5. The variations of theoretical coherence with zenith angle for the cases of L = 80, 120, 
150, 180, and 260 rn in accordance with (16), where the power law spectral model is assumed. The 
other parameters used for calculation are given as follows: radar beam width of 7.4 ø, altitude of 6 
km, and frequency spacing of 0.35 MHz. 

integration. It has been shown in the preceding 
section that for a more realistic irregularity spectral 
model, for example, a power law form, the contri- 
bution due to irregularity power spectrum to the 
FDI coherence can be ignored. In this case the 
magnitude of FDI coherence varies with A k and L 
in accordance with the sinc function. Figure 6 
shows the behaviors of such FDI coherence varied 

with frequency spacing Af and layer thickness, 
where four cases of FDI coherence for the layer 
thickness of 50 m (solid line), 80 m (dotted line), 120 
m (dashed line), and 150 m (dash-dotted line) given 
in the calculation of the coherence are presented. 
The other parameters used in Figure 6 are the same 
as those in Figure 5. As indicated, by increasing the 

frequency spacing and layer thickness, the magni- 
tude of the coherence becomes small. 

Although the analytical expression of FDI coher- 
ence for the atmospheric layer with distinct bound- 
aries has been derived, the problem remains as 
to how to estimate the layer thickness from Is = 
sin (AkL)/(AkL), where IS ml is the observed coher- 
ence with a vertical radar beam at a given A k. In 
view of its special property, it is not easy to 
evaluate directly the value of L from sinc function. 
However, making use of the quasi-bell-shaped be- 
havior of the sinc function, this problem can be 
resolved as follows. It is easy to show that the 
-3-dB width Bs of the sinc function sin (AkL)/ 
(AkL) can be expressed in terms of L as 
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Figure 6. The variation of FDI coherence with frequency spacing in accordance with (16) for the 
cases of L = 50, 80, 120, and 150 m. The parameters used for calculation are the same as those in 
Figure 5. 

2.784 
Bs = • (23) 

L 

Similarly, the -3-dB width B• of the Gaussian 
function exp (-tr2Ak 2) can be written as 

1.178 

Bg = • (24) 

The sinc function will approximate to Gaussian 
function within the region of -3-dB width if the 
condition that B s = Bg is required. The comparison 
of the sinc function (solid line) with Gaussian func- 
tion (dashed line) for the case of L = 120 m is shown 
in Figure 7, where the value of •r in the Gaussian 
function is given as 0.423L. As indicated, these two 

curves coincide very well in the frequency spacing 
region of smaller than 0.6 MHz. Therefore, with 
employing Gaussian function, the thickness of the 
sharp edged layer can be estimated unambiguously. 

7. Comparison of Other Results 
By considering the Gaussian probability distribu- 

tion of the scatterers in an isolated layer, Kudeki 
and Stitt [1987], through their pioneering work on 
FDI theory, proposed a set of simple equations to 
estimate position and thickness of the layer. If an 
isolated layer with distinct edges is dealt with, and 
the probability distribution function p(r) of the 
scatterers in this layer is assumed to be uniform, 
namely, 
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Figure 7. The comparison of the Gaussian function with 
the form of exp (-Ak 2 •r 2) and the sinc function with the 
expression of sin (AkL)/(AkL), where •r = 0.423L and 
L = 120 m are given. 

1 

p(r) = 2L -L 

p(r) = 0 elsewhere (25) 

where r is the range of scatterer and 2L is the layer 
thickness, it is obvious that the FDI coherence will 
be different from that obtained by Kudeki and Stitt 
[1987]. Following Kudeki and Stitt's derivation, the 
FDI coherence can be expressed as 

sin (A kL) 
Is121 -- (26) 

AkL 

This equation is exactly identical to (21), indicating 
that the same results can be achieved, although the 
approaches are different. In a recent paper, by 
including the range weighting and antenna beam 
pattern effects, Franke[ 1990] obtained a more com- 
plicated equation of the FDI coherence, that is, 

exp (-2Ak2trr 2) 

IS•21 •(1 q-N1/S1)(1 q- N2/S2)•1 q- Ak2o't4/Z 2 (27) 

where A k is the wavenumber spacing (= 2•rAf/c, 
Af = f• -f2, where f• and f2 are two operating 
frequencies with close spacing, and c is the speed of 

light, z is the height; N i and S i are the noise and 
signal power, respectively, where the subscripts 
correspond to the different operating frequencies; 
1/rrr 2 = 1/rrv 2 + 2/rr• 2, where 2rr 1 is defined as the 
layer thickness, while rr v is the second central 
moment of the range weighting function for back- 
scatter power; and rrt = 0.425z06, where 06 is the 
6-dB width of the antenna beam. Note that if the 

transmitted pulse is rectangular with width r and the 
receiver filter is well approximated by a Gaussian 
transfer function with a 6-dB bandwidth equal to 
l/r, then o- v = 0.35cr/2. For an FDI experiment 
conducted by an MST radar with a relatively broad 
antenna beam width of 3 ø, if the frequency spacing 
of 0.5 MHz is set and the thickness of a layer 
located in the troposphere is assumed to be much 
smaller than the vertical extent of the radar volume, 
in this case the magnitude of Ak2rrt4/Z 2 will be less 
than 1, and (27) can be written approximately as 

IS•21 = exp (-•r•2Ak 2) (28) 

where the signal power has been assumed to be 
much greater than the noise power and the value of 
N/S is negligible. Once oq is calculated from given 
Ak and observed Is a21 in accordance with (28), the 
layer thickness can then be determined in terms of 
oq. By doing so, the thickness of a layer weighted 
by the Gaussian function is 2oq, however, the more 
pertinent formula for the estimation of the thickness 
of a layer having sharp edges will be 2.364oq, as 
mentioned in the section 6. 

8. Concluding Remarks 
The analytical expressions of the normalized two- 

frequency cross correlation for the thin layer with 
sharp boundaries are derived in this article. It 
shows that the theoretical FDI coherences, as the 
function of the components of EM wave vector and 
the layer thickness following the sinc function, are 
related to the wavenumber power spectrum of the 
reftactivity irregularities. In order to examine the 
extent of the effect of the irregularity power spec- 
trum on the coherence, two spectral models, 
namely, Gaussian and power law, are employed. As 
a result of calculation, it is indicated that under the 
condition of A k/kl << 1 the contribution of the 
wavenumber power spectrum of irregularities with 
the power law form can be reasonably ignored. 
However, for the other kind of spectral form, such 
as the Gaussian type, the effect of irregularity 
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power spectrum on the coherence may not be 
neglected. In addition, in view of the similar expres- 
sions of FDI coherence, identifying the echoing 
mechanism of MST radar, that is, turbulent scatter- 
ing and Fresnel reflection, by using FDI technique 
seems unlikely. On the basis of derived FDI equa- 
tions, the zenith angle dependence of FDI coher- 
ence is also investigated. It shows, in agreement 
with the observations, that FDI coherence de- 
creases with the zenith angle of the radar beam. The 
problem of estimating the thickness of a sharp- 
edged layer from observed coherence and a given 
Ak by using a Gaussian function exp (-•r•2Ak 2) is 
also discussed. It suggests that the pertinent for- 
mula for the thickness estimate of this kind of the 

layer is 2.364•rl, not 2•rl. Finally, by taking range 
weighting and antenna beam pattern effects into 
account, the generalization of the FDI theory de- 
veloped in this article is in progress. Because it is 
impossible to obtain the analytical solution, the 
numerical computation and analysis are carried out. 
We hope that the analyzed results can be reported 
in the near future. 
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