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All decision-making units (DMUs) in the private or public sector are provided with a set of
inputs of different values by their governing decision maker (GDM), and are required to gen-
erate a set of outputs. The GDM is able to reallocate the inputs/outputs among the DMUs to
estimate the maximum absolute decision making efficiency of the sector. Serial models are
presented to manage the interaction between two decision-making levels, GDM and DMUs,
to provide the reallocated targets of inputs/outputs for DMUs in the next operating period.
The 25 branches of a commercial bank in Taiwan are used as an illustration.
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1. Introduction

A set of performance indices is used to measure the efficiency of a group of decision-making units (DMUs) in the private
or public sector. These DMUs operate under their governing decision maker (GDM), who has the power to allocate the re-
sources and set targets for the individual DMUs. The relative efficiency of each DMU or the efficiency of the GDM may be
evaluated to determine optimal practices with the available data of each DMU in the indices. Available literature measures
the ‘relative decision-making efficiency’ of each DMU, for example, by using the data on all of the DMUs in the sector as a
reference set. The conventional data envelopment analysis (DEA) would obtain a set of favorable weights from the indices
and associate those with a target for improved efficiency to reduce the values of the inputs and increase values of the outputs
[1–3]. The set of weights for each DMU represents the best course of measurement, among a collection of possible alterna-
tives, en route to selecting the optimal approach. In this capacity, the set of weights serves to indicate ex post facto evalua-
tions of the relative importance among the indices.

Centralized resource allocation models may also be used to obtain the set of weights from the indices for the GDM. Re-
source allocation problems arise when the GDM, which possesses authority, seeks to reallocate the inputs and outputs
among the DMUs to maximize the ‘absolute decision-making efficiency’ of the sector. Our use of the terms ‘DMU’ and
‘GDM’ help emphasize our interest in the decision making by GDM and DMUs on different levels.

Thanassoulis and Dyson [4] combined goal programming (GP) and DEA to obtain the maximal interests of each DMU. Ath-
anassopoulos [5] suggested another goal programming model based on DEA, in which the central decision maker, the GDM,
considers the goal of the whole organization when determinging global targets and the maximal contribution of each DMU.
In a later study, Athanassopoulos [6] proposes another non-linear programming model that includes the restriction of the
weights in the model.
. All rights reserved.
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Golany et al. [7] proposed three models based on an additive DEA model [8]. They proposed suggestions concerning the
allocation of resources in each DMU after considering the costs and benefits of the input/output. In addition, there are five
stages related to the allocation of the resources. This model does not consider output targets, but only maps out the input
resources of DMUs. Gloany and Tamir [9] suggested an output-oriented model (maximum output) that considers input and
output targets and resource allocation simultaneously. However, this model discusses a single output: each output index
must be weighed subjectively before analyzing mutiple output indices.

Beasley [10] utilizes the method of cross-efficiencies to propose a non-linear programming model that aims to maximize
the average efficiency of DMUs, and also discusses the fixed allocation of costs and resource allocation of the inputs. Korho-
nen and Syrjänen [11] suggest a multi-objective linear programming model (MOLP) to perform the resource allocation. Fang
and Zhang [12] propose a bicriteria DEA-based model that the GDM can search to find the preferred resource allocation solu-
tion, by exploring trade-offs between the total efficiency of the organization and the equity among the individual DMUs,
according to the preference of the GDM. Golany [13] and Golany and Tamir [9] emphasized that resource reallocation is
an important approach for improving overall performance.

Similar to the conventional radial-based DEA, the radial-based centralized resource allocation model is considered either
input-oriented or output-oriented, depending on whether it is concerned with minimum consumption or maximum total
output production, respectively. The model proposed by Lozano and Villa [14] can be considered a special case, with the
common weights restrictions under the radial-based model. Lozano and Villa [15] also suggest three models, which discuss
resource allocation when the number of DMUs decreases and the output remains unchanged. The first model addresses
whether the DMUs should be deleted or retained for maximal efficiency. In this model, only the DMUs with high efficiency
are selected. The second model addresses the number of the DMUs that should be reserved and resources that should be
reallocated for maximum efficiency. The final model looks for the resource reallocation that minimizes the number of DMUs
and maximizes the overall efficiency. Lozano et al. [16] propose a serial model that corresponds to three objectives that are
pursued lexicographically to address the problem of emission permits. Asmild et al. [17] reconsider the centralized model
proposed by Lozano and Villa [14] and suggest modifying it to consider only adjustments to previously inefficient DMUs,
to stabilize the original efficient frontier.

Pachkova [18] considers the restrictions on reallocation. For example, access to resources can be restricted, or the re-
sources can be extremely expensive, especially in the short run, so that moving production between individual DMUs be-
comes impossible. The organization may thus be unable to achieve full efficiency due to the existing limits on
reallocation. The approach is a trade-off between the maximum allowed reallocation cost and the highest level of efficiency
that the organization can achieve.

However, the efficiency of the radial-based model is not able to consider the slacks of inputs and outputs. For example,
the efficiency score that is estimated by a radial-based model might be achieved with positive slacks. Liu and Tsai [19] pro-
pose a slacks-based centralized resource allocation model. By incorporating this model, the problem of a missing slack can be
solved. Hosseinzadeh Lotfi et al. [20] proposed an enhanced Russell model that can be expressed as a non-radial centralized
resource allocation.

Liu and Tsai [19] proposed [CSBM-CW] model which is used to maximize the aggregate efficiency score of the GDM.
The two decision-making levels, the GDM and the DMUs under the GDM, would interpret the primal and dual solutions
in different ways. The primal solution provides a set of reallocated values of inputs and outputs to those DMUs as targets
to improve the performance of the GDM. Each DMU would then strive to achieve its deadline targets in the indices during
the next operation period. By contrast, the dual solution is a set of common weights of inputs and outputs that is applied
to all DMUs. The set of common weights indicates the relative importance among the inputs and outputs, regarding the
performance of the GDM in the current period. Therefore, during the next period, DMUs are supposed to meet all their
targets but may expend more effort on the indices with higher weights. Finally, several indices would have values beyond
the targets. At the end of the next period, the set of common weights is used to measure the performance of DMUs in the
following period. The GDM would then re-evaluate the aggregate score for the next period, and set new targets for DMUs
in the following period.

We consider that certain inputs and outputs are uncontrollable, and their values cannot be altered because they owe their
influence to certain congenital or acquired causes. For example, the total square footage of floor space in a bank is one of the
performance indices used to assess a bank branch. However, it can be difficult to find another suitable location to achieve the
desired square footage of floor space because a change in location directly influences other factors, such as sales. We thus
introduce the general resource (re)allocation model [CSBM-G]. Therefore, the [CSBM-CW] model is a special case of the
[CSBM-G] model, in which all input and output values can be altered.

The [CSBM-G] model provides a set of common weights for controllable inputs and outputs, and a favorable weight for
each uncontrollable input or output. Furthermore, side constraints may be added to the [CSBM-G] model to limit the ranges
of alteration in the desired inputs and outputs.

The remainder of the paper is arranged as follows. In the next section, we demonstrate our serial slacks-based centralized
resource reallocation model, and discuss ways to reallocate the input resources to achieve optimal performance. We also dis-
cuss the restrictions affecting resource reallocation, as decision makers may set restrictions to each index in DMUs, to meet
practical needs. In Section 3, the case of a commercial bank is analyzed. Lastly, Section 4 presents a discussion of other
resource allocation models, and suggests follow-up studies.
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2. Slacks-based centralized resource allocation models

We demonstrate serial slacks-based centralized resource allocation models that employ the idea of a radial-based central-
ized resource allocation model [14], and a slacks-based measure (SBM) [21]. The models are described in the following
subsections.

2.1. [CSBM-CW] model

Liu and Tsai [19] proposed a slacks-based centralized resource allocation model called [CSBM-CW]. An organization could
improve its overall performance by adjusting the m resources and s production of n DMUs under its governance. The GDM
desires to use the same standard (weights) to adjust the modified targets of the DMUs. For DMUj, the amount of input i con-
sumed and quantity of output r produced are denoted as xij and yrj, respectively.

The decision variables used in the centralized resource allocation model are listed below.
q
 the aggregate efficiency score,

qik (prk)
 the slack of input i (output r) for projecting DMUk,

qi (pr)
 total slack of input i (output r),

kjk
 the linear combination weights of DMUj when DMUk changes its inputs and outputs.
(M1) [CSBM-CW]
qCW� ¼ min 1� ð1=mÞ
Xm

i¼1

qi=
Xn

k¼1

xik

 !" #,
1� ð1=sÞ

Xs

r¼1

pr=
Xn

k¼1

yrk

 !" #
; ð1:1Þ

s:t:
Xn

k¼1

Xn

j¼1

xijkjk ¼
Xn

k¼1

xik � qi; i ¼ 1; . . . ;m; ð1:2Þ

Xn

k¼1

Xn

j¼1

yrjkjk ¼
Xn

k¼1

yrk þ pr ; r ¼ 1; . . . ; s; ð1:3Þ

Xn

j¼1

kjk ¼ 1; k ¼ 1; . . . ; n; ð1:4Þ

qi P 0; i ¼ 1; . . . ;m; ð1:5Þ
pr P 0; r ¼ 1; . . . ; s; ð1:6Þ
kjk P 0; j ¼ 1; . . . ;n; k ¼ 1; . . . ;n; ð1:7Þ
Let Qi = tqi, Pr = tpr, and Kjk = tkjk, (M1) is further transferred into a linear programming model for computing.
(M2) [Computing C-SBM-CW]
sCW� ¼min t � ð1=mÞ
Xm

i¼1

Q i

Xn

k¼1

xik

, !
; ð2:1Þ

s:t: t þ ð1=sÞ
Xs

r¼1

Pr

Xn

k¼1

yrk

, !
¼ 1; ð2:2Þ

Xn

k¼1

Xn

j¼1

xijKjk ¼ t
Xn

k¼1

xik � Q i; i ¼ 1; . . . ;m; ð2:3Þ

Xn

k¼1

Xn

j¼1

yrjKjk ¼ t
Xn

k¼1

yik � Pr; r ¼ 1; . . . ; s; ð2:4Þ

Xn

j¼1

Kjk ¼ t; k ¼ 1; . . . ;n; ð2:5Þ

Q i P 0; i ¼ 1; . . . ;m; ð2:6Þ
Pr P 0; r ¼ 1; . . . ; s; ð2:7Þ
Kjk P 0; j ¼ 1; . . . ;n; k ¼ 1; . . . ;n; ð2:8Þ
t > 0: ð2:9Þ
The optimal solutions for (M2), ðs�; s�;K�jk;Q
�
i ; P

�
r Þ, could be converted to the optimal solution for (M1) by the following

equations:
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q� ¼ s�; k�jk ¼ K�jk=t�; q�i ¼ Q �i =t�; p�r ¼ P�r=t�:
The modified targets of the DMUj in all indices are expressed by the following equations:
~xik ¼
Xn

j¼1

k�jkxij; i ¼ 1; . . . ;m; k ¼ 1; . . . ; n;

~yrk ¼
Xn

j¼1

k�jkyrj; r ¼ 1; . . . ; s; k ¼ 1; . . . ;n;
xij and yrj are modified by the amounts q�ik and p�rk, respectively. q�ik ¼ xik �
Pn

j¼1k
�
jkxij, p�rk ¼

Pn
j¼1k

�
jkyrj � yrk. q�ik and p�rk could

be positive or negative.
We transferred (M2) into its dual model [22] by the dual model variables: 1CW, vik, urk, nCW

k , ai, and br to (2.2)–(2.7), respec-
tively. The dual model of (M2) is shown as (M3).

(M3)
max 1CW; ð3:1Þ

s:t: 1CW þ
Xm

i¼1

Vi

Xn

k¼1

xik �
Xs

r¼1

Ui

Xn

k¼1

yrk �
Xn

k¼1

nCW
k ¼ 1; ð3:2Þ

Xs

r¼1

Uryrj �
Xm

i¼1

Vixij þ nCW
k 6 0; j ¼ 1; . . . ;n; k ¼ 1; . . . ;n; ð3:3Þ

Vi P ð1=mÞ 1=
Xn

k¼1

xik

 !
; i ¼ 1; . . . ;m; ð3:4Þ

Ur P ð1CW=sÞ 1=
Xn

k¼1

yrk

 !
; r ¼ 1; . . . ; s; ð3:5Þ
Xi ¼
Pn

k¼1xik; i ¼ 1; . . . ;m and Yr ¼
Pn

k¼1yrk; r ¼ 1; . . . ; s are seen as the inputs and outputs of a virtual DMU. Eq. (3.2) can
be rewritten as
1CW ¼ 1�
Xm

i¼1

Vi

Xn

k¼1

xik þ
Xs

r¼1

Ur

Xn

k¼1

yrk þ
Xn

k¼1

nCW
k :
Hence, (M3) is employed to search for the common set of weights that maximize the efficiency of a virtual DMU with
functional weight restrictions. The [CSBM-CW] model enables the GDM to reallocate the resources of the sector with the con-
cept of common weights, and to maximize the aggregate efficiency.

2.2. [CSBM-G] model

A general resource (re)allocation model is proposed, which is similar to the conventional SBM but different to the [CSBM-
CW] model, in which each DMU, out of its favorable weight, maximizes the efficiency of the organization as a whole. How-
ever, the [CSBM-G] model is a special case of the above model. Practically, some performance indices could not be easily
modified due to the influence of some congenital or acquired causes. cx and cy denote the sets of controllable inputs and out-
puts that can be modified.

(M4) [CSBM-G]
q� ¼ min 1� ð1=m0Þ
X
i2cx

Xn

k¼1

qik

,Xn

k¼1

xik

 !" #,
1þ ð1=s0Þ

X
r2cy

Xn

k¼1

prk

,Xn

k¼1

yrk

 !" #
; ð4:1Þ

s:t:
Xn

j¼1

xijkjk ¼ xik � qik; i 2 cx; k ¼ 1; . . . ;n; ð4:2aÞ

Xn

j¼1

xijkjk ¼ xik; i R cx; k ¼ 1; . . . ; n; ð4:2bÞ

Xn

j¼1

yrjkjk ¼ yrk þ prk; r 2 cy; k ¼ 1; . . . ;n; ð4:3aÞ

Xn

j¼1

yrjkjk ¼ yrk; r R cy; k ¼ 1; . . . ;n; ð4:3bÞ
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Xn

j¼1

kjk ¼ 1; k ¼ 1; . . . ; n; ð4:4Þ

Xn

k¼1

qik P 0; i 2 cx; ð4:5Þ

Xn

k¼1

prk P 0; r 2 cy; ð4:6Þ

kjk P 0; j ¼ 1; . . . ;n; k ¼ 1; . . . ;n; ð4:7Þ

qik; prk free in sign; i 2 cx; r 2 cy; k ¼ 1; . . . ; n: ð4:8Þ
m0 and s0 are the number of controllable inputs and outputs, denoted by m0 = jcxj and s0 = jcyj.
In contrast to (1.1),

Pn
k¼1qik and

Pn
k¼1prk are the sum of ith input reductions and the sum of rth output increases, respec-

tively. For the entire organization, the proportions of ith input reductions and rth output increases are
Pn

k¼1qik=
Pn

k¼1xik andPn
k¼1prk=

Pn
k¼1yrk and ð1=s0Þ

P
r2cy

Pn
k¼1prk=

Pn
k¼1yrk

� �
are the average proportions of each controllable input reduction and each

controllable output increase separately. Hence, the numerator and denominator in (4.1) are the reduced percentage of the
total inputs and the increased percentage of the total outputs, respectively. The proportion of the numerator and denomi-
nator is the aggregate efficiency score. In other words, the score representing the greatest efficiency is 100%. If the average
improvement proportion of inputs and outputs in an organization is 0, then the usage of its inputs and outputs is efficient.
Therefore, (4.1) is interpreted as the aggregate preference of the sector, and the efficient score does not exceed 1.

To find the projection for each DMUk, k = 1, 2, . . . ,n, the weights of n DMUs are k1k, k2k, . . . ,knk as (4.2a) and (4.3b). Con-
sidering DMUk, k = 1, . . . ,n, (4.2a) indicates the modifications for ith controllable input of DMUj. It is equal to the weighted
sum of ith controllable input for total DMUs, the same as the linear combination of total DMUs when kjk are the weights
of DMUj, where j = 1, . . . ,n. Similarly, (4.3a) expresses the modifications of the rth controllable output of DMUj, which is equal
to the weighted sum of rth controllable output of total DMUs. Eqs. (4.2b) and (4.3b) are the constraints for the uncontrollable
indices. Eq. (4.4) is the constraint for the sum of weights kjk to one, j = 1, . . . ,n. This leads to a variable returns-to-scale (VRS)
characterization [2].

To reallocate the resources, each controllable input i and controllable output j of each DMU can be increased or reduced
arbitrarily. There is no restriction to the improvement of inputs and outputs for each DMU. However, we consider the sector
in its entirety, and expect that the aggregate efficiency will improve. The total improvements of the inputs and outputs
should be positive, as (4.5) and (4.6).
2.3. Linearization and duality of the [CSBM-G] model

To solve for the [CSBM-G] model, we multiply a scalar variable t (>0) to the numerator and denominator separately, and
allow the term of the denominator to equal 1.As with the [CSBM-CW] model, the [CSBM-G] model is further transferred into
a linear programming model for computing, as shown in (M5).

(M5) [Computing C-SBM]
s� ¼min t þ 1=s0ð Þ
X
r2cx

Xn

k¼1

Q ik

 ,Xn

k¼1

xik

!
¼ 1; ð5:1Þ

s:t: t þ ð1=s0Þ
X
r2cy

Xn

k¼1

Prk

 ,Xn

k¼1

yrk

!
¼ 1; ð5:2Þ

Xn

j¼1

xijKjk ¼ txik � Q ik; i 2 cx; k ¼ 1; . . . ;n; ð5:3aÞ

Xn

j¼1

xijKjk ¼ txik; i R cx; k ¼ 1; . . . ; n; ð5:3bÞ

Xn

j¼1

yrjKjk ¼ tyrk þ Prk; r 2 cy; k ¼ 1; . . . ; n; ð5:4aÞ

Xn

j¼1

yrjKjk ¼ tyrk; r 2 cy; k ¼ 1; . . . ;n; ð5:4bÞ
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Xn

j¼1

Kjk ¼ t; k ¼ 1; . . . ; n; ð5:5Þ

Xn

k¼1

Q ik P 0; i 2 cx; ð5:6Þ

Xn

k¼1

Prk P 0; r 2 cy; ð5:7Þ

Kjk P 0; j ¼ 1; . . . ; n; k ¼ 1; . . . ; n; ð5:8Þ
t > 0; ð5:9Þ
Q ik; Prk free in sign; i 2 cx; r 2 cy; k ¼ 1; . . . ;n: ð5:10Þ
We can acquire the optimal solutions for the [CSBM-G] model by the optimal solutions of (M5), as in the [CSBM-CW]
model.

According to Eqs. (4.2a) and (4.3a), with respect to DMUk, the modified targets of DMUj in all indices are expressed by the
following equations:
~xik ¼
Xn

j¼1

k�jkxij ¼ xik � q�ik; i 2 cx; k ¼ 1; . . . ;n;

~yrk ¼
Xn

j¼1

k�jkyrj ¼ yrk þ p�rk; r 2 cy; k ¼ 1; . . . ;n;

~xik ¼ xik; i R cx; k ¼ 1; . . . ;n; ~yrk ¼ yrk; r R cy; k ¼ 1; . . . ;n:
In contrast to the [CSBM-CW] model, we can derive each of the DMUk’s improvement of inputs and outputs directly from
the model q�ik and q�rk � p�rk. and could be positive or negative. The total modifications of the organization in controllable inputs
and outputs are computed by the following equations:
q�i ¼
Xn

k¼1

q�ik; i 2 cx; p�r ¼
Xn

k¼1

p�rk; r 2 cy:
(M5) is transferred into its dual model [22] by the dual model variables: 1, vik, urk, nk, ai, and br, respectively, to (5.2), (5.3a),
(5.3b), (5.5)–(5.7). The dual model of (M5) is shown as (M6).

(M6)
max 1; ð6:1Þ

s:t: 1þ
Xm

i¼1

Xn

k¼1

v ikxik �
Xs

r¼1

Xn

k¼1

urkyrk �
Xn

k¼1

nk ¼ 1; ð6:2Þ

�
Xm

i¼1

v ikxij

Xs

r¼1

urkyrj � nk 6 0; j ¼ 1; . . . ; n; k ¼ 1; . . . ;n; ð6:3Þ

v ik ¼ ð1=m0Þ 1=
Xn

k0¼1

xik0

 !
þ ai; i 2 cx; k ¼ 1; . . . ;n; ð6:4Þ

urk ¼ ð1=s0Þ 1=
Xn

k0¼1

yrk0

 !
þ br ; r 2 cy; k ¼ 1; . . . ;n; ð6:5Þ

ai P 0; i 2 cx; ð6:6Þ
br P 0; r 2 cy: ð6:7Þ
The dual variables vik and urk can be interpreted as the multiplier (i.e., cost/price) assigned to the ith input and the rth
output, respectively. In other words, vik and urk can also be seen as the weights of ith input and rth output, for evaluating
the efficiency of DMUk. nk is the scalar associated with (5.5), the VRS auxiliary variable for DMUk.

(6.3) can be rewritten as
Ps

r¼1urkyrj þ nk

� �
=
Pm

i¼1v ikxij 6 1; j; k ¼ 1; . . . ;n. The numerator is the sum of the virtual price and
the scalar of VRS. The denominator is the sum of the virtual cost. The ratio is the efficiency score of DMUj with respect to
DMUk. The efficiency score for all DMUs does not exceed 1. The sets of constraints for vik and urk, (6.4) and (6.5) restrict
the feasible vik and urk to semi-positive. The conventional radial-based DEA models, CCR [1] and BCC [2], restrict the indices’
weights by vik P e > 0 and urk P e > 0 as evaluating the object DMUk (decision-making unit), where e is a non-Archimedean
infinitesimal positive constant.

In (6.1) and (6.2), the value of the aggregate profit,
Ps

r¼1

Pn
k¼1urkyrk �

Pm
i¼1

Pn
k¼1v ikxik, plus the sum of the scalars,

Pn
k¼1nk,

are maximized. The value of
Pn

k¼1nk could be greater, equal to, or lesser than 0, respectively, indicating that the total return-
to-scale is either increasing, constant, or decreasing.
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We compare the [CSBM-G] model with the conventional slacks-based DEA models [SBM-V] [3,21]. The [SBM-V] model is
used to find the projection of each DMU to improve the individual efficiency; and the average improvement proportion of
inputs and outputs is seen as the efficiency score of the evaluated DMU. In our proposed [CSBM-G] model, we can consider
n DMUs at the same time, in an aggregated model. The [SBM-V] model is used to analyze the relative performance of each
DMU, and to set improved targets for each DMU separately. However, there are situations in which all of the DMUs are under
the same organization, and the GDM has an interest in maximizing the efficiency of the individual DMUs at same time. The
[CSBM-G] model is concerned with the overall performance of all DMUs by their total inputs and total outputs, instead of by
their separate performance.

The [CSBM-CW] model provides outstanding rules for managers to collectively manage the target for improvement of
each DMU. Using the [CSBM-CW] model to adjust the resources allocated to each DMU is easier and more appropriate than
using the [CSBM-G] model. By linearly combining the n constraints of (4.2a) and (4.3a) separately, the linear combinations of
(1.2) and (1.3) are produced. Let Vi = vik for "k and Ur = urk for "k in (M6). (M3) is the special case of (M6).

The [CSBM-CW] model does not consider the set of uncontrollable inputs and outputs. Hence, the proposed [CSBM-G]
model for evaluating the performance of DMUs provides the common weights for controllable inputs and outputs, and favor-
able weights for uncontrollable inputs and outputs. The DMUs not only strive to achieve the targets, but also consider the
common weights of each controllable set of inputs and outputs, to improve the specific inputs and outputs that require more
weight to achieve greater efficiency. In practice, the model is more suitable in allowing the GDM to manage controllable in-
puts and outputs unitively. In the following section, we evaluate the performance and the (re)allocated resources of 25
branches of a commercial bank in northern Taiwan.

3. Resource allocation problems of a commercial bank

In the case of the commercial bank, the district manager controls resource adjustments and reallocation in the branches.
The four input indices are the number of employees, the operating costs (tens of thousands of dollars/year), the rental costs
(monthly), and the number of ATMs, denoted as x1, x2, x3, and x4, respectively. The five output indices are the business trans-
actions in a branch (monthly), the amount of money drawn from ATMs (monthly), the amount of savings, the amount of
credit (tens of thousands of dollars/year), and the operating income (tens of thousands of dollars/year), denoted as y1, y2,
y3, y4, and y5, respectively.

The following information from the commercial bank in Taiwan is the statistical data from the first financial quarter of
2007 (Table 1). Due to issues of confidentiality, details will not be shown. As the model possesses a unit invariance property,
and the data of inputs and outputs are in different units, the data of each input and output are divided by its maximal values.
Therefore, we can obtain the weights for providing the managing standing.

For these branches, it is difficult to perform resource adjustment and reallocation on rental costs and the number of ATMs
in the short term. Rental costs are determined by the locations of the branches, and it is not easy to change the location and
size of the branches. Similarly, the number of ATMs cannot be changed easily. Therefore, in this case, x1, x2 2 cx and y1, y2, y3,
y4, y5 2 cy.

The [CSBM-G] model is suitable if the GDM wants to control the controllable index with common rules for managing
DMUs. To obtain the reallocation improvement, we can use unified data in the model and multiply the results by the max-
imum value of each input and output to restore data. The details of reallocation improvements of the [C-SBM-M] model are
shown in (Table 2). The improvements to each DMU are obtained. The operating cost (x2) can decrease 7203.37 (tens of thou-
sands of dollars a year), and y1, y2, y4, and y5 can increase to 162,687.30, 8160.23, 336,026.48, and 4,719.65, respectively. The
weights for each of the DMUs are listed in (Table 3). There are two columns in the table typed in boldface numbers. That are
showing DMUs may possess different weights in the two indices. In the other columns, all the DMUs have same weight.
While each DMU is striving to achieve its targets, it also considers the weights of each input and output, and pays more
attention to improving its number of employees (x1), the amount of saving (y3), and its operating costs (x2) to obtain greater
efficiency in the next period. The favorable weights of each DMU are different for x3 and x4.

(Table 4) refers to the improved percentage of the inputs and outputs of the DMUs. In regard to the input indices, q�ik=xij , the
positive percentage means that the input decreases in the DMU. In contrast, the negative percentage denotes the increased in-
put. In regard to the output indices, p�rk=yrj, the positive percentage refers to increased output, and the negative percentage indi-
cates decreased output. As per (Table 4), the percentages of DMU8, DMU9, DMU13, and DMU15 on y1 are significantly high,
particularly DMU13 and DMU15.For these four branches, it may be difficult to increase the operating target twofold. Hence,
Table 1
The statistical data of the inputs and outputs of 25 branches.

x1 x2 x3 x4 y1 y2 y3 y4 y5

Total 856 275,906 19,103,275 125 247,617 288,865 16,871,595 14,390,840 508,274
Ave. 34 11,036 764,131 5 9905 11,555 67,4864 575,634 20,331
Med. 32 9831 525,000 5 8360 10,465 608,657 507,260 17,770
Std. 11 4501 564,830 2 4966 44,388 258,598 352,252 9577
Min. 21 7018 40,000 2 5500 3874 396,164 236,765 11,420
Max. 69 26,437 2,323,000 8 31,451 23,622 1,499,762 1,712,440 50,452



Table 2
The improvements of [CSBM-G].

DMUj q1j q2j p1j p2j p3j p4j p5j

4 10.69 1232.92 112.81 �1805.15 �191,658.16 48,726.93 226.47
5 �1.65 640.26 7840.51 2665.59 26,778.56 26,247.42 1099.41
7 �6.96 �2574.41 4138.21 �25.68 349,351.72 161,063.00 7842.04
8 8.56 3563.89 14,617.41 �997.05 �125,429.07 �306,292.37 �8273.87
9 �3.45 619.11 19,587.12 356.09 �59,726.73 151,856.31 244.04
12 �6.08 �1580.08 5360.58 2592.79 122,769.20 231,543.37 4294.31
13 �7.96 �586.66 22,281.36 �3264.31 89,393.79 190,865.57 4457.20
14 �6.08 �1580.08 5360.58 2592.79 122,769.20 231,543.37 4294.31
15 �4.17 1714.84 23,409.10 4145.92 �79,012.19 704.98 �611.94
17 4.19 2770.04 15,606.31 124.72 �173,681.22 �15206.34 �3037.50
18 �2.03 367.09 8998.94 1599.13 99,493.06 �14,057.28 1983.78
20 0.17 �172.17 9474.88 1006.25 41,629.00 �17,340.71 606.75
21 5.73 1510.80 11,615.16 �810.08 �229,436.37 42,647.92 �1984.28
22 2.38 �1427.13 308.75 2430.50 195,699.25 �192,304.63 �824.38
24 6.69 2704.94 13,975.63 �2451.25 �188,940.04 �203,971.06 �5596.69
Total 0.00 7203.37 162,687.30 8160.23 0.00 336,026.48 4719.65

Note: There are no improvement in DMU1, DMU2, DMU3, DMU6, DMU10, DMU11, DMU16, DMU19, DMU23, and DMU25.

Table 3
The weights of DMUs in [CSBM-G] (M5).

DMUj v�1j v�2j v�3j v�4j u�1j u�2j u�3j u�4j u�5j

1 0.1040 0.0479 0.1391 0.0285 0.0219 0.0141 0.0643 0.0205 0.0171
2 0.1040 0.0479 0.0274 0.0210 0.0219 0.0141 0.0643 0.0205 0.0171
3 0.1040 0.0479 0.3452 0.3873 0.0219 0.0141 0.0643 0.0205 0.0171
4 0.1040 0.0479 0.0333 0.0002 0.0219 0.0141 0.0643 0.0205 0.0171
5 0.1040 0.0479 0.0230 0.0230 0.0219 0.0141 0.0643 0.0205 0.0171
6 0.1040 0.0479 0.0333 0.0002 0.0219 0.0141 0.0643 0.0205 0.0171
7 0.1040 0.0479 0.0274 0.0210 0.0219 0.0141 0.0643 0.0205 0.0171
8 0.1040 0.0479 0.0274 0.0210 0.0219 0.0141 0.0643 0.0205 0.0171
9 0.1040 0.0479 0.0333 0.0002 0.0219 0.0141 0.0643 0.0205 0.0171

10 0.1040 0.0479 0.0274 0.0210 0.0219 0.0141 0.0643 0.0205 0.0171
11 0.1040 0.0479 0.0333 0.0002 0.0219 0.0141 0.0643 0.0205 0.0171
12 0.1040 0.0479 0.0333 0.0002 0.0219 0.0141 0.0643 0.0205 0.0171
13 0.1040 0.0479 0.0333 0.0002 0.0219 0.0141 0.0643 0.0205 0.0171
14 0.1040 0.0479 0.0333 0.0002 0.0219 0.0141 0.0643 0.0205 0.0171
15 0.1040 0.0479 0.0333 0.0002 0.0219 0.0141 0.0643 0.0205 0.0171
16 0.1040 0.0479 0.0230 0.0230 0.0219 0.0141 0.0643 0.0205 0.0171
17 0.1040 0.0479 0.1391 0.0285 0.0219 0.0141 0.0643 0.0205 0.0171
18 0.1040 0.0479 0.0230 0.0230 0.0219 0.0141 0.0643 0.0205 0.0171
19 0.1040 0.0479 0.0056 0.0284 0.0219 0.0141 0.0643 0.0205 0.0171
20 0.1040 0.0479 0.1391 0.0285 0.0219 0.0141 0.0643 0.0205 0.0171
21 0.1040 0.0479 0.0056 0.0284 0.0219 0.0141 0.0643 0.0205 0.0171
22 0.1040 0.0479 0.0230 0.0230 0.0219 0.0141 0.0643 0.0205 0.0171
23 0.1040 0.0479 0.0230 0.0230 0.0219 0.0141 0.0643 0.0205 0.0171
24 0.1040 0.0479 0.0230 0.0230 0.0219 0.0141 0.0643 0.0205 0.0171
25 0.1040 0.0479 0.0000 0.0000 0.0219 0.0141 0.0643 0.0205 0.0171
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the GDM can add the possible limitations to the linear programming model to obtain an applicable plan for allocating the level
of each input and output. For the DMUk, g1 and g2 are the sets of the input iq�ik P 0 and q�ik < 0, respectively, and g3 and g4 are the
sets of the output rp�rk P 0 and p�rk < 0, respectively. The regulated model can be rewritten as (M7).

(M7)
~q� ¼ Minimize 1� ð1=m0Þ
X
i2cx

Xn

k¼1

~qik

,Xn

k¼1

xik

 !,
1þ ð1=s0Þ

X
r2cy

Xn

k¼1

~prk

,Xn

k¼1

yrk

 !
; ð7:1Þ

s:t:
Xn

j¼1

xijkjk ¼ xik � ~qik; i 2 cx; k ¼ 1; . . . ;n; ð7:2aÞ

Xn

j¼1

yrjkjk ¼ yrk � ~qrk; r 2 cy; k ¼ 1; . . . ;n; ð7:3aÞ



Table 4
The improved percentage of the inputs/outputs in [CSBM-G] (M5).

DMUj q1j (%) q2j (%) p1j (%) p2j (%) p3j (%) p4j (%) p5j (%)

4 20.77 9.03 0.88 �10.27 �19.73 6.53 0.93
5 �6.26 6.85 124.66 45.86 4.93 8.38 8.11
7 �16.91 �19.84 36.55 �0.21 44.46 27.77 31.96
8 17.40 22.75 160.78 �6.76 �14.34 �31.13 �26.49
9 �11.18 6.28 216.26 2.38 �9.30 47.04 1.44

12 �17.73 �13.53 68.29 23.52 20.02 36.24 21.13
13 �30.26 �6.73 264.30 �15.99 18.15 70.49 34.13
14 �17.73 �13.53 68.29 23.52 20.02 36.24 21.13
15 �14.57 16.95 269.70 37.82 �12.69 0.18 �3.80
17 11.44 24.09 149.97 0.95 �23.58 �3.72 �16.05
18 �5.92 3.45 62.70 15.32 16.72 �2.93 12.13
20 0.54 �2.02 99.11 10.29 8.27 �4.15 3.98
21 13.91 13.70 102.59 �4.66 �25.75 9.10 �9.35
22 7.16 �17.37 3.27 54.86 43.20 �31.65 �4.64
24 17.20 24.06 107.65 �15.12 �25.09 �33.75 �26.28

Note: There are no improvement in DMU1, DMU2, DMU3, DMU6, DMU10, DMU11, DMU16, DMU19, DMU23, and DMU25.

Table 5
The weights of DMUs in the regulated [CSBM-G] (M7).

DMUj v�1j v�2j v�3j v�4j u�1j u�2j u�3j u�4j u�5j

1 0.0884 0.0512 0.1262 0.0332 0.0225 0.0145 0.0552 0.0211 0.0176
2 0.0884 0.0512 0.0264 0.0241 0.0225 0.0145 0.0552 0.0211 0.0176
3 0.0884 0.0512 0.3212 0.3595 0.0225 0.0145 0.0552 0.0211 0.0176
4 0.0884 0.0512 0.0340 0.0027 0.0225 0.0145 0.0552 0.0211 0.0176
5 0.0884 0.0512 0.0172 0.0282 0.0225 0.0145 0.0552 0.0211 0.0176
6 0.0884 0.0512 0.0340 0.0027 0.0225 0.0145 0.0552 0.0211 0.0176
7 0.0884 0.0512 0.0264 0.0241 0.0225 0.0145 0.0552 0.0211 0.0176
8 0.0884 0.0512 0.0227 0.0179 0.0161 0.0145 0.0552 0.0211 0.0176
9 0.0884 0.0512 0.0188 0.0100 0.0111 0.0145 0.0552 0.0211 0.0176

10 0.0884 0.0512 0.0264 0.0241 0.0225 0.0145 0.0552 0.0211 0.0176
11 0.0884 0.0512 0.0340 0.0027 0.0225 0.0145 0.0552 0.0211 0.0176
12 0.0884 0.0512 0.0340 0.0027 0.0225 0.0145 0.0552 0.0211 0.0176
13 0.0884 0.0512 0.0078 0.0058 0.0082 0.0145 0.0552 0.0211 0.0176
14 0.0884 0.0512 0.0340 0.0027 0.0225 0.0145 0.0552 0.0211 0.0176
15 0.0884 0.0512 0.0078 0.0058 0.0082 0.0145 0.0552 0.0211 0.0176
16 0.0884 0.0512 0.0172 0.0282 0.0225 0.0145 0.0552 0.0211 0.0176
17 0.0884 0.0512 0.1262 0.0332 0.0225 0.0145 0.0552 0.0211 0.0176
18 0.0884 0.0512 0.0172 0.0282 0.0225 0.0145 0.0552 0.0211 0.0176
19 0.0884 0.0512 0.0002 0.0380 0.0225 0.0145 0.0552 0.0211 0.0176
20 0.0884 0.0512 0.1262 0.0332 0.0225 0.0145 0.0552 0.0211 0.0176
21 0.0884 0.0512 0.0002 0.0380 0.0225 0.0145 0.0552 0.0211 0.0176
22 0.0884 0.0512 0.0172 0.0282 0.0225 0.0145 0.0552 0.0211 0.0176
23 0.0884 0.0512 0.0172 0.0282 0.0225 0.0145 0.0552 0.0211 0.0176
24 0.0884 0.0512 0.0172 0.0282 0.0225 0.0145 0.0552 0.0211 0.0176
25 0.0884 0.0512 0.0000 0.0000 0.0225 0.0145 0.0552 0.0211 0.0176
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ð4:2bÞ; ð4:3bÞ and ð4:4Þ; ð7:2bÞ; ð7:3bÞ; and ð7:4Þ
Xn

k¼1

~qik P 0; i 2 cx; ð7:5Þ

Xn

k¼1

~prk P 0; r 2 cy; ð7:6Þ

~qik=xij 6 aik; i 2 g1; 8j; k; j ¼ k; ð7:7Þ
� ~qik=xij 6 aik; i 2 g2; 8j; k; j ¼ k; ð7:8Þ
� ~prk=yij 6 bik; r 2 g3; 8j; k; j ¼ k; ð7:9Þ
� ~prk=yrj 6 brk; r 2 g4; 8j; k; j ¼ k; ð7:10Þ
kjk P 0; 8j; k: ð7:11Þ



Table 6
The applicable improvements of the regulated [CSBM-G] (M7).

DMUj q1j (%) q2j (%) p1j (%) p2j (%) p3j (%) p4j (%) p5j (%)

2 18.61 22.48 34.01 �0.79 �35.56 �11.08 �33.79
4 20.66 8.98 0.88 �10.22 �19.64 6.50 0.93
5 �6.23 6.82 124.05 45.63 4.90 8.34 8.07
6 4.97 7.15 2.68 �7.69 �6.97 �6.72 �8.10
7 2.64 4.90 72.42 �0.87 �4.07 14.51 �10.08
8 15.47 19.83 150.00 �7.21 �8.43 �29.88 �21.68
9 �10.51 0.59 150.00 3.60 �0.86 54.48 12.53

12 �55.18 �77.65 49.25 105.46 85.35 106.19 108.54
13 �16.12 0.01 150.00 �20.61 13.49 41.71 19.06
14 �55.18 �77.65 49.25 105.46 85.35 106.19 108.54
15 �6.65 11.86 150.00 30.71 �6.14 �3.39 �2.81
17 11.38 23.98 149.24 0.94 �23.47 �3.70 �15.97
18 �5.89 3.43 62.40 15.24 16.64 �2.91 12.07
20 0.54 �2.01 98.63 10.24 8.23 �4.13 3.96
21 13.84 13.63 102.10 �4.63 �25.62 9.06 �9.31
22 7.13 �17.28 3.26 54.60 42.99 �31.50 �4.61
24 17.12 23.94 107.13 �15.05 �24.97 �33.59 �26.15

Note: There are no improvement in DMU1, DMU3, DMU10, DMU11, DMU16, DMU19, DMU23, and DMU25.
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For example, the GDM can set the parameter as b1k = 1.5 for DMUs, k = 8, 9, 13, 15 in model (M7), and then obtain the

regulated optimal solution ~q�; ~q�ij; ~p�rj;
~k�jk

� �
. One may examine the results of model (M7) to ensure they are realistic improve-

ment targets. Several bik setting may be needed for testing to select the most feasible one.
The regulated outcomes are shown in (Table 5) and (Table 6). DMU2 and DMU6 will change their indices to achieve the

maximum aggregate efficiency with the added constraints. It was found that the revised consequences are more applicable.
Those bounds may preclude the projection onto the efficient frontier (i.e. the targets computed may not be efficient).

4. Conclusion and discussion

The [CSBM-CW] and the [CSBM-G] models are introduced to solve the resource (re)allocation problems by maximizing
the aggregated efficiency score of the GDM. The solutions are associated with reallocated values of inputs and outputs for
those DMUs in the next operation period. The general model [CSBM-G] can handle uncontrollable inputs and outputs for
the practical problems.

The values for each input and output index can be unified and still retain the same differentiations among the DMUs, as
the [CSBM-CW] model and the [CSBM-G] model preserve the property of units invariant. The obtained dual solutions of the
two models are the relative weights among the inputs and outputs, and could be interpreted directly, as the original data
were unified. A higher weight indicates that the index possesses a higher influence on performance. The DMU, while striving
to achieve its targets, also attempts to achieve greater efficiency during the next period by considering the weight of each set
of inputs and outputs, to improve the specific inputs and outputs that require more weight.

The objective functions of current [CSBM-CW] and [CSBM-G] models indicate that the influence of both input and output
indices are considered for performance measurement. In situations where either input-oriented or output-oriented is con-
sidered, the following models, [CSBM-I] and [CSBM-O], should be used.

(M8) [CSBM -I]
q�I ¼ min 1� ð1=m0Þ
Xm0
i¼1

Xn

k¼1

qik

,Xn

k¼1

xik

 !
; ð8:1Þ
s.t. (4.2a) and (4.8).
(M9) [C-SBM-O]
q�O ¼max 1þ ð1=s0Þ
Xs0

r¼1

Xn

k¼1

prk

,Xn

k¼1

yrk

 !
; ð9:1Þ
s.t. (4.2a) and (4.8).
Once the preferences among the inputs and outputs indices are considered, the following [CSBM-Preference] model is

available. wi and pr are the preference parameters for the total of ith input and rth output, respectively.
Xm0
i¼1

wi

Xn

k¼1

xik �
Xn

k¼1

qik

 !,Xn

k¼1

xik

 !" #,
m0 ¼

Xm0
i¼1

wi �
Xm0
i¼1

wi

Xn

k¼1

qik

,Xn

k¼1

xik

 !" #,
m0:
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Let
Pm0

i¼1wi ¼ m0, the function can be rewritten as the numerator of (10.1), the average weighted improvement ratio of all
input indices. Here,

Pn
k¼1xik �

Pn
k¼1qik is the total amount of UOAs in input i after improvement;

Pn
k¼1xik�

�Pn
k¼1qikÞ=

Pn
k¼1xik is the improvement ratio of input i.
Xs0

r¼1

pr

Xn

k¼1

yrk þ
Xn

k¼1

prk

 !,Xn

k¼1

yrk

 !" #,
s0 ¼

Xs0

r¼1

pr þ
Xs0

r¼1

pr

Xn

k¼1

prk

,Xn

k¼1

yrk

 !" #,
s0:
Let
Ps0

r¼1pr ¼ s0, the function can be rewritten as the denominator of (10.1), the average weighted improvement ratio of all
output indices. Here,

Pn
k¼1yrk þ

Pn
k¼1prk is the total amount of UOAs in output r after improvement;

Pn
k¼1yrkþ

�
Pn

k¼1prkÞ=
Pn

k¼1yrk is the improvement ratio of output r.
(M10) [CSBM-Preference]
q�pref ¼min
1� 1=m0ð Þ

Pm0

i¼1wi
Pn

k¼1qik=
Pn

k¼1xik

� �
1þ 1=s0ð Þ

Ps0
r¼1pr

Pn
k¼1prk=

Pn
k¼1yrk

� � ; ð10:1Þ
s.t. (4.2a) and (4.8).
The calculation models of (M8), (M9), and (M10) are omitted, as they are similar to the [CSBM-G] model. The upper and

lower bounds may be added to the virtual weights on input and output indices in (M6) [23], such as aL
i 6

v ixij=
P

i0v i0xi0 j 6 aU
i ; 8i; j and bL

r 6 uryrj=
P

r0ur0yr0 j 6 bU
r ; 8r; j.

This study suggests a number of resource reallocation models that central GDMs may employ, to adjust the resources, and
to achieve optimal overall performance. The radial-based model proposed by Lozano and Villa [14] can be taken as a special
case with the common weights restrictions. We aim to not only achieve optimal performance theoretically, but to also search
for applicable solutions to practical problems. These models can be applied widely in organizations that have subordinate
branches, such as banks, government bureaus, educational institutions, and chain markets and convenience stores.

The DMUs are sometimes classified by their properties in practical application. For example, bank branches can be cat-
egorized into different regions. Among the different regions, the levels of economy are not equal. In future studies, research-
ers should consider the classified DMUs in (re)allocation problems, by merging the idea of the [CSBM-G] model.
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