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X-ray microscopy and tomography detect the accumulation
of bare and PEG-coated gold nanoparticles in normal

and tumor mouse tissues
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Abstract We demonstrate that, with appropriate staining,
high-resolution X-ray microscopy can image complicated
tissue structures—cerebellum and liver—and resolve large
or small amounts of Au nanoparticles in these tissues. Spe-
cifically, images of tumor tissue reveal high concentrations
of accumulated Au nanoparticles. PEG (poly(ethylene gly-
col)) coating is quite effective in enhancing this accumula-
tion and significantly modifies the mechanism of uptake by
reticuloendothelial system (RES) organs.
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Introduction

Potential applications of nanoparticles to drug delivery
[1-3], image contrast enhancement [2, 4-6] and radiation
therapy [7-9] require effective experimental methods to
study their behavior. Imaging techniques can be very effec-
tive, if they have sufficient spatial resolution and sensitivity
[10-16]. Special nanoparticles are already used for specific
imaging methods, e.g., as fluorescent dyes [17, 18], radio-
isotope tracers [19], contrast agents for magnetic resonance
imaging [20-22], and other approaches [20, 23-25]. The
common requirement for all of these is to be easily located
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Table 1 Contrast agents and their concentrations used in this study

Stain Concentration

Potassium permanganate (KMnOy,)
Phosphotungstic acid (PTA)
Todine—potassium iodide (IKT)
Osmium tetroxide (OsOy)

1 % (w/w) in distilled water
1 % (w/w) in distilled water
1 % (w/w) in distilled water
2 % (w/w) in distilled water

and traced. Ideally, they should also be multifunctional,
having a biological or biomedical purpose: this, however,
is difficult to achieve.

Here, we exploit the strong X-ray absorption of Au nano-
particle (AuNP) systems to microscopically image their accu-
mulation in mice. Note that AuNPs are quite biocompatible
and have many promising biomedical applications [8, 26-31].

We specifically focus our attention on a key issue of
nanomedicine: passive AuNP accumulation by tumor tis-
sues, attributed to the “enhanced permeation and retention
(EPR)” effect [32—35]. We investigate both bare-AuNPs and
PEG-AuNPs (poly(ethylene glycol) (PEG)-coated) and
compare their distribution in lung, liver, spleen, kidney,
and tumor tissues. The results specifically show that the
PEG coating modifies AuNP uptake by these tissues, reduc-
ing their accumulation in lung, liver, and spleen and increas-
ing the concentration in tumors. We thus confirm the
conclusions of organ-level distribution studies [36-39], but

Fig. 1 X-ray micrographs of
cerebral tissue with different
stains: (a) OsOy, (b) KMnOy,
(¢) IKI, and (d) PTA. With
KMnO,, individual cells and
blood vessels (red arrowheads)
can be identified. We can also
identify the endothelial cell
nuclei (vellow arrowheads). In
contrast, in (a), (c), and (d) it is
difficult to differentiate indi-
vidual cells (black arrow-
heads), vessels (red
arrowheads), and the extracel-
lular matrix (ECM). The tissues
for (b), (c), and (d) were per-
fused with AuNP colloidal so-
lution to increase the visibility
of the vasculature. However,
the vessels can be clearly iden-
tified only in (b). Overall, these
results identify KMnO, as the
best staining agent for vascula-
ture imaging
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provide a more detailed microscopic picture of the uptake
mechanisms explaining how PEG coating enhances accu-
mulation by tumors.

Appropriate staining is crucial to obtaining high-resolution
X-ray tissue images with subcellular details [10, 29]. We
developed an ad-hoc staining method based on potassium
permanganate (KMnQ,) [40, 41] and demonstrate here that
it reveals finer details than other heavy-metal staining meth-
ods commonly used for transmission electron microscopy
(TEM). This test also indicated that because of different
specimen thickness and the strength of absorption contrast,
the staining methods cannot be automatically adopted from
TEM. With KMnO, staining, the increased image contrast
does not negatively affect the sensitivity of detection of
AuNPs in tissues.

We use this staining method with a full-field zone-plate
X-ray microscope with nanometer resolution; this is ade-
quate for imaging nanoparticles and their aggregates in
thick specimens and in three dimensions (3D) and for
identifying their location at the subcellular level in differ-
ent organs. This approach specifically enables us to reach
the aforementioned conclusions about the effects of PEG
coating.

Our approach is not limited to small and/or thin speci-
mens and can be applied to other inorganic nanoparticles.
Therefore, it can be specifically used to develop nanopar-
ticle coatings optimized for different applications.
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Fig. 2 X-ray micrographs of
cerebellum tissues stained with
KMnO,. (a) Patched image; the
vellow squares correspond to
the other three images, which
are tomography-reconstructed
slices of Purkinje cells (b), cer-
ebellar granule cells (¢), and
myelin sheath (d). Dense cyto-
plasm, and nucleolus and chro-
matins in the nucleus are clearly
visible. The arrow in (b) marks
the nucleolus and the arrow-
head the nuclear membrane.
The arrowheads in (c) mark the
nucleus. The arrow in (d) marks
the myelin sheath. Scale bars:

(a), 24 um; (b), (c), and (d),
2.4 um

Experimental
Preparation of the test tissue specimens

The Academia Sinica Institutional Animal Care and Utilization
Committee (AS IACUC) approved all animal experiments. We
purchased BALB/c mice from the National Laboratory Animal
Center, Taiwan and housed them in individually ventilated
cages (five per cage) with wood chip bedding, kept at 24+
2 °C with 40-70 % humidity and a 12-hour light-dark cycle.
The subcutaneous tissue of the left leg region was inoculated
with EMT cells (1x107 cells mL™") in 50 pL Matrigel (BD
Biosciences) for 7 days to induce the development of subcu-
taneous tumors. The tumor volume was defined as v=0.5xax
b?, where a and b are the largest and the smallest diameters. We
performed the imaging experiments after the tumor developed
to a size of 100—120 mm?, by injecting 200 uL AuNP solution
via the tail vein, or by locally injecting 10 uL (10 mg mL ")
AuNP solution three times at the tumor site for each mouse.

Two kinds of nanoparticle, bare AuNPs (10 mg mL ") [42,
43] and PEG-AuNPs (26 mg mL ") [28, 44], were separately
injected (200 pL each) into the tail vein. After 24 h, the mice
were sacrificed. Tumor, lung, liver, kidney, and spleen tissues
were removed, immersed in 3.7 % paraformaldehyde for 24 h,
then washed three times with PBS (phosphate buffer solution)
for 1 h.

Tissue specimens were dehydrated, embedded in paraffin,
and sliced to a thickness ~10-30 um. We removed the

remaining paraffin by immersion in xylene for 5 min. After
triple washing, the samples were rehydrated, immersed in
distilled water and stained with a 1 % w/w) solution of potas-
sium permanganate (KMnQO,). For comparison, some samples
were stained with 2 % Osmium tetroxide (OsO,), 1 % phos-
photungstic acid (PTA), or mixed iodine metal and potassium
iodide (iodine—potassium iodide, IKI) [45]. Some of the speci-
mens with nanoparticles were also treated by hematoxylin and
eosin (H&E) staining. All specimens were then washed three
times with distilled water for 10 min and dehydrated again
with increasing ethanol concentrations. Finally, the specimens
were embedded in Embed-812 Resin (EMS, Hatfield, PA,
USA). The staining agents and the corresponding concentra-
tions are summarized in Table 1.

High-resolution X-ray imaging

We performed the tests on the 32-ID-D beamline of the Ad-
vanced Photon Source (APS, Argonne) and on the 01B beam-
line of the National Synchrotron Radiation Research Center
(NSRRC, Taiwan). The full-field high-resolution X-ray mi-
croscope includes several optical components: capillary
lenses, zone plates, phase rings [12], and others. Capillary
lenses acts as condensers providing illumination that fits the
object, with numerical aperture matched to the zone plate,
which can be selected from a set according to experimental
requirements. A monochromatic (8 keV photon energy) X-ray
flux of 2x10'" photons s ' was obtained with a Si (111)
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Fig. 3 X-ray micrographs of
liver tissue: (a) patched image;
(b) projection image; (¢)
reconstructed tomographic
image; (d) reconstructed single-
slice image. The yellow arrow-
heads and arrow mark red
blood cells and a cell with its
nucleus. The white arrow marks
the nucleus of a hepatocyte.
Scale bars: 5 pm

double crystal monochromator. Zernike phase contrast imag-
ing could be implemented with an Au phase ring placed at the

Fig. 4 X-ray micrographs of
lung tissue after exposure to
bare-AuNPs for 24 h: (a) patch
image; (b) tomographic recon-
structed image of the yellow
square in (a); the 60-200 nm
golden dots are aggregates of
bare-AuNPs. (¢) Single-slice
tomographic reconstructed im-
age of (b); the arrowheads mark
the nuclei (darker regions) of
two alveolar cells. (d) Magni-
fied view of the white square in
(c). Yellow arrows mark bare-
AuNPs aggregates attached to
red blood cell surfaces and
white arrows mark bare-AuNPs
located inside alveolar cells.
Scale bars: (a), 5 um; (b) and
(c), 2.5 pm; (d), 1 pm
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back focal plane of the Fresnel zone plate [46]. The micro-
scope could deliver images with a 50 ms per frame exposure
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yielding ~1 x 10* counts per pixel at the charge-coupled device
detector. The total magnification of the zone-plate plus the
visible light imaging system was 900-2400x. The selected
photon energy of 8 keV simultaneously optimized the zone
plate effectiveness and the contrast [12—14, 46, 47]. Tomog-
raphy reconstructions were performed starting from 160 or
320 projection images taken at 0.5 or 1-degree intervals. A
comprehensive description of the experimental setup and a
discussion of the capabilities of TXM (transmission X-ray
microscopy) when applied to different types of biological
specimens can be found in Ref. [48].

Results and discussion

We first show that staining based on KMnO, produced clear
images at the cellular level for tissues. Figure 1 is a set of
high-resolution X-ray micrographs of cerebral tissues with
different types of staining: OsO,, KMnO,, IKI, and PTA

[45]. OsO4 is known to stain unsaturated lipids, proteins,
and lipoprotein membranes; Fig. la shows the corres-
ponding results for the dense structure of the cell nucleus,
the cytoplasm, and the extracellular matrix in the cerebral
tissue. Figure 1b shows the results of KMnO, staining,
which was found to be deposited on the membrane surfaces
in the form of dense precipitates, providing high visibility
for small features. In comparison, with IKI and PTA (Fig. 1c
and d) only extracellular components, for example elastin,
collagen, and basement membrane, were clearly visible.
From these and other results, we concluded that KMnO,
was the best choice.

Figure 2 shows X-ray micrographs of KMnOy-stained
mouse cerebellum tissue. Note that molecular layer (M),
Purkinje cell layer (P), granular layer (G), and white matter
area (W) are clearly distinguishable from each other
(Fig. 2a). Purkinje cells have clear boundaries between
nuclei and cytoplasm. Large nuclei with nucleolus and
nucleus-associated chromatin are clearly visible (Fig. 2b).

Fig. 5 X-ray micrographs of locally injected bare-AuNPs in subcutane-
ous tumor (developed by injecting Matrigel mixed with tumor cells).
These micrographs show that large amounts of bare-AuNPs are accumu-
lated in the ECM and smaller amounts in cells. (a), (b), and (c) are
reconstructed images corresponding to the yellow square in (e). Cell
nuclei can be seen in (a), (b), and (c) (e.g., those marked by white arrows).

The magnified version of the rectangle (b), shown in (d), reveals that bare-
AuNPs (white arrows) are present on the surfaces of two cells; black line
shape structures in (e); a few examples marked by yellow arrows show
bare-AuNPs accumulated in the ECM. (a) and (b) are different sections of
(c). (e) patched TXM micrographs of tumor tissue after treatment with
bare-AuNPs. Scale bars: (a), (b), (c), and (d), 2 um; (e), 5 um
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Cerebellar granule cell nuclei are apparent in Fig. 2c. Mye-

lin sheath can also be identified in the white matter (Fig. 2d).

Figure 3 shows images of a mouse hepatocyte taken from
sliced liver tissue with KMnQ, staining. We obtained a 3D
tomography reconstruction of this cell with sufficient qual-
ity to detect subcellular structures, for example nuclei and
cytoplasm. From the morphology, we can distinguish dif-
ferent cell types in these tissue sections. For example, the
yellow arrowheads in Fig. 3d mark red blood cells whereas
the yellow and white arrows mark the cell and the nucleus
(Fig. 3d).

Sub-cellular staining with KMnO, enabled us to accu-
rately determine the AuNP location in each cell. For exam-
ple, Fig. 4 shows lung tissue with small bare-AuNP
aggregates accumulated after tail-vein injection. Figure 4b
is a single-slice image obtained by tomography reconstruc-
tion, corresponding to the yellow square in Fig. 4a.

The size of bare-AuNP aggregates, ~60—200 nm, is sub-
stantially larger than that of a single bare-AuNP, ~15 nm.
These aggregates are clearly visible and mostly located in
alveolar cells; quantitative evaluation of their number and
size give an Au density of ~7.3 ug mm . Note that such a
large number of bare-AuNPs in the lung for a long time is
not desirable for nanomedicine applications.

We also see in Fig. 5d and e bare AuNPs in subcutaneous
tumor. The images show unstable agglomerated nanopar-
ticles adhering to tumor cells and to the extracellular matrix
(ECM, Matrigel BD) (Fig. 5d and e). This kind of result is
valuable for studying the interaction of AuNPs with tissues.

To avoid undesired accumulation of AuNPs, a well-
known strategy is surface coating with polymers, which
are inert in the blood and can prolong the nanoparticle
presence in the circulation system before being recognition
by the RES system. Widely used is PEG [35, 37, 38, 49, 50],
a highly hydrophilic polymer that, by means of steric repul-
sion forces, prevents opsonin proteins from being adsorbed
by the nanoparticle surface and impedes recognition by
macrophages. PEG-AuNPs remain in the bloodstream for
hours, dramatically increasing the effectiveness of accumu-
lation in tumors.

We produced PEG-AuNPs by slight modification of the
one-pot synthetic method for bare-AuNPs; it is based on X-
ray irradiation and id described in Refs. [28, 42, 43]. Both
the bare and PEG-coated AuNPs thus obtained have excel-
lent biocompatibility, colloidal properties, and long-term
stability [10, 28, 51]. They can be purified to very high
concentrations. The two types of AuNP have different
EPR effects [28]. In particular, high accumulation of bare-
AuNPs is observed in RES organs, which results in a lower
absolute AuNP percentage accumulated at tumor sites (data
not shown).

Pharmacokinetic study confirmed that our PEG-AuNPs
have a much longer lifetime in blood than their bare

@ Springer

counterparts. Their accumulation in tumor, liver, kidney,
and spleen tissues steadily increased for a much longer time,
up to ~24 h. By use of special Fresnel zone plate objectives
with ~20 nm outermost zone width, we could image the
corresponding tissues with resolution <20 nm [14, 52]. This
was not quite sufficient to detect individual AuNPs (size
~15 nm), but did reveal their aggregates.

Fig. 6 High-resolution patched TXM micrographs of different tissues
after two different AuNP treatments, showing different accumulations.
(a)—(d) correspond to lung, liver, spleen and kidney tissues treated with
bare-AuNPs. (e)—(h) correspond to the same tissues treated with PEG-
AuNPs. In (a), (b), and (c), bare-AuNPs aggregate, forming dense gold
clusters. In (e) and (h), most PEG-AuNPs form, instead, dark gray
hollow circle vesicles in cells. Scale bar: 12 pm
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Without surface modification, one expects large AuNPs
agglomerates, because the lungs can effectively filter them
(Fig. 6a). Figure 7a and d show that AuNPs in the lungs
form agglomerates with size up to 5—10 pum and block small
vessels. The rest of the small AuNPs keep circulating and
then accumulate in the spleen and in the liver. Most AuNPs
found in these organs form spherical agglomerates.

From TXM images, for example Fig. 6b and c, we
estimate particle sizes to be in the 350450 nm range in
the liver and 250-350 nm in the spleen. Figure 7b and e
show that in the liver small agglomerated AuNPs are accu-
mulated in Kupffer cells whereas Fig. 7c and f show that in
the spleen the nanoparticles are internalized by the red pulp.
In contrast, we did not find AuNPs in hepatocytes (marked
by arrows in Fig. 7b). This indicates that internalization
predominantly occurs in specific types of cell in the liver.

With regard to PEG-AuNPs, we have already mentioned
that the coating prolongs the circulation time. We found,

however, that it does not completely avoid surface modifica-
tions by opsnin protein adhesion: the coated nanoparticles are
still recognized by macrophages. In high-resolution X-ray
micrographs, PEG-AuNPs were found to be internalized in
vesicles, forming hollow circle shapes in cells (Fig. 6e—g).
Non-uniform distributions of multi-vesicles in macrophages
were only found in the lungs (Fig. 7g and j). Note that this
analysis requires imaging large areas and/or volumes without
compromising resolution; TXM imaging using large area
patchworks seems quite effective in that regard [17].

The PEG-AuNPs vesicle distribution in Kupffer cells
(Fig. 7h and k) is between 500 and 1600 nm, whereas in
splenic red pulp it is between 900 and 2000 nm (Fig. 7i and
1). We cannot, however, rule out the possible presence of non-
agglomerated PEG-AuNPs (6.1£1.9 nm) with our ~20 nm
resolution [14].

We detected neither bare nor PEG-coated AuNPs in kidney
tissues—Fig. 6d and h. The reasons could be the large

Fig. 7 High-resolution tomography reconstructed micrographs show
the accumulation of AuNPs in different tissues. (a) to (¢): 3D recon-
structed images for lung (a), liver (b) and spleen (c). The golden color
marks dense bare-AuNP clusters whereas the dark red color corre-
sponds to the tissue. (d) to (f): single-slice images corresponding to
(a)—(c), showing the dark, dense bare-AuNP aggregates. (g) to (i): 3D

tomography reconstructed images of lung (g), liver (h), and spleen (i)
tissues treated with PEG-AuNPs. The red color marks PEG-AuNPs in
the spherical vesicles. (j) to (I): single-slice images corresponding to
(a)-(c), revealing vesicles containing PEG-AuNP. Multi-vesicles (dark
hollow vesicles) of PEG-AuNPs are found in the lung tissue (j). Scale
bars: 2 yum.
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amounts of AuNPs sequestered by the RES system and the
fact that PEG-AuNPs are not small enough to penetrate the
endothelium.

Figure 8 shows an example of AuNP aggregates in tumor
tissues. Bare-AuNPs are difficult to detect (Fig. 8a and c—e),
whereas PEG-AuNPs are easily observed, showing that they
are internalized in tumor cells (Fig. 8b and f-h). This further
confirms that the concentration and/or accumulation of bare-
AuNPs in tumors is much lower than for PEG-AuNPs. We
also found that for PEG-AuNPs small nanoparticle-containing
vesicles are distributed from the surface to the cytoplasm
(inset in Fig. 8h) within the cells.

Conclusions

We have developed and tested an imaging approach based on
ad-hoc staining for high-resolution X-ray microscopy that
enables direct visualization, at sub-cellular level, of AuNP

Fig. 8 TXM micrographs of
tumor tissues after treatment
with bare-AuNPs and PEG-
AuNPs. Smaller amounts of
bare-AuNPs (a) accumulated in
tumors than of PEG-AuNPs (b).
PEG-AuNPs were found in
small vesicles (light red in (g)
and black dots in (h)) in tumor
cells. The inset in (h) shows the
cell nucleus (arrow) and small
vesicles (black dots). (a) and (c)
are projection micrographs of
tumor tissue after bare-AuNPs
treatment whereas (b) and (f)
are projection micrographs after
PEG-AuNPs treatment. (d) and
(g) are tomographic recon-
structed images corresponding
to (c) and (f). (e) and (h) are
single-slice images
corresponding to (d) and (g).
Scale bars: (a) and (b), 12 pm;
all other images, 2 um

@ Springer

internalization in different tissues. Specifically, we demon-
strated that with KMnOy, staining high-resolution X-ray mi-
croscopy can resolve dense and complicated sub-cellular
features in tissue specimens and provide important qualitative
and quantitative information about nanoparticle internaliza-
tion processes.

This led to verification that PEG-AuNPs accumulate
strongly in tumors and shed new light on the differences
between bare and PEG-coated AuNPs. For example, we clar-
ified the mechanisms underlying previous results for tumor
accumulation and cell internalization of PEG-AuNPs com-
pared with bare-AuNPs. Specifically, we showed that the
higher absolute concentration of PEG-AuNPs in tumors is a
direct consequence of the PEG coating, which prolongs cir-
culation in the bloodstream and increases the possibility of
reaching a tumor.

These results prove the feasibility of our method, including
quantitative evaluation. They also show its effectiveness and
flexibility compared with other approaches, which do not have
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sufficient resolution to directly image AuNPs (or AuNP
aggregates), or cannot penetrate large tissue specimens.
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