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a b s t r a c t

We consider the dynamic rationing problem for inventory systems with multiple demand classes and

general demand processes. We assume that backorders are allowed. Our aim is to find the threshold

values for this dynamic rationing policy. For single period systems, dynamic critical level policy is

developed and the detailed cost approximation subject to this policy is derived. For multiperiod

systems, a dynamic rationing policy with periodic review is proposed. The numerical study shows that

our dynamic critical level policies are close to being optimal for various parameter settings.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Inventory is an important driver in modern supply chains and
has traditionally been used to provide a buffer against demand
uncertainty or increased service levels. However, there are costs
associated with holding inventory, such as opportunity costs,
storage costs, obsolescence costs, insurance costs, and damage costs.
Hence, organizations face a trade-off between incurring inventory
and servicing their customers. However, inventory can serve pur-
poses beyond its traditional role because heterogeneous customers
have different service needs and priorities. This means that firms can
make tactical decisions with regard to the rationing of inventory and
can set different pricing and service levels according to their
customer service needs. By providing a differentiated service
according to customer needs, firms can benefit, because this helps
to increase market size, and thereby revenue. For example, firms can
charge higher prices to customers who need immediate service and
can charge less for customers who only need a normal service. This
practice is common in many industries, such as the airline industry,
online retailing, and the services parts industry. The airline industry
usually charges different prices for the same seat, and online
retailers, such as Amazon.com, provide expedited and normal
shipping services. The services parts industry also charges customers
according to services delivery contracts.

For a firm to successfully adopt a different pricing or service
level strategy for the same inventory, the main assumption is that
customers can be segmented according to their different service
ll rights reserved.
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needs and priorities. The key challenge is how to allocate the
inventory to different segments of customers. For motivation, this
paper uses the example of a firm that has an extensive network
providing spare parts, which are used to maintain or replace failed
equipment parts at the customer’s site. It has a major regional
distribution center, which serves its customers. Requests for spare
parts are prompted by parts failure and by scheduled mainte-
nance. Requests prompted by parts failure must be rectified
immediately, whereas those prompted by scheduled maintenance
can wait. Hence, in any period, the distribution center may face
these two types of demand from its customers. In this situation, a
firm may adopt the rationing policy that when inventory is low,
only urgent demand for parts is satisfied. The inventory level at
which low-priority requests are rejected is sometimes known as
the critical, or threshold level. The policy of reserving stock is
termed the. Many researchers have explored practical examples of
inventory rationing, such as Kleijn and Dekker (1998), Deshpande
et al. (2003), and Cardós and Babiloni (2011).

There are two kinds of critical-level policies: stationary and
dynamic. For stationary policies, the critical levels are constant.
Much research has been carried out on stationary critical level
policy. For make-to-stock production systems, the stationary
critical level rationing policy is optimal for specific cases
(Ha, 1997a, 1997b, 2000; Gayon et al., 2004). For exogenous
inventory supply problems, researchers such as Melchiors et al.
(2000), Deshpande et al. (2003), and Arslan et al. (2007) propose
stationary policies and then determine the optimal parameters for
the critical levels that minimize inventory costs. Others such as
Nahmias and Demmy (1981), Moon and Kang (1998), Cohen et al.
(1988), Dekker et al. (1998), and Möllering and Thonemann
(2009) determine the stationary critical levels for inventory
systems operating under different service levels.
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For dynamic policies, the critical levels may change over time.
Topkis (1968) considers dynamic inventory rationing policy for
single period and multiple period systems with zero lead times. A
dynamic programming model is proposed in which one period is
divided into many small intervals. Topkis also shows that the
optimal rationing policy is dynamic. However, he fails to show
that the critical level is nonincreasing over time. Evans (1968) and
Kaplan (1969) extend results from Topkis (1968) and explore two
demand classes. Melchiors (2003) considers dynamic rationing
policy under an inventory system with a Poisson demand process
and an (s, Q) ordering policy in which backordering is not allowed.
Lee and Hersh (1993) consider dynamic rationing policy for an
airline seating problem. Teunter and Klein Haneveld (2008)
develop a continuous time approach to determining the dynamic
rationing policy for two Poisson demand classes under the
assumption that there is no more than one outstanding order.
However, its computational results are tractable only for limited
settings. Fadiloglu and Bulut (2010) propose a heuristic rationing
policy called ‘‘rationing with exponential replenishment flow’’ for
continuous-review inventory systems. All except Topkis (1968)
consider only two demand classes. However, the limitation of his
approach is that the state spaces grow exponentially large when
the number of demand classes increases. Even for two demand
classes, the state space can be very large. Moreover, many
researchers assume a Poisson distribution.

In this paper, we develop an approximation approach to
deriving the dynamic threshold level for inventory systems with
multiple demand classes and general demand processes. This
approximation approach is based on comparing the marginal
costs of accepting and rejecting a demand class when it arrives.
It is also assumed that when this demand class is rejected, all
future demands from this class will be rejected until the next
replenishment arrives. Unlike existing work, this method can deal
with general demand processes, and is efficient in solving pro-
blems with more than two demand classes. To illustrate the
effectiveness of the proposed policy, we conduct numerical
analysis. The results show that the proposed policies are close
to being optimal under various parameter settings when demand
follows a Poisson process. The Poisson process is used because we
want to compare our solutions with the optimal solution.

Our paper is organized as follows. In Section 2, we consider a
single period system with multiple demand classes. We derive the
dynamic critical levels based on the concept of marginal cost. In
Section 3, we consider multiperiod systems with periodic review
policy. The rational policy in Section 2 is extended for multiperiod
systems. In Section 4, numerical studies are conducted to inves-
tigate the performance of the proposed approaches. In Section 5,
we summarize the results and discuss some possible extensions.
2. Inventory rationing for single period systems

In this section, the inventory rationing problem for a single
period system is considered. The goal is to find a good dynamic
rationing policy. We first examine the dynamic critical levels for
only two demand classes and then extend the results for a general
number of demand classes. Then, we develop an approximation
method for computing the expected total costs associated with
our rationing policy.

2.1. Model formulation

Consider a single period inventory system with a period length
of u. There is a single product with demands from K different
customer classes. We assume that the demand processes of all
customer classes are independent and stationary and that these
demands can be partially satisfied. We let t¼u denote the
beginning of the period, we let t¼0 denote the end of the period,
and we let X(t) denote the on-hand inventory at the remaining
time tA ½0,u�. For each unit stored, we assume a holding charge of
h per unit of time. At the beginning of the period, we assume that
the initial on-hand inventory is given, and is equal to x (i.e.,
XðuÞ ¼ x). During the period, each customer demand may either be
satisfied or rejected according to our rationing policy. The rejected
demand is backordered and a backorder cost is applied. We define
the backorder cost for class i as piþp̂it, where tA ½0,u� is the
remaining time to the end of the period. Note that pi is a fixed
penalty cost to reject a demand from class i, which may represent
the loss of customers’ loyalty. Moreover, p̂i is the per-unit-of-time
cost to hold a demand from class i to the end of the period without
loss of goodwill or the order. Without loss of generality, we
arrange demand classes in the order of nonincreasing backorder
cost. That is, piZpj and p̂iZp̂j for demand classes io j.

At the end of the period (t¼ 0), we assume that all backorders
must be fulfilled. We propose using the remaining inventory to
fulfill these backorders first and if this is insufficient, we propose
the purchase of additional units to fulfill the remaining back-
orders from the open market. If the remaining inventory exceeds
the backorders, the surplus is sold at salvage value on the same
market. We assume that both the salvage value and the additional
purchasing cost on the open market equal c0 per unit of product
at the end of the period.

To determine the dynamic rationing policy, we need to
compute critical levels over time. Define siðtÞ to be the dynamic
critical level of class i for the remaining time tA ½0,u�. When
XðtÞ4siðtÞ, we satisfy the demand from class i. Otherwise, the
demand from class i is rejected. As we have arranged demand
classes in the order of nonincreasing backorder cost, we have
siðtÞrsjðtÞ for classes io j. We also define Hðt,XðtÞÞ as the expected
cost for the remaining time t. Thus, our objective is to find the
rationing policy that minimizes the expected total cost, which can
be written as follows:

min
siðtÞ

i¼ 1, . . . ,K

Hðu,xÞ: ð1Þ

Without loss of generality, let sni ðtÞ denote the optimal critical
level of class i and let Hn

ðu,xÞ denote the optimal total expected
cost. We know that sn1ðtÞ must be zero because class 1 has the
highest backorder cost and there is no advantage in rejecting
demand from class 1.

2.2. Dynamic critical levels for systems with two demand classes

Consider a single period system with two demand classes
ðK ¼ 2Þ and suppose that a customer demand has just arrived
when the time remaining is t. If the demand is from class 1, it
must be satisfied. If the demand is from class 2, it can either be
satisfied or rejected. When this demand is satisfied, the total
expected cost at the remaining time t is Hn

ðt,XðtÞ�1Þ. If this
demand is rejected, the total expected cost at the remaining time
t is Hn

ðt,XðtÞÞþe2ðtÞ, where e2ðtÞ ¼ c0þp2þ p̂2t is the backorder
cost. If Hn

ðt,XðtÞ�1Þ4Hn
ðt,XðtÞÞþe2ðtÞ, then this demand should

be rejected. Hence, the optimal dynamic critical level of class 2 is

sn2ðtÞ ¼max XðtÞ9Hn
ðt,XðtÞÞþe2ðtÞ�Hn

ðt,XðtÞ�1Þo0
� �

: ð2Þ

It is difficult to solve Eq. (2) because the closed form for
Hn
ðt,XðtÞÞ�Hn

ðt,XðtÞ�1Þ cannot be found easily.
Thus, we adopt two important ideas to approximate sn2ðtÞ. First,

if a demand class is rejected, this demand class will be rejected for
the remaining time until the end of the period. This is a reason-
able approximation because when a demand class is rejected, it
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intuitively implies that there is unlikely to be sufficient stock to
cater for the less important classes for the remainder of the
period.

Second, we use the marginal cost of rejecting the demand to
determine the critical level. The marginal cost is computed by
assuming that either this and all future demand classes are rejected
or that the current demand is accepted but future demands are
rejected. When a demand from class 2 arrives, we use this marginal
cost to decide whether this demand is accepted or rejected.

Define DJ2ðt,XðtÞÞ as the marginal cost of rejecting demand
class 2 at the remaining time t when on-hand inventory is XðtÞ.

Without loss of generality, we consider two cases: XðtÞ ¼ s

(when the demand is rejected at the remaining time t) and
XðtÞ ¼ s�1 (when the demand is accepted at the remaining time
t, but all future demands of this class are rejected).

Fig. 1 illustrates the on-hand inventory for both cases, where
the solid line represents XðtÞ ¼ s and the dashed line represents
XðtÞ ¼ s�1. Note that, because we assume that all future demands
from class 2 are rejected, the inventory decreases only when the
demand of class 1 arrives. The line below the horizontal axis
represents the backorder quantities of class 1.

Given on-hand inventory of s at the remaining time t, let ts be
the time it takes to run out of inventory. Define D1ðtÞ as the total
demand of class 1 from the remaining time t to the end of the
period.

The XðtÞ ¼ s case has higher holding costs than does the
XðtÞ ¼ s�1 case. If D1ðtÞos, the difference in holding costs
between the two cases is hUt. If D1ðtÞZs, the difference in holding
costs between the two cases is tsUh.

The XðtÞ ¼ s case has lower backorder cost than does the
XðtÞ ¼ s�1 case.

If D1ðtÞos, then D1ðtÞrs�1. Thus, there is no backorder for
both cases and there is a difference of one unit of product. This
means that there is an extra salvage value, c0, for the XðtÞ ¼ s case.

If D1ðtÞZs, the sth demand of class 1 can be satisfied in the
XðtÞ ¼ s case. However, the sth demand of class 1 cannot be
satisfied in the XðtÞ ¼ s�1 case. Thus, this demand class has an
extra backorder cost of c0þp1þ p̂1Uðt�tsÞ in the XðtÞ ¼ s�1 case.

In fact, these cost differences between the XðtÞ ¼ s and
XðtÞ ¼ s�1 cases are the marginal costs of rejecting demand class
2 at the remaining time t. Thus

DJ2ðt,sÞ ¼ tUhUPðD1ðtÞosÞþhUEðts9D1ðtÞZsÞUPðD1ðtÞZsÞ

� c0þp1þp̂1UE½ðt�tsÞ9D1ðtÞZs�
� �

UPðD1ðtÞZsÞ

�c0UPðD1ðtÞosÞ

¼ hUt�½tUðp̂1þhÞþp1�UPðD1ðtÞZsÞ

þðp̂1þhÞUE½ts9D1ðtÞZs�UPðD1ðtÞZsÞ�c0, ð3Þ
�s

t 0
Remaining time

On-hand
inventory

s −1
s

End of period

0

Fig. 1. On-hand inventory after rejecting some order from class 2 at remaining

time t.
where PðD1ðtÞosÞ is the probability of D1ðtÞos and PðD1ðtÞZsÞ is
the probability of D1ðtÞZs.

Now, we demonstrate the monotonicity property of DJ2ðt,sÞ.

Lemma 1. For the remaining time t and sZ0, DJ2ðt,sÞ is nonde-

creasing in s.

Proof. See Appendix.&

After deriving the marginal cost of rejecting demand class 2,
we use the above two ideas to approximate sn2ðtÞ. Define

sa
2ðtÞ ¼max s9DJ2ðt,sÞþe2ðtÞo0

� �
: ð4Þ

We show the relationship between sa
2ðtÞ and DJ2ðt,sÞ.

Theorem 1. For demand class 2, there exists a unique critical level,
sa

2ðtÞ, at the remaining time t such that

DJ2ðt,sÞþe2ðtÞZ0 f or s4sa
2ðtÞ, and

DJ2ðt,sÞþe2ðtÞo0 f or srsa
2ðtÞ:

Proof. Theorem 1 holds from Lemma 1. &

Theorem 1 shows that once the on-hand inventory drops
below the unique critical level, sa

2ðtÞ, all future demands from
demand class 2 will be rejected until the next replenishment
arrives. This result is consistent with our assumptions. We now
establish the monotonicity property of sa

2ðtÞ from Theorem 1 and
Eqs. (3) and (4).

Theorem 2. For p1 ¼ p2 ¼ 0 , sa
2ðtÞ is nondecreasing in the remain-

ing time t.

Proof. See Appendix. &

Theorem 2 shows that sa
2ðt1ÞZsa

2ðt2Þ for t1Zt2 when
p1 ¼ p2 ¼ 0. This means that when the remaining time becomes
smaller, we only need to reserve fewer inventories for class 1.

2.3. Dynamic critical levels for systems with more than two demand

classes

We now consider a single period system with more than two
demand classes. We assume that a demand arrives at the
remaining time t. If the demand is from class 1, then it must be
satisfied. Otherwise, it can either be satisfied or rejected. Similarly
to the case of two demand classes in the previous subsection, we
generalize sa

2ðtÞ and approximate the dynamic critical level of
class m by sa

mðtÞ. Hence, define

sa
mðtÞ ¼max XðtÞ9DJmðt,XðtÞÞþemðtÞo0

� �
, ð5Þ

where DJmðt,XðtÞÞ is the marginal cost of rejecting demand class m

at the remaining time t.
To compute the critical levels for all demand classes, we adopt

a sequential approach; i.e., we use the dynamic critical levels for
demand classes 2 to m�1 to compute the dynamic critical level
for demand class m. Note that from Subsection 2.1, we know that
the critical level of class 1 is zero.

Suppose we want to compute the critical level for demand
class m, assuming that the dynamic critical levels for demand
classes 2, 3,y,m�1 are known. Similarly, we assume that if a
demand class is rejected, that demand class will be rejected for
the remainder of the period. Without loss of generality, we
consider two cases: XðtÞ ¼ s (when the demand of class m is
rejected at the remaining time t) and XðtÞ ¼ s�1 (when the
demand of class m is accepted at the remaining time t, but all
future demands of this class will be rejected). Fig. 2 illustrates a
realization of on-hand inventory for both cases, where the solid
line represents XðtÞ ¼ s and the dashed line represents XðtÞ ¼ s�1.



0
Remaining time

Inventory

s
s −1

t

Critical level of class m−1

End of period

m−1
s−1t

Fig. 2. On-hand inventory versus remaining time.
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This figure shows that, to compute the marginal cost difference
between the two cases, we should consider two different situa-
tions. In the first situation, all demands from class m�1 are
accepted in both cases, and in the second situation, demands from
class m�1 are rejected for the XðtÞ ¼ s�1 case. In the first
situation, the only cost difference is that in inventory holding
costs. In the second situation, the cost difference is a weighted
sum of the differences in inventory holding costs and
backorder costs.

To compute the critical level for demand class m at the
remaining time t, we assume that demand class m is rejected at
the remaining time t. This implies that any demand class i, where
i4m, will be rejected. A demand class i, where iom, may be
rejected in the future if the inventory level is below the respective
dynamic critical level. To determine the conditions under which
situation 1 applies, we must identify the time at which demand
class m�1 is first rejected given XðtÞ ¼ s�1; we denote this time
as tm�1

s�1 . This means that tm�1
s�1 is the maximum amount of time

remaining when Xðtm�1
s�1 Þ is equal to the dynamic critical level of

demand class m�1. When the remaining time is between t and
tm�1

s�1 , situation 1 applies. Hence, situation 2 applies when the
remaining time is between tm�1

s�1 and 0.
For subsequent derivations, we must define tm�1

s , which is the
maximum amount of time remaining when Xðtm�1

s Þ is equal to the
dynamic critical level of demand class m�1. Note that tm�1

s rtm�1
s�1 .

Now, we examine the cost differences between the XðtÞ ¼ s

case and the XðtÞ ¼ s�1 case under two different situations; i.e.,
the remaining time intervals ½tm�1

s�1 ,t� and ½0,tm�1
s�1 Þ.
(i)
 Situation 1: Remaining time interval ðtm�1
s�1 ,t�

The difference in costs between the two cases in this interval
is one unit of inventory cost. Thus, the cost difference is
hUðt�tm�1

s�1 Þ.

(ii)
 Situation 2: Remaining time interval ½0,tm�1

s�1 �

To derive the cost difference between the two cases, we
assume that the approximated dynamic critical level of
demand class m�1 remains unchanged in the remaining time
interval ½tm�1

s ,tm�1
s�1 �. That is, sa

m�1 ðt
m�1
s�1 Þ ¼ sa

m�1ðt
m�1
s Þ. Thus, for

the XðtÞ ¼ s�1 case, we have Xðtm�1
s�1 Þ ¼ sa

m�1ðt
m�1
s�1 Þ ¼ sa

m�1ðt
m�1
s Þ.

For the XðtÞ ¼ s case, we have Xðtm�1
s�1 Þ ¼ sa

m�1ðt
m�1
s�1 Þþ1¼ sa

m�1

ðtm�1
s Þþ1.
Consider the XðtÞ ¼ s case. Demand class i, where iZm�1, will
be rejected when the remaining time is less than tm�1

s . This is
because Xðtm�1

s Þ is less than or equal to the dynamic critical level
of demand class m�1.

Similarly, for the XðtÞ ¼ s�1 case, when the remaining time is
less than tm�1

s�1 , demand class i, where iZm�1, will be rejected
because Xðtm�1

s�1 Þ is less than or equal to the dynamic critical level
of demand class m�1.
Hence, in the interval ½tm�1
s ,tm�1

s�1 �, there is one extra unit of
inventory in the XðtÞ ¼ s case. The marginal cost over the ½0,tm�1

s �

interval depends on the realization of the demand class at the
remaining time tm�1

s . (Note that by definition, this demand class
cannot come from classes m and above because all these will be
rejected and, thus, there will be no corresponding fall in inventory
for the XðtÞ ¼ s case.) If the demand comes from classes 1 to m�2,
that demand will be accepted in both cases, and so the marginal
cost will be DJm�1ðt

m�1
s ,sa

m�1ðt
m�1
s�1 ÞÞ. This is because the starting

inventory at the remaining time tm�1
s for the XðtÞ ¼ s case is

always one more than the starting inventory for the XðtÞ ¼ s�1
case, and it is equal to the critical level for demand class m�1;
i.e., sa

m�1ðt
m�1
s�1 Þ. However, if the demand comes from class m�1,

this demand will be accepted for the XðtÞ ¼ s case but will be
rejected for the XðtÞ ¼ s�1 case. Hence, the cost difference is
em�1 tm�1

s

� �
.

Thus, the difference in average costs between the two cases
in situation 2 is

hUðtm�1
s�1 �tm�1

s ÞþDJm�1ðt
m�1
s ,sa

m�1ðt
m�1
s�1 ÞÞU

Pm�2
i ¼ 1 liPm�1
i ¼ 1 li

 !

�em�1ðt
m�1
s ÞU

lm�1Pm�1
i ¼ 1 li

 !
, ð6Þ

where ð
Pm�2

i ¼ 1 liÞ=ð
Pm�1

i ¼ 1 liÞ is the probability that the next
demand is from class 1 to m�2, and lm�1=ð

Pm�1
i ¼ 1 liÞ is the

probability that the next demand is from class m�1.
By combining situations 1 and 2, given the realization of tm�1

s ,
the total marginal cost of rejecting demand class m at the
remaining time t when the inventory level is s is

DJmðt,s9tm�1
s Þ ¼ hUðt�tm�1

s ÞþDJmðt
m�1
s ,sa

m�1ðt
m�1
s ÞÞU

Pm�2
i ¼ 1 liPm�1
i ¼ 1 li

 !

�em�1ðt
m�1
s ÞU

lm�1Pm�1
i ¼ 1 li

 !
: ð7Þ

Note that tm�1
s is a random variable that depends on the on-

hand inventory XðtÞ, the dynamic critical level sa
m�1ðtÞ, and the

demand arrival process. Let pðUÞ denote the probability density
function of this random variable. It is possible that Xð0Þ4sa

m�1ð0Þ.
If Xð0Þ4sa

m�1ð0Þ, then inventory always exceeds the dynamic
critical level of demand class m�1. In this case, the marginal cost
of rejecting demand from class m�1 is ht�c0. By defining
P¼ 1�

R t
0 pðtm�1

s Þdtm�1
s , which is the probability of Xð0Þ4sa

m�1ð0Þ,
we have

DJmðtc ,sÞ �

Z t

0
½DJmðt,s9tm�1

s Þ�Upðtm�1
s Þdtm�1

s þPUðht�c0Þ: ð8Þ

Eq. (8) can be reduced to Eq. (4) when m¼2.

Because sa
m�1ðt

m�1
s Þ ¼max s9DJm�1ðt

m�1
s ,Xðtm�1

s ÞÞþem�1ðt
m�1
s Þo0

� �
,

it follows that DJm�1
X ðt,sÞþem�1ðtÞ is approximately zero. More-

over, because of our assumption that the dynamic critical level for
class m�1 remains unchanged in the remaining time interval

½tm�1
s ,tm�1

s�1 � (i.e., Xðtm�1
s Þ � sa

m�1ðtÞ), we can approximate DJm�1

ðtm�1
s ,sa

m�1ðt
m�1
s ÞÞ by �em�1ðt

m�1
s Þ. Hence, Eq. (8) can be approxi-

mated by

DJmðt,sÞ �

Z t

0
½hUðt�tm�1

s Þ�em�1ðt
m�1
s Þ�Upðtm�1

s Þdtm�1
s þPðht�c0Þ:

ð9Þ

From Eqs. (5) and (9), we can generate the approximate
optimal dynamic critical level of class m from sa

2ðtÞ,s
a
3ðtÞ,y,sa

m�1ðtÞ:

Therefore, all dynamic critical levels can be generated sequen-
tially starting from the lowest demand class index.
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We propose the following algorithm to generate the dynamic
critical levels for all demand classes.

Step 1: Set the optimal dynamic critical level of class 1 to be
zero: sn1ðtÞ ¼ 0.
Step 2: Considering only classes 1 and 2, use Theorem 1 in
Section 2.2 to estimate sa

2ðtÞ, tA ½0,u�. Set m¼3.
Step 3: Given sa

i ðtcÞ, iA 2,:::,m�1f g, use Eqs. (5) and (9) to find
sa

mðtÞ, tA ½0,u�. Set m¼mþ1.
Step 4: Stop if mZKþ1. Otherwise, go to Step 3.

2.4. Expected total cost

In this subsection, we estimate the expected total cost by using
an iterative method based on

Hðt,0Þ ¼
XK

i ¼ 1

piþ p̂iðtÞ, ð10aÞ

Hðt,xÞ �Hðt,0Þþ
Xx

j ¼ 1

DJ2ðt,jÞ for xAð0,sa
2ðtÞ�, ð10bÞ

Hðt,xÞ �Hðt,sa
mðtÞÞþ

Xx

j ¼ sa
mðtÞþ1

DJmþ1ðt,jÞ for

xAðsa
mðtcÞ,s

a
mþ1ðtcÞ� and 2rmoK , ð10cÞ

Hðt,xÞ �Hðt,sa
K ðtÞÞþ

Xx

j ¼ sa
K
ðtÞþ1

DJKþ1ðt,jÞ for xAðsa
K ðtcÞ,1Þ: ð10dÞ

Eq. (10a) represents the case in which there is no initial on-hand
inventory, i.e., XðtÞ ¼ x¼ 0. In this case, all demands should be
rejected. The total cost will be equal to the sum of the total
expected backorder costs of all the classes.

Eq. (10b) represents the case in which the initial on-hand
inventory is below the critical level of class 2. In this case, only
class 1 demand is accepted, and so the expected total cost can be
approximated by

Px
j ¼ 1 DJ2ðt,jÞ, where DJ2ðt,jÞ is given by Eq. (4).

Eqs. (10c) and (10d) represent cases in which the initial on-
hand inventory is between the critical levels of class m and class
mþ1, where m is between two and K�1 and the initial on-hand
inventory is above the critical level of class K. Similarly, the
expected total cost can be approximated by the sum of the
marginal costs given in Eq. (9).
3. Inventory rationing in multiperiod systems

In this section, we consider dynamic inventory rationing
models for multiperiod systems with general demand process in
which backordering is allowed.

3.1. Notation and model formulation

Consider an inventory system with a single type of product
and K demand classes for an infinite time horizon. We assume
that the demand process, the backorder cost, and the holding cost
are the same as those of the single period model in Section 2. We
adopt a policy of dynamic critical level rationing with periodic
review ordering (R,S).

Under this ordering policy, the ordering opportunities, m¼0, 1,
2,y, occur at fixed intervals of time and the amount of time
between two successive order opportunities is u, where R¼ u. In
addition, the deterministic lead time taken to replenish orders is L.
The order placed at the mth order opportunity will arrive at time
lm ¼muþL. The time interval (lm,lmþ1) is termed the mth replen-
ishment period. When the mth replenishment order arrives at time
lm, backorders are instantaneously fulfilled according to the follow-
ing mechanism. Backorders from the most important (lowest index)
demand class are always fulfilled first. Second, if replenishment is
sufficient, less important demand classes are fulfilled.

With backorders fulfilled, we define ym as the net inventory
and Bm as the remaining backorders at time lm. Note that
Bm ¼ bm

1 ,. . .,bm
K

� �
is the vector of backorders for all demand

classes, where bm
i Z0 is the amount of backorders for demand

class i. Under the above backorder fulfillment mechanism, ym may
be negative if some backorders remain unfulfilled. If ymZ0, then
bm

i ¼ 0 for all i. Otherwise, there is no on-hand inventory andPK
i ¼ 1 bm

i ¼�ym. Thus, ðym,BmÞ is the state variable at the begin-
ning of the mth replenishment period and its distribution
depends on the rationing policy and the base stock level S. Let
PS,nðym,BmÞ denote the probability distribution of the state vari-
able (ym,Bm) at the beginning of the mth replenishment period
subject to the rationing policy n and the base stock level S.

Similarly, let Cnðym,BmÞ be the expected inventory cost
incurred in the mth replenishment period subject to the state
variable ðym,BmÞ and the rationing policy n. For ymo0, Cnðym,BmÞ

consists of backorder costs from Bm and from new backorders
arising in this period.

For the multiperiod system, define ACðS,nÞ as the expected
average cost incurred during a period in which the base stock
level is S and the prevailing dynamic rationing policy is n. We can
now model the optimization problem for the dynamic critical
level rationing policy as follows:

min
S,n

ACðS,nÞ ¼ lim
M-1

1

M

XM�1

m ¼ 0

X
ym ,Bm

Cnðym,BmÞUPS,nðym,BmÞ: ð11Þ

The goal is to minimize the expected average cost in Eq. (11),
which consists of inventory holding costs and backorder costs.
Note that all rejected or unfulfilled orders are backlogged. Hence,
we can ignore the variable ordering cost and set the salvage value
to zero: c0 ¼ 0.

3.2. A solution to the optimization problem

In solving the rationing problem given by Eq. (11), the main
issue is that the probability distribution for backorders, Bm,
depends on the rationing policy n and the base stock level S. It
is difficult to derive a closed form solution for the probability
mass function for Bm. Hence, we propose a heuristic method to
solve the rationing problem given by Eq. (11).

In Section 2, we proposed an approximate dynamic rationing
policy for a single period problem. We now propose a rationing
policy for a multiperiod problem. Let na be the rationing policy for
the multiperiod system, where each stock ration in each period is
determined according to our corresponding approximate dynamic
critical level. The goal is to locally minimize inventory costs in
each period, ignoring subsequent periods.

We now develop an approximate expression for ACðS,naÞ.
Given the base stock level S and the rationing policy na, the
probability mass function of the state variable (ym,Bm) is
PS,na
ðym,BmÞ ¼ PðDL ¼ S�ymÞ, for ymZ0:X

Bmj j ¼ �y

PS,na
ðym,BmÞ ¼ PðDL ¼ S�ymÞ for ymo0, ð12Þ

where Bmj j ¼
PK

i ¼ 1 bm
i and DL is the demand that arrives during

the lead time L. Note that the probability mass functions in
Eq. (12) are independent of m and na.

Recall that Cna ðy,BÞ is the expected inventory cost incurred in
the mth replenishment period subject to the state variable ðym,BmÞ



Table 1
Worst relative error under different operational conditions.

Factors Parameters DHðna ,xnÞ

(%)

xn

u l1 : l2 : l3 p̂1 : p̂2 : p̂3

Base case 0.1 1:1:1 20:5:1.5 0.16 60

Changing ratios of

backorder costs

0.1 1:1:1 5:2:1.5 0.03 63

10:3:1.5 0.08 45

40:8:1.5 0.50 53

100:10:1.5 1.31 55

Changing ratios of arrival

rates

0.1 1:2:3 20:5:1.5 0.24 45

1:3:6 0.24 38

1:10:100 0.29 10

3:2:1 0.10 58

6:3:1 0.08 58

100:10:1 0.01 70

3:6:1 0.23 58

10:100:1 0.37 43

1:6:3 0.32 30

1:100:10 0.44 20

Changing time horizon 0.05 1:1:1 20:5:1.5 0.85 32

0.15 0.13 80

0.2 0.10 118

0.3 0.06 160

Fig. 3. Optimal and proposed critical levels in the base case.
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and the rationing policy na. We now approximate Cna ðym,BmÞ for
two different cases: ymZ0 and ymo0.

For ymZ0:

Cna ðym,BmÞ �Hðu,ymÞ, ð13Þ

where Hðu,ymÞ is the expected total cost in a single period of
length u, given zero salvage cost (c0 ¼ 0) and initial on-hand
inventory of ym.

For ymo0:

Cna ðym,BmÞ �Hðu,0Þþ
XK

i ¼ 1

bm
i Up̂iUu, ð14Þ

where Cna ðym,BmÞ consists of backorder costs from Bm and new
backorders arising during the period.

In a multiperiod system, one can preserve inventory for future
use for more important demand classes by rejecting other
demand classes during each period. It is assumed that backorders
from more important demand classes are fulfilled using the
mechanism described in the previous section. Therefore, for the
mth replenishment period, given remaining backorders of ym, on
average, there should be more backorders from less important
demand classes. Moreover, in practice, ymo0 is unlikely. Thus, for
ymo0, we can rewrite Eq. (14) as

Cna ðym,BmÞ �Hðu,0Þ�ymUp̂KUu, ð15Þ

where we assume that all backorders in ym are from the least
important demand class K.

Based on Eqs. (12)–(15), we can approximate the average cost as

ACðS,naÞ �
1

M

XM�1

m ¼ 0

XS

ym ¼ 0

Hðu,ymÞUPðDL ¼ S�ymÞ

0
@

þ
X�1

ym ¼ �1

ðHðu,0Þ�ymUp̂KUuÞUPðDL ¼ S�ymÞ

!

¼
XS

y ¼ 0

Hðu,yÞUPðDL ¼ S�yÞ

þ
X�1

y ¼ �1

ðHðu,0Þ�yUp̂KUuÞUPðDL ¼ S�yÞ:

For a given rationing policy na, all replenishment periods are
the same. By replacing ym with y, we can rewrite Eq. (11) as

min
S

ACðS,naÞ �min
S

XS

y ¼ 0

Hðu,yÞUPðDL ¼ S�yÞ

þ
X�1

y ¼ �1

ðHdyðu,0Þ�yUp̂KUuÞUPðDL ¼ S�yÞ: ð16Þ

4. Numerical study

In this section, we conduct numerical studies to investigate the
effectiveness of our proposed methods. We develop bounds to
evaluate the quality of our proposed solutions under different
scenarios when the demands follow a Poisson process. These
bounds are valid for both single and multiperiod problems.

We first consider the single period problem. Let na denote the
dynamic critical level implied by the proposed method and let nn
denote the optimal dynamic critical level, which can be derived
when the demand follows a Poisson process (Chew et al., 2011).
Also, let Hnðu,xÞ denote the expected total cost incurred during
a single period of length u under rationing policy n starting with
on-hand inventory of x. We define the relative error for the
expected total cost as

DHðna,xÞ ¼
Hna ðu,xÞ�Hnn ðu,xÞ

Hnn ðu,xÞ
� 100%,

where DHðna,xÞ is determined by na and x.
In this numerical study, we consider a base case in which there

are three demand classes. In this base case, for the length of the
period, we choose u¼ 0:1, we choose the holding cost h¼ 1, and
we choose the salvage value c0 ¼ 0. For the backorder costs, we
assume p1 ¼ p2 ¼ p3 ¼ 0 and p̂3 ¼ 1:5, where p̂1 : p̂2 : p̂3 ¼ 20 :
5 : 1:5. For the demand arrival rates, we let l1 ¼ l2 ¼ l3 ¼ 300.
We also varied some parameters; different parameter settings are
listed in Table 1.

For each new parameter setting, we compute the optimal
dynamic critical level and the approximate dynamic critical level
of the proposed method. Then, we use simulation to estimate
their costs. To ensure the accuracy of the estimated costs, we
repeat the simulation 20,000 times for each parameter setting.
The results are illustrated in Figs. 3 and 4 and reported in Table 1.
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Fig. 3 shows both optimal and proposed dynamic critical levels
for classes 2 and 3 in the base case. Note that both the optimal
and proposed dynamic critical level for class 1 is zero. Curves nn_2
and nn_3 represent the optimal dynamic critical levels for classes
2 and 3, respectively. Curves na_2 and na_3 represent the
proposed dynamic critical levels for classes 2 and 3, respectively.
The time horizon u¼ 0:1 is divided into 900 intervals. Fig. 3 shows
that the proposed critical levels are very close to the optimal
critical levels.

Fig. 4 illustrates the relative error, DHðna,xÞ, for different initial
levels of on-hand inventory of x in the base case. Note that
DHðna,xÞ is no higher than 0.16% and may be monotonic in x.
Moreover, DHðna,xÞ is close to zero when x is either very small or
very large. When x is large, there is always enough initial
inventory to satisfy demands of all classes. Thus, the relative
error induced by the proposed policy is negligible. Similarly,
when x is small, most demand classes cannot be satisfied for
any policy in a single period problem. Thus, the best strategy is to
reserve all inventory for demand class 1. Hence, the relative error
induced by the proposed policy is again negligible.

Define DHðna,xnÞ ¼maxxZ0 DHðna,xÞ as the worst relative error.
Table 1 shows how several factors affect the worst relative error.
In all cases reported in Table 1, DHðna,xnÞ is small. Few factors
significantly affect the worst relative error.

The factor that most significantly affects DHðna,xnÞ is the
backorder cost ratio. As backorder costs for the more important
classes increase, DHðna,xnÞ increases. This follows from our
assumption that if some demand classes are rejected, these
demand classes will be rejected for the remainder of the time
period.

Note that when changing the ratios of arrival rates, we fix the
total arrival rate at 900. Thus, the arrival rate ratio of 1:2:3 is
implemented as 150:300:450 and the ratio of 1:3:6 is implemen-
ted as 100:300:600. We approximate the arrival rate ratio of
1:10:100 by 9:81:810.

The numerical study shows that the proposed dynamic critical
levels are very close to the optimal critical levels and that the
relative errors for expected total cost are also small. However,
when the number of demand classes increases, we may expect
the relative errors to increase. This is because we determine the
dynamic critical levels sequentially.

Note that the derived bounds reported in Table 1 are also valid
for the multiperiod problem. This is because the results for the
simulated cases reported in Table 1 are based on a starting
inventory that represents the worst-case scenario and because
the probability of having negative inventory at the beginning of
each period is negligible (around 10–4). Given that we have
considered extreme cases, in which the penalty cost is as much
as 100 times higher than the inventory cost, these results are
reasonable.
5. Conclusions and extensions

In this paper, we developed a heuristic approach to computing the
dynamic critical levels for systems with general demand arrival
processes. We first considered a single period problem and then
extended this to a multiperiod system. The heuristic approach is
based on two ideas. The first idea is that any demand class that is
rejected in one period will be rejected for the remainder of the period.
The second idea is that dynamic critical levels can be derived based
on the difference in the marginal costs of accepting and rejecting a
demand class. These two ideas have enabled us to deal with more
general demand processes. Our numerical study shows that the
outcomes generated by our proposed approach compare favorably
with the optimal solutions under most parameter settings.

For future work, we will consider relaxing some of our model
assumptions. For example, we could allow a demand from a class
that is initially rejected to be accepted in the future. We could
also consider backorders being satisfied before replenishment
orders arrive.
Appendix
Proof of Lemma 1. From Eq. (3), we have

DJ2ðt,sþ1Þ ¼ hUt�c0�½tUðp̂1þhÞþp1�UPðD1ðtÞZsþ1Þ

þðp̂1þhÞUE½tsþ19D1ðtÞZsþ1�UPðD1ðtÞZsþ1Þ, ðA:1Þ

and

DJ2ðt,sÞ ¼ hUt�c0�½tUðp̂1þhÞþp1�UPðD1ðtÞZsÞ

þðp̂1þhÞUE½ts9D1ðtÞZs�UPðD1ðtÞZsÞ: ðA:2Þ

From (A.1) and (A.2) we have

DJ2ðt,sþ1Þ�DJ2ðt,sÞ ¼ ½tUðp̂1þhÞþp1�UPðD1ðtÞ ¼ sÞ

þðp̂1þhÞU E½tsþ19D1ðtÞZsþ1�UPðD1ðtÞZsþ1Þ
�

�E½ts9D1ðtÞZs�UPðD1ðtÞZsÞ
�
: ðA:3Þ

Note that

E½ts9D1ðtÞZs�UPðD1ðtÞZsÞ

¼
X1
i ¼ s

E½ts9D1ðtÞ ¼ i�UPðD1ðtÞ ¼ iÞ

¼ E½ts9D1ðtÞZsþ1�UPðD1ðtÞZsþ1ÞþE½ts9D1ðtÞ ¼ s�UPðD1ðtÞ ¼ sÞ:

ðA:4Þ

By substituting (A.4) into (A.3), we obtain

DJ2ðt,sþ1Þ�DJ2ðt,sÞ ¼ ½tUðp̂1þhÞþp1�UPðD1ðtÞ ¼ sÞ

þðp̂1þhÞU E½tsþ19D1ðtÞZsþ1�
�

UPðD1ðtÞZsþ1Þ�E½ts9D1ðtÞZsþ1�

UPðD1ðtÞZsþ1Þ
�
�ðp̂1þhÞUE½ts9D1ðtÞ ¼ s�

UPðD1ðtÞ ¼ sÞ ¼ ½tUðp̂1þhÞþp1��ðp̂1þhÞ
�

UE½ts9D1ðtÞ ¼ s�
�
UPðD1ðtÞ ¼ sÞþðp̂1þhÞ

U E½tsþ19D1ðtÞZsþ1�UPðD1ðtÞZsþ1Þ
�
�E½ts9D1ðtÞZsþ1�UPðD1ðtÞZsþ1Þ

�
: ðA:5Þ

For E½ts9D1ðtÞ ¼ s�rt, we have

½tUðp̂1þhÞþp1��ðp̂1þhÞUE½ts9D1ðtÞ ¼ s�

¼ ðp̂1þhÞU t�E½ts9D1ðtÞ ¼ s�
� �

þp1 Z0:

Thus, E½tsþ19D1ðtÞZsþ1�UPðD1ðtÞZsþ1Þ4E½ts9D1ðtÞZsþ1�UPðD1

ðtÞZ sþ1Þ.
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From (A.5), we have DJ2ðt,sþ1Þ�DJ2ðt,sÞ40: &

Proof of Theorem 2. Lemma 1 implies that DJ2ðt,sÞ is nonde-
creasing in s. Thus, DJ2ðt,sÞþe2ðtÞ is nondecreasing in s.

Next, we show the continuity of DJ2ðt,sÞþe2ðtÞ. Given s40,

J2ðt,sÞ is a continuous function of remaining time t. Moreover,

e2ðtÞ ¼ c0þp2þp̂2t is a continuous function of remaining time t.

Thus, DJ2ðt,sÞþe2ðtÞ is a continuous function of remaining time t.

Given a remaining time of t¼ 0þ , no more orders will arrive in

this arbitrarily small remaining time interval. Thus, all orders

from demand class 2 can be accepted at a remaining time of

t¼ 0þ . This implies:

DJ2ð0
þ ,sÞþe2ð0

þ
Þ40 ðA:6Þ

For given so1, if the remaining time t¼1, then we must

reject demands from class 2 because of limited on-hand inventory

and infinite remaining time. Thus:

DJ2ð1,sÞþe2ð1Þo0 ðA:7Þ

From (A.6) and (A.7), and the continuity of DJ2ðt,sÞþe2ðtÞ, there

exists some remaining time t0 such that DJ2ðt0,sÞþe2ðt0Þ ¼ 0 for

given on-hand inventory s. Hence, define ts
2 ¼min t09DJ2ðt0,sÞþ

�
e2ðt0Þ ¼ 0g.

From the continuity property and the definition of ts
2, we have

DJ2ðt,sÞþe2ðtÞo0 for tA ½ts
2,1Þ ðA:8Þ

and

@½DJ2ðt
s
2,sÞþe2ðt

s
2Þ�

@t
r0: ðA:9Þ

Next, we show that inequality (A.9) holds for tA ½ts
2,1Þ. We

know that ts is a continuous random variable. Let pðtsÞ be its

probability density function. For the cumulative distribution

function, we have

FðtÞ ¼ PðtsrtÞ ¼ PðD1ðtÞZsÞ: ðA:10Þ

Thus

dPðD1ðtÞZsÞ

dt
¼ pðts ¼ tÞZ0 ðA:11Þ

and

dE½ts9D1ðtÞZs�UPðD1ðtÞZsÞ

dt
¼

d

dt

Z t

0
tsUpðtsÞUdts ¼ tUpðts ¼ tÞ:

ðA:12Þ

From Eqs. (A.2) and (A.12), we have

@½DJ2ðt,sÞþe2ðtÞ�

@t
¼ h�ðp̂1þhÞUPðD1ðtÞZsÞ�tUðp̂1þhÞUpðts ¼ tÞ

�p1Upðts ¼ tÞþðp̂1þhÞUtUpðts ¼ tÞþ p̂2

¼ h�ðp̂1þhÞUPðD1ðtÞZsÞ�p1Upðts ¼ tÞþ p̂2

¼ h�ðp̂1þhÞUPðD1ðtÞZsÞþp̂2,

which holds because p1 ¼ p2 ¼ 0.
From (A.10), PðD1ðtÞZsÞ ¼ FðtÞ is a nondecreasing function of t.

Thus, for any remaining time tA ½ts
2,1Þ

@½DJ2ðt,sÞþe2ðtÞ�

@t
r
@½DJ2ðt

s
2,sÞþe2ðt

s
2Þ�

@t
r0: ðA:13Þ

From (A.8) and (A.13), it follows that DJ2ðt,sÞþe2ðtÞo0 and that

DJ2ðt,sÞþe2ðtÞ is a nonincreasing function of remaining time

tA ðts
2,1Þ. Given that sa

2ðtÞ ¼max s9DJ2ðt,sÞþe2ðtÞo0
� �

from

Eq. (4), sa
2ðtÞ is nondecreasing in remaining time t. &
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