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This study investigates the independent modulators that mediate the power spectra of electrophysiological
processes, measured by electroencephalogram (EEG), in a sustained-attention experiment. EEG and behav-
ioral data were collected during 1-2 hour virtual-reality based driving experiments in which subjects were
instructed to maintain their cruising position and compensate for randomly induced drift using the steering
wheel. Independent component analysis (ICA) applied to 30-channel EEG data separated the recorded EEG
signals into a sum of maximally temporally independent components (ICs) for each of 30 subjects. Logarith-
mic spectra of resultant IC activities were then decomposed by principal component analysis, followed by
ICA, to find spectrally fixed and temporally independent modulators (IM). Across subjects, the spectral ICA
consistently found four performance-related independent modulators: delta, delta-theta, alpha, and beta
modulators that multiplicatively affected the spectra of spatially distinct IC processes when the participants
experienced waves of alternating alertness and drowsiness during long-hour simulated driving. The activa-
tion of the delta-theta modulator increased monotonically as subjects' task performances decreased. Further-
more, the time courses of the theta-beta modulator were highly correlated with concurrent changes in

driving errors across subjects (r=0.77 £0.13).

© 2012 Elsevier Inc. All rights reserved.

Introduction

Studies assessing physiological and neural systems across the human
alertness-drowsiness dimension have made good progress in the past
decades (Cantero et al., 2002, 2004; Kaminski et al., 1997; Oken et al.,
2006). The motivation of these studies has mainly been to understand
the physiological mechanisms associated with performance declines in
attention-demanding tasks in operational, surveillance, or driving envi-
ronments. Several studies have demonstrated the neuronal correlates
of arousal states and sustained attention with invasive assessments
(Akimoto et al., 1956; Destexhe et al., 2007; McCormick and Bal, 1997;
Steriade, 2000) and non-invasively recorded electroencephalograms
(EEG) (Achermann and Borbely, 1998; Beatty et al., 1974; Campagne et
al., 2004; Cantero et al., 2002; Duckrow and Zaveri, 2005; Jung et al.,
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1997; Lin et al., 2005a; Makeig and Inlow, 1993; Makeig and Jung,
1995; Schier, 2000; Takahashi et al., 1997). Scalp EEG measurement
has recently gained increasing attention because of its accessibility and
potential for real-world applications.

Several studies have demonstrated the use of scalp EEG spectral dy-
namics as a means for exploring the neurophysiological correlates of
human performance and alertness levels. For example, Makeig and
Jung (1995) reported that theta- and alpha-power increases during pe-
riods of poor task performance. These performance-related spectral
changes occur mainly at parietal and occipital regions (Beatty et al,
1974; Campagne et al,, 2004; Jung et al., 1997; Lin et al., 2005a), al-
though a few have reported at frontal and central regions (Schier,
2000; Takahashi et al., 1997). Morison and Bassett (1945) also reported
that multiple neural mechanisms that affect the transition between
arousal and sleep states exhibit distinct spectral fluctuations in the
delta, theta, alpha, and beta bands (Morison and Bassett, 1945). The
widespread spectral changes over the scalp might be attributable to
the fact that scalp EEG signals sum source activities arising within mul-
tiple cortical domains that project, by volume conduction, to nearly all
the scalp electrodes (Makeig et al., 1996). This signal-mixing process
makes it difficult to relate the distinct EEG patterns that originate in
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specific cortical areas to behavior, cognitive functions or pathology, or
to identify the origins of distinct EEG sources (Jung et al., 1998, 2001b;
Makeig et al., 1996).

Recently, independent component analysis (ICA) applied to multi-
channel EEG has proven useful for separating the independent brain
and non-brain contributions to the recorded mixtures; this, in turn,
has been useful for the analysis of event-related brain temporal activ-
ity dynamics during human cognitive tasks (Jung et al., 1998, 2001b;
Makeig et al., 1996). Several studies have used ICA to assess the inde-
pendent components (brain processes) associated with fluctuations
in task performance during sustained attention tasks (Huang et al.,
2005, 2007a,b, 2008, 2009). In particular, independent components
(ICs) with equivalent dipole sources located in the occipital and pari-
etal cortices exhibit tonic increases in theta and alpha band power
during high-error periods. It is worth noting that these components
are maximally “temporally” independent brain processes, yet they
exhibit co-modulatory (dependent) changes in spectral activities that
co-vary with performance fluctuation. For example, theta-power in-
creases in most of the independent component activities as task perfor-
mance declines (Chuang et al., 2009; Huang et al., 2008; Lin et al., 2008).
However, the underlying neuromodulatory mechanisms that concur-
rently mediate these tonic changes in power spectra across multiple in-
dependent components were still not understood.

To investigate the physiological and neural modulatory system from
alertness to drowsiness, this study proposes a new technique, indepen-
dent modulator decomposition, to assess co-modulators in the brain
during the alertness-drowsiness dimension. The basic hypothesis and
principle of using independent modulator decomposition was previously
described in Onton and Makeig (2009). The first ICA was applied on
multi-channel EEG data to separate the recorded signals into a sum of
maximally temporally independent components (ICs). The study further
hypothesized that the processes of these underlying neuromodulatory
systems vary along with performance fluctuation and are accompanied
with the spectral contents of different brain areas. In this spectral decom-
position method, the second ICA detected and modeled independent co-
modulatory systems that multiplicatively affect the activities of spatially
distinct IC processes.

To test these hypotheses, this study explored (1) the co-modulatory
(coherent) changes the in spectra of temporally independent compo-
nents across subjects and (2) the associations between the time courses
of the underlying neuromodulatory systems and fluctuations perfor-
mance of sustained-attention highway-driving tasks conducted in a re-
alistic driving platform.

Materials and methods
Subjects

Thirty right-handed healthy subjects (28 males, 2 females; age
range: 18-28 years; age mean and standard deviation: 24 + 2 years)
with normal or corrected to normal vision were paid to participate in
a driving experiment. All experiments were conducted in the early af-
ternoon, after lunch, because drowsiness frequently occurs after meals
(Benton and Parker, 1998). No subjects reported sleep deprivation the
night before the experiment or a history of drug or alcohol abuse. All
subjects gave informed consent, and the study was approved by the In-
stitutional Review Broad of the Taipei Veterans General Hospital.

Experimental paradigm

This study adapted an event-related lane-departure driving para-
digm originally proposed by Huang et al. (2005, 2007a,b, 2009) in
which subjects were instructed to maintain their cruising position and
compensate for randomly induced vehicle deviations using the steering
wheel. The simulated driving experiments were conducted in a realistic
driving simulator (Huang et al., 2005, 2007a,b, 2009; Lin et al., 2005b,

2008, 2011) consisting of a real vehicle mounted on a motion platform
with 6 degrees of freedom immersed in a 360-degree virtual-reality
(VR) scene. The VR scene included four lanes from left to right on the
road. The distance from the left side to the right side of the road is even-
ly divided into 256 units (digitized into values 0-255). The width of
each lane is 60 U. The width of the car is 32 U. To induce drowsiness
in the subjects during the driving experiments, the VR scenes simulated
monotonous driving at a fixed speed (100 km/h) on a straight and
empty highway. Lane-departure events that caused a drift at a constant
speed towards the curb or into the opposite lane with equal probability
were introduced every 5-10s, (Huang et al., 2005, 2007a,b, 2009).
Without a prompt response from the subject, the vehicle would hit the
virtual boundary on either side of the road but would continue to
move forward against the boundary without crashing. Subjects were
instructed to immediately use the steering wheel to steer the vehicle
back to the original cruising position whenever a lane-departure event
occurred. To assess driver's drowsiness level by measuring second- or
minute-scale fluctuations in driving errors, this study adopted the driving
error moving average (DEMA; ranging between 0 and 85 U) as a quanti-
tative behavioral index of drowsiness level (Huang et al., 2009). The
DEMA computes the moving average of absolute deviation from the
lane in 90-s window stepping at 2-s time intervals. The lower DEMA
values are indicated as optimal driving performance and vigilance, where-
as higher DEMA values are taken to represent subject drowsiness.

EEG data acquisition and preprocessing

A 32-channel EEG system (Neuroscan, Compumedics Ltd., Australia)
was used to record EEGs in the VR-based driving experiments. Scalp
electrodes were placed according to the modified International 10-20
system and referred to the linked mastoids (average of channel Al
and channel A2). The impedances of all electrodes were kept below
5 kQ. The EEG data were sampled at 500 Hz with a 16-bit quantization.
A one-channel 8-bit digital event code representing the lane position
during the VR-driving simulation was recorded simultaneously. In al-
most every session of the VR-driving experiments, the subjects' head/
arms/body movements during compensatory steering and yawns dur-
ing drowsy periods were sometimes accompanied by severe, i.e., high-
amplitude, artifacts across all channels. These obvious motion artifacts,
along with data from bad channels were excluded from further analysis
based on visual inspection. A band-pass filter (1-50 Hz) was subse-
quently applied to EEG data to remove high-frequency muscle artifacts,
line-noise contamination and DC drift due to breathing artifacts. After
digital filtering, EEG signals and event codes were down-sampled to
250 Hz.

ICA decomposition of multi-channel EEG data

We used an Infomax ICA algorithm (Bell and Sejnowski, 1995;
Makeig et al, 1996, 1997) implemented in the EEGLAB toolbox
(Delorme and Makeig, 2004) to decompose multi-channel continuous
EEG data into maximally temporally independent components based
on the assumption that scalp EEG signals are a weighted linear mixture
of electrical potentials projected instantaneously from distinct indepen-
dent brain sources (Bell and Sejnowski, 1995; Makeig et al., 1996,
1997). ICA is capable of deriving an ‘unmixing’ matrix W that linearly
separates N-channel EEG signals X into an independent component ac-
tivation matrix U (U= WX). The rows of estimated U are the time
courses of the independent component activations. For each subject,
~30 ICs were separated from ~30 channels of EEG (2 EOG channels
were excluded) after the training of the ICA unmixing matrix W con-
verged (i.e., weight changes fell below 10~°). The columns of the in-
verse unmixing matrix W~ ! represent the relative strength projected
from each IC onto each scalp position, which enabled the formation of
a color-coded scalp map. Given a scalp map of ICs, the brain source
can be further localized with the DIPFIT2 routine (a plug-in for EEGLAB)
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to find the 3D location of an equivalent dipole based on a four-shell
spherical head model (Oostenveld and Oostendorp, 2002). ICs with a
residual variance of dipole fitting to the scalp map that exceeded 15%
were excluded from further analysis (Onton and Makeig, 2009). The es-
timated dipole locations were co-registered with an average brain
model (Montreal Neurological Institute). This study assumed that the
unmixing matrix W and the dipole source locations of the ICs were
fixed regardless of alertness level during each session. To examine the
spectral characteristics of the ICs, activation time courses segmented
into 3-s (750-point) moving epochs were subjected to fast Fourier trans-
form (FFT), yielding a time series t of logarithmic power spectra with 20
frequency bins f (1-20 Hz) with a stepping time interval of 2-s (500-
points) and a frequency resolution near 1 Hz.

Independent component clustering

The consistency of ICs across subjects engaged in VR-driving tasks was
assessed by the K-means clustering method and visual inspection to semi-
automatically group comparable components into distinct clusters based
on their scalp maps, power spectra and dipole source locations (Huang et
al,, 2008; Jung et al,, 2001a; Makeig et al., 2002, 2004, 2006). K-means was
used to derive clusters with greatest distinction by minimizing variability
within and maximizing variability between clusters. To make sure the
clusters obtained by K-means method was optimized, the clustering pro-
cedure were repeated 5 times, each with a new set of initial centroids. The
resultant component clusters were quite stable across multiple tests.
Among the resultant ICA clusters, several clusters account for EEG artifacts
(such as eye blinks, eye movements and scalp muscle activity) that are
commonly assumed to be functionally independent of cortical source ac-
tivation (Jung et al,, 2001a,b; Makeig et al., 1996, 1997, 2002). The con-
tamination from these non-cortical components could be effectively
separated from other EEG processes using ICA. The cortical sources of in-
terest included independent components with equivalent dipole sources
located in the frontal medial, central medial, left and right somatomotor,
medial parietal, posterior-medial occipital, and bilateral occipital cortices.
For each subject, these selected components were further analyzed by in-
dependent modulator decomposition (see below) to assess the co-
modulatory activities among ICs.

Independent modulator decomposition

To assess the underlying neuromodulator and explore the potential
neuromodulator systems that are engaged in human sustained attention,
this study adopted the independent modulator analysis (Onton and
Makeig, 2009). This analysis is capable of revealing spectrally fixed and
temporally independent modulator (IM) processes. The independent
modulator analysis was applied to segregate logarithmic spectral fluctu-
ations of independent components of interest into independent modula-
tors, enabling us to summarize the coherent spectral dynamics across
one or multiple ICs. For each subject, the mean log-power spectra at
each frequency bin, f, were subtracted from the logarithmic power spec-
tra of each 3-s epoch of the time series prior to IM decomposition. The
baseline-corrected spectral time series (1-30 Hz) of selected ICs were
then concatenated to form a 2D matrix (fxc, t, where ¢ and t represent
the number of selected ICs and time points, respectively). This matrix
was submitted to principal component analysis (PCA) that maintained
the 10 principal components accounting for the largest variance in spec-
tral changes and yielded a matrix S (10, t). The Infomax ICA algorithm
(Bell and Sejnowski, 1995; Makeig et al., 1997) was again used to find
an unmixing matrix W that linearly separated the dimension-reduced
matrix S into maximally spectrally fixed and temporally independent
modulators U (U= WS). The rows of Urepresent the IM activations across
time point t. Analogous to the inverse unmixing matrix W~ of the first
ICA decomposition yielding the column-wise projection strengths of
each IC, the columns of W™ ! of the second ICA represent the relative pro-
jection weights from each independent modulator at each frequency bin f

across multiple ICs, ¢. The same procedures mentioned for the first ICA de-
composition were adopted to train the unmixing matrix W. Upon the
completion of IM decomposition, the association between driving perfor-
mance level and the IM of interest was assessed by correlating the IM ac-
tivations with the 90-s DEMA index separately for each subject.

DEMA-sorted independent modulator activation

To investigate the relationship between fluctuations in task perfor-
mance and concurrent changes in the activations of independent modu-
lators, we first computed the mean activation of each modulator during
“alert” (low DEMA) epochs in each session then computed the difference
between the modulators' activations at each time point and the mean
“alert” activation for that session. Because modulators' activations were
linear combinations of the log spectra of ICs, the modulators' activations
resembled log spectra. Therefore, for each modulator, we sorted the acti-
vation ratios by task performance (i.e., DEMA) and smoothed the sorted
data from each subject. The sorted IM activations at each DEMA level
were then averaged across subjects.

Results
Driving performance-related independent components

For each subject, 30 maximally temporally independent components
that contained cortical sources, non-cortical artifacts and other mixtures
of lower energy sources were separated from the 30-channel EEG data.
Non-cortical sources such as eye blinks, eye movements, muscle artifacts,
and meaningless components were identified based on the characteris-
tics of their scalp maps, spectra, and dipole locations and removed
from further analysis. Only the brain components activated in or near
the medial-frontal, medial-parietal, and occipital cortex are addressed
and discussed here, as these components have most frequently associat-
ed with the driving task (Huang et al., 2005, 2007a,b, 2009). The spectral
changes of the aforementioned components were correlated with driv-
ing performance fluctuations. After ICA decomposition across all subjects,
semi-automatic K-mean clustering based on IC scalp maps, spectra, and
dipole locations revealed that the ICs located at the medial-frontal (con-
tributed by 28 subjects), medial-parietal (24 subjects), and occipital (30
subjects) cortices were the three most consistent brain processes across
subjects. In addition, all subjects generally experienced several transitions
between alertness and drowsiness during the VR-based driving experi-
ments as evidenced by the DEMA measures.

Fig. 1 shows sample delta-, theta-, alpha-, and beta-band spectral
time courses of three ICs of interest and the corresponding simulta-
neous DEMA time course from a single subject. The DEMA index
and spectral time series were smoothed with a 90-s window stepping
at 2-s time intervals. Figs. 1(b) and (c) clearly show that the time
courses of the delta and theta power of all three components were
highly correlated with each other and co-varied with the subject's
DEMA (r=0.91-0.93 for the delta power; r=0.89-0.93 for theta
power). The alpha-band power time courses of the medial-parietal
and occipital components (Fig. 1(d)) were moderately correlated
with driving performance (r=0.63-0.66), whereas the time courses
of beta-band power of all components (Fig. 1(e)) marginally co-
varied with driving performance (r=0.51-0.87). The mean activa-
tion of alpha-band power similarly increased as DEMA increased but
gradually decreased during periods of high DEMA levels. These results
show that, although different components represented maximally “tem-
porally” independent brain processes, they exhibited co-modulatory (de-
pendent) changes in spectral activities that co-vary with performance
fluctuation. The subsequent analysis examines these co-modulatory spec-
tral changes arising from the medial-frontal, medial-parietal, and occipi-
tal cortices.
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Fig. 1. Fluctuations of task performance (driving error moving average) and power
spectra changes of three selected independent components (subject 1) during a 2-hour
lane-keeping driving task. (A) Time series of the driving error moving average (DEMA).
(B) Time series of delta-band power. (C) Time series of theta-band power. (D) Time series
of alpha-band power. (E) Time series of beta-band power.

Selection of independent modulators and components

The logarithmic spectral fluctuations from physiologically inter-
pretable brain sources were further subjected to IM decomposition
forming a 2D matrix (fxc, t). Note that the number of cortical com-
ponents can vary across subjects because each individual may en-
gage distinct brain processes during the driving task (Jung et al.,
2001a). IM decomposition was applied to a PCA-reduced matrix
that retained the first 10 principal components for each subject.
Fig. 2 shows a representative single-subject independent modulation
decomposition of log power of activations of temporally indepen-
dent components in the VR-based driving experiment. Each column
represents one IM that gives the relative projection weights to each
frequency bin of each IC (along rows). We propose a quantitative
index to assess the relationship between the modulators and task
performance. For each subject, the averaged weights of the delta,
theta, alpha and beta bands were firstly computed to assess the
type of each independent modulator. By calculating the correlation
between the time courses of each modulator and driving perfor-
mance (i.e.,, DEMA) for each individual, the most strongly correlated
independent modulator from each band was obtained for further in-
vestigation. For this subject, the time courses of four IMs (IM8, IM2,
IM1, and IM6) were consistently correlated with DEMA fluctuations
(r=0.32, 0.90, 0.30, and 0.10, respectively). IM8, IM2, IM1, and IM6
showed relatively dominant projection weights in the delta, delta-
theta, alpha, and beta bands across multiple ICs. Note that each of
the IMs modulated the spectral changes of multiple brain regions
delineated by ICs.

Consistency of independent modulators across subjects

To access the consistency of the IMs of interest across subjects,
Fig. 3 plots the projection strengths of delta, delta-theta, alpha and
beta modulators over the medial-frontal, medial-parietal, and occip-
ital ICs. The leftmost two columns show the averaged scalp maps and
individual dipole locations within an IC cluster (along rows), whereas
the rightmost four columns plot the individual (thin line) and aver-
aged (thick line) weights of each frequency bin (1-30 Hz) of each in-
dependent brain process to each IM derived from the column of the
inverse matrix W~ at IM decomposition. The spectral weights of ICs
largely define the frequency bins at which the ICs' spectra were modu-
lated by the IM during the simulated driving experiments. Note that the
spectral weights of each IM were normalized across subjects in Fig. 3. As
Fig. 3 shows, the spectral weights of these selected IMs are extremely
similar across subjects (thin lines), which was quite remarkable consid-
ering the independent modulation decomposition was applied to the
log-power ICs of each individual separately. The subject variability
was evident in Table 1. Most of the subjects showed high correlations
between IMs and the performances in the delta-theta IM, but subjects
2,13,14, 15, 20, 21, 25, and 28 showed comparable correlations in the
delta-theta IM and the alpha IM, and subject 17 had the highest corre-
lation in the alpha IM.

Relationship between modulators' activations and task performance

This study further tests the neurophysiological meaning of the activa-
tions of IMs during the simulated driving task. Fig. 4 plots the DEMA and
activation time courses of four IMs from a sample subject. As Fig. 4
shows, the activation of the delta-theta modulator was highly correlated
with the subject's DEMA profile (r = 0.9), whereas the delta-, alpha-, and
beta-modulated activations were only moderately correlated with the
DEMA (delta: r=0.32, alpha: r=0.30, and beta: r=0.30). Specifically,
the time course of the alpha modulator prominently decreased at high
DEMA levels, in contrast to the delta-theta IM activity. As scale and po-
larity information is distributed in the ICA decomposition, the absolute
amplitude and polarity of the modulatory activity are meaningless and
the activations have no unit of measure. The scale of the time course of
the modulatory activity uses arbitrary units. Table 1 shows the correla-
tion coefficients between the task-related independent modulators and
the performance of each individual. Across subjects, four IMs, the delta,
delta-theta, alpha, and beta band activations of ICs, were found to consis-
tently correlate with DEMA fluctuations (r=0.23+0.17, 0.77 +0.13,
0.5040.20, and 0.32 4-0.18, respectively).

Group DEMA-related modulator fluctuations

To evaluate the inter-subject variability of the IM activations en-
gaged during driving performance, the IM activations were first sorted
by subjective ascending DEMA level for each subject, and then the
sorted IM activations at each DEMA level were averaged across subjects
(cf. Materials and methods).

Fig. 5 shows the averaged DEMA-sorted activations of the afore-
mentioned delta, delta-theta, alpha, and beta modulators across 30
subjects. The results in Fig. 5 clearly indicate that the mean activa-
tions of the delta-theta modulator increased monotonically with
DEMA values with a high correlation of 0.77 + 0.13. The mean activa-
tion of the alpha modulator similarly increased as DEMA increased,
but it gradually reached a plateau above a DEMA level of 20, followed
by a slight decline after DEMA reached 60. This biphasic change
resulted in a moderate correlation between the modulator's activa-
tion and DEMA values (r=0.504-0.20). Similarly, the activations of
the delta and beta modulators tended to increase before DEMA values
reached 20 and then declined after DEMA values passed 60. The delta
and beta modulators had marginal correlations with DEMA values
(delta: r=0.2340.17, beta: r=0.3240.18).
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Fig. 2. Independent modulator decomposition log-spectral power results from one representative subject in a VR-based driving experiment. Each column represents one IM and
gives the relative projection weights to each frequency of each IC (along rows). In this subject IM8, IM2, IM1, and IM6 show dominate projection weights at delta, delta-theta,
alpha, and beta bands across multiple ICs. The IM2 obviously co-modulated the delta-theta band power changes across all ICs, as evidenced by the consistent projection weight
with dominate peaks at the delta-theta band. In each sub-figure, the x-axis means the frequency bins from 0 to 30 Hz, and the y-axis means the relative projection weights
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Fig. 3. Normalized spectral weights of delta, delta-theta, alpha and beta modulators over the medial-frontal, medial-parietal, and occipital ICs among 30 subjects. The leftmost two
columns show the averaged scalp map and dipole location within an IC cluster (along rows). The rightmost four columns show the individual (thin line) and averaged (thick line)
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image of Fig.�2
image of Fig.�3

1474 S-W. Chuang et al. / Neurolmage 62 (2012) 1469-1477

Table 1
The correlation coefficients between the task-related independent modulators and the
performance of each individual.

Subject Correlation coefficients between IMs and the performance
Delta IM Delta-theta IM Alpha IM Beta IM
1 0.18 0.88 0.2 038
2 0.46 0.65 0.66 0.59
3 0.58 0.77 0.25 0.29
4 0.3 0.93 0.2 0.27
5 0.36 0.65 0.48 0.47
6 0.38 0.8 0.48 0.13
7 0.34 0.83 0.69 0.58
8 0.22 0.78 0.28 0.49
9 0.1 0.77 0.57 0.43
10 0.02 0.85 0.44 0.12
11 0.28 0.74 0.14 0.66
12 0.11 0.76 0.56 0.23
13 0.28 0.79 0.73 0.09
14 0.1 0.65 0.64 0.12
15 0.08 0.71 0.76 0.17
16 0.08 0.77 0.28 0.11
17 0.14 0.37 0.86 0.52
18 0.06 0.85 0.75 0.14
19 0.09 0.84 0.51 0.15
20 0.2 0.71 0.75 0.09
21 0.19 0.44 038 0.12
22 0.11 0.73 0.49 0.26
23 0.04 0.93 0.63 0.24
24 0.19 0.95 0.47 037
25 0.18 0.68 0.63 0.51
26 0.03 0.89 0.55 0.55
27 0.55 0.88 037 0.44
28 0.37 0.79 0.77 0.27
29 0.63 0.81 0.24 0.63
30 0.32 0.9 0.3 0.3
Mean 0.23 0.77 0.50 032
SD 0.17 0.13 0.20 0.18
Max 0.63 0.95 0.86 0.66
Min 0.02 0.37 0.14 0.09
Discussion

Driving performance-related independent components

The time courses of the delta, theta, alpha and beta power spectra
of several brain regions, as identified with spatial filters learned from
ICA, were highly correlated with each other. Compatible with earlier
findings in different sustained-attention tasks, delta-band power in-
creased as task performance declined (Kirmizi-Alsan et al., 2006;
Torsvall and aAkerstedt, 1987; Uchida et al., 1991), and the theta-
band power of several brain regions was highly correlated with task
performance changes (Akerstedt and Gillberg, 1990; Beatty et al., 1974;
Campagne et al., 2004; Jung et al., 1997; Kecklund and Akerstedt, 1993;
Lal and Craig, 2002; Makeig and Jung, 1995, 1996; Makeig et al., 2000;
Takahashi et al., 1997).

Consistent with earlier findings, alpha-band power increased as
the DEMA increased from near-perfect performance (Akerstedt and
Gillberg, 1990; Huang et al., 2009; Makeig and Jung, 1995, 1996;
Makeig et al., 2000; Schier, 2000). Moreover, the alpha band power de-
creased as the DEMA continued to increase, consistent with the biphasic
trend along the human alertness—drowsiness dimension reported by
Ota et al. (1996).

As shown in Fig. 5, the averaged DEMA-sorted activation strength of
the delta, delta-theta, alpha, and beta modulators across 30 subjects all
increased from alert to drowsy states. These results were consistent
with Lal and Craig. (2002) that reported a broad-band low-frequency
power increase as subjects became fatigued. However, this study provid-
ed new insights into the covariation of spectral changes of distinct EEG
sources as a function of performance degradation, which were not avail-
able in previous studies.
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Fig. 4. One representative single-subject's activation time courses of four IMs accompanied
by simultaneous DEMA time courses. The activation of the delta-theta modulator was high-
ly correlated with the subject's DEMA profile (r = 0.9), whereas the delta-, alpha-, and beta-
modulated activations only moderately co-varied with DEMA (delta: r=0.32, alpha:
r=0.30, and beta: r=0.30). Specifically, the time course of the alpha modulator promi-
nently decreased as DEMA increased, in contrast to delta-theta IM activity. The correlation
coefficients are marked at each subject's modulator activation.

Driving performance-related independent modulators

The present study proposes a new method to assess co-modulatory
spectral changes among multiple brain regions during a sustained-
attention task. We applied PCA and a second ICA to normalized log spec-
tral changes of independent components to separate independent mod-
ulators for each participant. Across subjects, this spectral ICA consistently
found four comparable (common) performance-related independent
modulators: delta, delta-theta, alpha, and beta modulators. Although
the independent modulator decomposition was applied to the compo-
nents' log spectra for each subject separately, the spectral weights of
comparable IMs were remarkably similar across subjects (c.f. thin traces
in Fig. 3). Furthermore, the relationship between the activations of these
common modulators and task performance was very consistent across
subjects (detailed below).

The amplitude of the delta-theta modulator increased monotoni-
cally with DEMA values (cf. Figs. 4 and 5B). Previous research has
demonstrated that delta waves in the normal adult are largest during
deep sleep, and theta rhythm is the EEG characteristic of sleep stage 1
and microsleep. (Bear et al., 2007; De Gennaro et al., 2001; Thomas
et al.,, 2003).

The alpha modulator was very sensitive to performance changes, par-
ticularly from fully alert (low DEMA) to high DEMA periods (c.f. Figs. 4
and 5C). The modulator amplitude rose steadily until the DEMA reached
20 after which it remained more or less stable until the DEMA reached
60, and then it started declining slightly at higher DEMAs. Overall, this bi-
phasic trend during the transition from waking to sleeping is consistent
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Fig. 5. The averaged DEMA-sorted independent modulator activation strength across 30 subjects. (A) Delta modulator. (B) Delta-theta modulator. (C) Alpha modulator. (D) Beta
modulator. Thick and thin traces represent the grand mean and one standard deviation across 30 subjects. The results clearly indicate that the mean activation of the delta-theta
modulator increased monotonically as the DEMA increased with a high correlation of 0.77 4-0.13. The mean activation of the alpha modulator similarly increased as DEMA in-
creased, but it gradually reached a plateau above a DEMA level of 20, followed by a decline after DEMA reached 60. Note that the full width of each lane is 60 units.

with previous studies (Ogilvie, 2001; Ota et al., 1996). Past literature has
demonstrated that alpha band power increases are an electrophysiolog-
ical characteristic correlated with cortical idling (Goldman et al., 2002;
Laufs et al., 2003; Pfurtscheller and Stancak, 1996) and are decreased
by temporal attention (Babiloni et al., 2004; Bastiaansen et al., 2001).
Therefore, the increased alpha-band power of the frontal, parietal and
occipital lobes in this study might be partially attributed to cortical idling
or decreased attentiveness during the transition from perfect driving
performance to medium DEMAs. Changes in the delta and beta modula-
tors marginally fluctuated with task performance (c.f. Figs. 4, 5A and D).
Eoh et al. (2005) reported that beta rhythm decreases when subjects are
drowsy.

The modulatory mechanisms of the neural system

There are multiple neuromodulatory mechanisms mediating activa-
tions of different brain networks in various arousal states (Oken et al.,
2006). This study assessed the influence of these multiple neural mech-
anisms that are observed in the modulation of spectral contents of dif-
ferent brain areas.

This interareal co-modulation may be attributed to the influence of
cortical and thalamic projections (Akimoto et al., 1956; Bardo, 1998;
McCormick and Bal, 1997; Oken et al., 2006; Robbins, 1997). A cortico-
thalamocortical network involves thalamus receiving input from one
cortical area and projecting to a higher-order cortical area (Sherman
and Guillery, 1996, 2006). Studies have reported that thalamo-cortical
networks strongly affect the spectral synchronization of cortical field po-
tentials (Herculano-Houzel et al., 1999; Pinault, 1992; Swick et al.,, 1994).
Lopes da Silva (1991) also reported that the thalamo-cortical loops play a
significant role in the generation and control of low frequency rhythms
in cortical processes. Furthermore, studies using simultaneous recording
of EEG and functional imaging techniques to investigate the neu-
romodulatory system have supported the theory of cortical and subcor-
tical modulation of electroencephalographic rhythms. For example, a
combined EEG/PET study reported a close functional relationship be-
tween subcortical regions and human alpha rhythms mediated by the
thalamo-cortical network (Schreckenberger et al., 2004). Feige (2005)
applied simultaneous EEG/fMRI recording and found that a widespread
thalamo-cortical synchronization was associated with brain metabolic
changes accompanied by concurrent changes of the alpha rhythm. We
thus believe that the modulation of component spectra might be attrib-
uted to the influence of cortical and thalamic projections.

In regards to the spectral contents of co-modulation, the co-
modulation in this study was predominately occurred in low frequen-
cy. The functional thalamo-cortical activity exhibits two distinct states:
(a) the burst state which is characterized by synchronized rhythmic
delta, spindle, and slow-wave activity during slow wave sleep
(McCarley et al., 1983; McCormick and Bal, 1997); and (b) the tonic
state which is characterized by less rhythmic, less synchronous, lower
amplitude thalamo-cortical activity during waking and rapid-eye-
movement sleep (McCormick and Bal, 1997; Steriade, 2000).

The modulation of component spectra might also be attributed to re-
duced cortical effective connectivity. Esser et al. (2009) envisioned that
the transition from wakefulness to slow wave sleep would produce a
cortical gate through some underlying mechanisms. Massimini et al.
(2005) applied transcranial magnetic stimulation (TMS) to evoke activi-
ty rapidly propagating to specific cortical areas, and reported that re-
duced cortical effective connectivity during slow wave sleep could be
accounted for by the existence of a cortical gate. The cortical gate acts
like a low-pass filter, allowing slow, widespread activity to propagate
through the brain, while blocking the propagation of fast fluctuations.

Our experimental results showed that the synchronized fluctua-
tions of theta-band power are comparable between frontal, central-
parietal and occipital components, which might reflect a signal from
the deep brain projecting to cortical areas. Spatially non-contiguous
area that showed covariation of EEG spectral fluctuations might also
be caused by the reduction of cortical-cortical connectivity which
rendered the cortex more susceptible to subcortical synchronizing in-
fluences, or attributed to this thalamo-cortical activity through the
thalamic gate (Miller and Schreiner, 2000).

Limitations (feasibility) of the co-modulation analysis

This study investigates the independent modulators, as separated by
independent modulator decomposition, that mediate the power of
delta, theta, alpha, and beta bands of electrophysiological processes in
alertness—-drowsiness experiments. However, little is known about the
possible physical locations of the resultant independent co-modulators.
Another limitation of independent modulator decomposition is that little
information about direct or indirect connectivity between ICs was provid-
ed by this independent modulatory decomposition. Other converging
evidence is needed to assess ICs' functional connectivity. Our future
work includes a comparison between linear and non-linear regression
between the subject performance and the activations of co-modulators.
We also plan to evaluate the feasibility of using the activations of co-
modulators to predict/detect the level of drowsiness in an on-line setting.

Conclusion

This study explored spectrally independent modulators derived by
the second ICA to investigate the neural mechanisms mediating spectral
activations of cortical areas. Across subjects, the analysis consistently
obtained four comparable independent modulators that mediated the
delta, delta-theta, alpha, and beta power of different brain areas. The
delta-theta modulator fluctuated very little during the low DEMA pe-
riods, but increased monotonically with DEMA values. More interesting-
ly, the time courses of the delta-theta modulator were highly correlated
with concurrent changes in subject driving error (DEMA). The activation
of the alpha modulator rose rapidly from a fully alert to medium DEMA
state, but decreased at high DEMA states. The time courses of the delta
and beta modulators were only moderately correlated with concurrent
changes in subject task performance.
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