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Abstract In this paper, we develop a framework of Question Answering Pages
(referred to as QA pages) recommendation. Our proposed framework consists of
the two modules: the off-line module to determine the importance of QA pages and
the on-line module for on-line QA page recommendation. In the off-line module, we
claim that the importance of QA pages could be discovered from user click streams.
If the QA pages are of higher importance, many users will click and spend their
time on these QA pages. Moreover, the relevant relationships among QA pages are
captured by the browsing behavior on these QA pages. As such, we exploit user click
streams to model the browsing behavior among QA pages as QA browsing graph
structures. The importance of QA pages is derived from our proposed QA browsing
graph structures. However, we observe that the QA browsing graph is sparse and that
most of the QA pages do not link to other QA pages. This is referred to as a sparsity
problem. To overcome this problem, we utilize the latent browsing relations among
QA pages to build a QA Latent Browsing Graph. In light of QA latent browsing
graph, the importance score of QA pages (referred to as Latent Browsing Rank) and
the relevance score of QA pages (referred to as Latent Browsing Recommendation
Rank) are proposed. These scores demonstrate the use of a QA latent browsing
graph not only to determine the importance of QA pages but also to recommend QA
pages. We conducted extensive empirical experiments on Yahoo! Asia Knowledge
Plus to evaluate our proposed framework.
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1 Introduction

Question and Answering (QA) forums, such as Baidu and Yahoo! Answers, are
effective tools in searching for information and knowledge on the Internet. In
general, a QA forum features a portal in which users form several communities and
contribute their questions and answers. The contributed information and knowledge
is a rich repository to fulfill the information needs of users by providing an on-line
QA search engine or QA recommendation system.

Most QA forums, such as Yahoo! Asia Knowledge Plus, provide QA search or
QA recommendation services based on a textual model that exploits the textual
similarity. By issuing keywords, users could get a ranked list of QA pages that contain
some words similar to the keywords issued. From a ranked list of QA search results,
users can either sort through the QA pages of interest or issue other keywords if the
current search results do not satisfy their requirements. Without loss of generality,
most QA portals will provide a ranked list of relevant QA pages when a QA page
(referring to as a query QA page Q) is browsed. For example, for each browsed
QA page in Yahoo! Asia Knowledge Plus, a ranked list of relevant QA pages are
also displayed in the current QA page to fulfill the information needs of users if
users want to see more relevant QA pages after browsing the current QA page. The
existing solutions for relevant QA recommendations in Yahoo! Asia Knowledge Plus
use a textual model to retrieve those QA pages that contain the same keywords as the
query QA page, Q. However, one of the disadvantages of the textual models is that,
even though QA pages contain the same keyword as in the query QA page, their
topics may be irrelevant to the topic of the query QA page. Note that the textual
models are language-dependent. Consequently, a textual model that is designed
for a particular language may fail for another language. To overcome the above
disadvantages of using textual models, we explore the actual browsing behavior of
users to determine how important and relevant of QA pages.

Another characteristic of QA forums is the variation in quality. When users
contribute information to QA forums, the quality of QA pages may vary. The
accurate evaluation of the quality of QA pages is essential under these circumstances.
A number of QA forums enable users to rate QA pages to obtain a high quality of
user-generated content. The rating information provided by users is then used to
filter out QA pages of a lower quality. Several studies have elaborated on designing
a quality-aware search on QA forums [1, 3, 4, 7, 20] with user-generated content (for
example, rating information). For example, the authors in [3, 4] proposed a semi-
supervised approach for retrieving relevant and high quality content in QA forums.
The authors in [3, 4] modeled user reputations and used less manual supervision to
retrieve relevant and high quality answers by integrating content quality and user
reputation information into their ranking process. The authors in [20] introduced
a quality-aware QA framework that considered both answer relevance and quality
in selecting the answers to be returned. Several methods have been developed for
estimating content quality by considering the expertise of a user in both asking
and answering questions. However, most prior studies on estimating answer quality
are limited in analyzing language-dependent user-generated content. Moreover,
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user-generated content, such as rating information, may be manipulated and biased
and thus cannot accurately represent the users reactions to the content of QA pages.
As indicated in [5], over 30% of the best answer selections in Yahoo! Answers are
affected by the users who provide the answers.

We claim that the importance of QA pages and the relevance of QA pages for
QA recommendation by investigating and modeling the user browsing logs is a more
reliable method because the user-generated content is unreliable and the textual
models are language-dependent. Without a loss of generality, the user browsing logs
record information about when and which Web pages are clicked on, and by whom.
Note that the user browsing logs record the time-stamp, user identity, and URL
information. To facilitate our presentation, Web pages that are not QA pages are
referred to as non-QA pages because user browsing logs consist of not only QA
pages but also a number of non-QA pages. Several types of relations among QA
pages were identified from the user browsing logs. In this paper, the user browsing
logs are modeled as a QA browsing graph in which each node represents one QA
page and the edges represent the browsing behaviors of users. Then, we adopt the
state-of-the-art ranking approaches to compute both the importance and relevance
scores for QA pages. For example, we adopted the BrowseRank algorithm in our
QA browsing graph to determine the importance of QA pages. However, a naive
QA browsing graph that only considers explicit relations among Web pages is too
sparse to link the QA pages. According to our observation from Yahoo! Answers,
approximately 54% of QA pages are isolated in a QA browsing graph. As illustrated
in Figure 1, the link distribution reveals the notable sparsity problem that is faced
by naive modeling of the user browsing logs. Consequently, the naive adoption of
BrowseRank fails to determine the importance scores for isolated QA pages.

To address the sparsity problem, we explore the latent browsing relations among
QA pages to build a QA Latent Browsing Graph. In particular, we adopt a time-
dependent Markov property to determine whether two QA pages are context-
dependent or not. The QA pages are context-dependent or latently related to a
previously visited QA page if their time difference is not larger than a given time
constraint. The time constraint is used to explore the latent browsing behavior of QA
pages. However, the setting of this time constraint is an important issue. To derive a
time constraint, we propose a behavioral coherence evaluation approach to evaluate
the quality of a time constraint for each QA page. Once a QA latent browsing
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graph is built for QA pages on user behavior logs, we determine the staying time
distributions and compute their latent browsing rank of the given QA pages. By using
the QA latent browsing graph, we propose a Latent Browsing Rank (abbreviated as
LBR) of QA pages to determine the importance of QA pages but also recommended
QA pages with a higher Latent Browsing Recommendation Rank (abbreviated as
LBRR). We develop a framework that consists of the off-line module and the on-line
module. The QA latent browsing graph is first built and the LBR values of QA pages
are determined in the off-line module. A recommendation list of QA pages that
are ranked by LBRR is generated in the on-line module. We conducted extensive
experiments to demonstrate the effectiveness of latent browsing relations on the real
data set, that is, Yahoo! Asia Knowledge Plus. The experimental results indicate that
our framework is able to determine high quality QA pages and recommend relevant
QA pages, which demonstrates the advantage of exploring the QA latent browsing
graph.
In summary, the main contributions of this study are as follows:

e  We propose a QA latent browsing graph to capture the user browsing behavior
in QA forums.

e We utilize the QA latent browsing graph and staying time information to
determine the importance score of QA pages (i.e., LBR).

e We exploit Random Walk with Restart in the QA latent browsing graph to
derive the relevance score of QA pages (i.e., LBRR).

e We conducted experiments on a large-scale real data set (i.e., Yahoo!Asia
Knowledge Plus) to evaluate our proposed QA latent browsing graph and
algorithms.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the related work. The background information of this study is described
in Section 3. Section 4 introduces our observations and presents the QA latent
browsing graph in modeling the user-perceived relevances. In Section 5, we analyze
latent browsing relations. Section 6 describes two algorithms to determine LBR and
LBRR of QA pages. Section 7 presents the performance studies. Section 8 concludes
this paper.

2 Related work

We briefly review previous studies on link-based ranking algorithms in this sec-
tion. Then, we describe the state-of-the-art research works of Question Answering
Systems.

2.1 Link-based ranking algorithm

Numerous studies have focused on exploring the linkage relationships among data
items for ranking [8, 13]. A typical example is to model Web data as a link graph,
where the nodes represent Web pages and the edges represent the hyper-links. Then,
a link-based ranking algorithm (e.g., PageRank) is used to determine the importance
of pages. In principle, PageRank considers Web pages as more important if they are
pointed by more links from more important pages. Specifically, PageRank simulates
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the random walk of a “Web surfer” on the graph, and the importance score is defined
as the stationary probability of the discrete-time Markov process.

Several algorithms were developed to improve the performance of PageRank
[9, 11]. For example, [9] discussed several possible alternatives to enhance the basic
model of PageRank, such as storage issues, convergence properties, and updating
problems. In contrast to the static network in traditional PageRank, the authors
in [11] proposed BrowseRank that explores the dynamic hyper-link transitions to
model user behavior data. The basic idea in BrowseRank is to formulate a browsing
graph based on the browsed hyper-links, in which each vertex represents a Web
page and the edges represent the browsed hyper-link transitions between Web pages.
Furthermore, a staying time distribution is determined for each Web page from the
observed staying time information. The importance score was affected not only by
the underlying linkage structure but also by the staying time distribution of all Web
pages. In principle, similar to PageRank, BrowseRank considers Web pages as more
important if they are linked by more links from more important pages. The higher
the ratios of time that “Web surfers” spend on a particular page to the time they
spend on all of the pages, the more likely it is that the page is important.

Another variation of PageRank is the computation of the reachability for a
query node. For example, Random Walk with Restart analyzes the reachability of a
particular query node to the remaining destination nodes. The basic idea of Random
Walk with Restart is as follows: the importance information is propagated by two
ways: (1). jump back to the query node with probability ¢ and (2). propagate to
their adjacent neighbors with probability (1-c¢). Consequently, given a query node,
the more paths that connect a destination node to the query node within a few hops,
the more likely it is that the destination node is relevant. Random Walk with Restart
was proven to be successful in several applications, such as in content-based image
retrieval [6], cross modal correlation discovery [15, 19], and a movie recommender
system [12].

2.2 A quality-aware question answering system

A considerable amount of research efforts has been dedicated to user preference
mining [10] and Web content filtering [2, 14, 16]. Question and Answering (QA)
forums, such as Baidu and Yahoo! Answers, are essential among various Web
contents in searching for information and knowledge on the Internet. Although the
question-answering (QA) systems are a valuable repository for user-generated con-
tent, the distribution of content quality exhibits a high variance. Several algorithms
for content quality estimation in QA systems were developed to enhance further
applications [1, 3, 4, 7, 20].

In [7], a stochastic model was built from manually labeled data to predict the
quality of a question and answer pair (QA) by determining the correlations among
non-textual answer features and answer quality. The set of non-textual answer fea-
tures includes answer length, the number of answers of the respondent, the current
questions and best answers, and answer rating. In [1], multiple features, such as
textual relevant features, user interaction features and content usage statistics, were
used to estimate the quality of the QA content. The authors in [3, 4] recently modeled
the user reputations and used less manual supervision to retrieve relevant and high
quality answers by integrating content quality and user reputation information into
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Figure 2 An example of non-QA page and QA page.

the ranking process. The authors in [20] introduced a quality-aware QA framework
that considered both the answer relevance and the quality in selecting the answers
to be returned. Several methods were developed to estimate the content quality
by considering the expertise of a user in both asking and answering questions.
However, most of the prior studies on estimating answer quality are confined to
user-generated content. To the best of our knowledge, there is no prior work on
computing the importance scores of QA pages or determining relevance scores
between QA pages from user behavior data. The large amount of daily user behavior
data contains valuable information, which motivates the development of the model
and the algorithms to compute the importance scores for QA pages and to determine
the relevance scores among QA pages.

3 Preliminaries

In the domain of Question and Answering (QA) forums, two types of Web pages are
considered: QA pages and non-QA pages. Figure 2 shows an example of a non-QA
page (left) and an example of a QA page (right) from Yahoo! Answers.! In Figure 2,
the non-QA page is a search result page that contains a list of QA pages after a
keyword “Golden Gate Bridge,” is issued. The figure on the right side of Figure 2 is
an example of a QA page when a user clicked on a search result from the figure of
the left side of Figure 2. As illustrated in Figure 2, a QA page contains three types of
content: (1) question content: the content of a posted question, (2) answer content:
the content of a set of answers, and (3) recommendation list: a ranked list of hyper-
links that correspond to the QA pages returned by the current QA recommendation
service.

ISome personalized information is removed for privacy issue.

@ Springer



World Wide Web (2012) 15:603-630 609

Table 1 A snippet of a user’s click stream.

Date April 23 April 24

Visiting time 0 10 20 25 30 35 40 50 O 10 20 25 35 100 110 120
Visiting page Py P, P, Ps Py P>

(non-QA)

Visiting A B C D E F G H A D
page (QA)

The user click behaviors are logged in the QA forums (e.g., Yahoo! Answers).
An example of user click streams is shown in Table 1.> As illustrated in Table 1, five
distinct non-QA pages (Py ~ P4) and eight QA pages (A ~ H) were visited by a
user. The click time for these Web pages were recorded. For example, at time stamp
10, QA page A was clicked on from non-QA page Py. The non-QA page P, provided
a hyper-link for QA page A, and this user clicked the hyper-link to visit QA page A.
Thus, click logs in QA forums record the click behavior of users in detail.

Recommendation of QA pages We develop a framework of QA page recommen-
dation in which, if a user issues a query QA page O, we recommend a list of QA
pages that are relevant to the query Q, where the QA pages in the recommendation
list are ranked by their relevance score. Most prior studies recommended QA pages
are based on keyword matching methods and those QA pages that contain the issued
keyword are ranked by their ratings, as provided by users. Our framework evaluates
the relevance degree of QA pages from user click streams without matching key-
words or human ratings for QA pages. The overview of our framework is illustrated
in Figure 3, where our proposed framework consists of the off-line module and the
on-line module. The task in the off-line module is to model a QA latent browsing
graph from a given set of click streams. Once the observations of staying time
information are collected from each QA page, we utilize BrowseRank on the QA
latent browsing graph to derive the importance scores of QA pages. Then, we further
derive the relevance degree of the QA pages in the QA latent browsing graph for a
given QA page because the QA latent browsing graph contains the direct relevance
information between QA pages based on the time-constraint Markov property. In
the on-line module, given a QA page, a list of QA pages is derived by exploring
Random Walk with Restart in the QA latent browsing graph.

4 Graph structures to model user browsing behavior

Given a set of click streams, we propose two graph structures to capture the user
browsing relationships among QA pages. In Section 4.1, the QA browsing graph
model is presented. To include more links via latent relationships among QA pages,
the QA latent browsing graph is developed in Section 4.2.

2The snippet of user click streams is from real logs of Yahoo! Answsers after removing privacy
information.
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Figure 3 An overview of our proposed QA recommendation.

4.1 QA browsing graph

Since BrowseRank in [11] uses one Browsing Graph to model user browsing behav-
ior, we borrow the concept of Browsing Graph to generate a QA browsing graph.
Explicitly, in the QA browsing graph, each node represents one QA page and the
edges between QA pages indicate the corresponding browsing relationship. Note
that from the user click streams, we define a QA event as follows:

Definition 1 (QA event) A QA event e is a four-tuple: (u, x, y, t), where u is a user
ID, y is the QA page, x is the referred page (either non-QA or QA page) that
provides a link to QA page y, and ¢ is the time-stamp when QA page y is visited.

A sequence of QA events is obtained by ordering the QA events of a user in
an increasing order of time stamps. The users may search for satisfactory answers
to a question by visiting QA pages until the QA pages satisfy the need of the user.
Consequently, a sequence of chronological QA events that are triggered by a user is
derived. Each sequence of QA events from a user represents the relevance of QA
pages because the user surfs these QA pages for their questions. Given a sequence
of QA events from users, a QA browsing graph is built via the following four steps:

Step 1—session segmentation The sequences of QA events from the collective users
were segmented into a set of QA sessions with a given time constraint ¢ because
nearby QA events are likely to contain similar QA content. Our segmentation was
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similar to the time rule of BrowseRank [11]. The definition of a QA session is as
follows:

Definition 2 (QA session) Given a timing constraint ¢, a QA session, s, from a user is
a sequence of QA events that are ordered by their time stamp, s = (ey, ..., €,), Where
the time difference between each consecutive QA event is not higher than c.

Given user click streams in Table 1 and the time constraint ¢ = 60 s, Table 2
illustrates the result of session segmentation.

Step 2—browsed hyper-link relations We extract the browsed hyper-link relations
among the QA pages once the user sessions are determined. A browsed hyper-link
relation between QA pages (g;, g;) indicate the transition process from QA page g;
to QA page g, through the hyper-links in g;. Specifically, the browsed hyper-link
transition in the QA pages is defined as follows:

Definition 3 (Browsed hyper-link relations) Given a pair of QA pages (¢;, g;), a
browsed hyper-link relation 7 = (g;, q;) from QA page g; to QA page g; occurred
when a user reaches g through hyper-links in the QA recommendation list of g;.

The browsed hyper-link relations are explicitly recorded in the QA events.
Specifically, given the QA events e; = (u;, x;, y;, t;), if the referred page x; is a
QA page, r = (x;, y;) demonstrates a browsed hyper-link relation. For example, we
observe a browsed hyper-link transition from QA event e;; in QA session s; in
Table 2. We consider each pair of QA pages (g;, g;) that are involved in a hyper-
link transition as evidence of context-dependency between g; and q; because they
are suggested as relevant by the on-line user who triggered this event. Given a
browsed hyper-link transition r = (g;, g,), a weighted and directed edge from g; to g;
is created. Each edge r is associated with a transition frequency, and defined as the
number of hyper-link transitions from g; to g, from the collective users. For example,
in Figure 4, a browsed hyper-link relation (A — B) for ey, is built with its transition
frequency, 1, because the browsing log of one user is available.

Step 3—global resetting relations The relation among sessions is presented in this
step. In BrowseRank, the transition from the end page of a session to the initial
page of another session is called a global resetting relation. Given two QA sessions

Table 2 Session segmentation.

Session ID Event X y t
S1 €11 P() A 10
e A B 20
e P C 30
€14 P2 D 40
e1s P, E 50
S2 e P3 F 10
€2 P4 G 25
€3 Py H 35
S3 e3] P A 110
e3n P2 D 120
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Figure 4 An example of QA

browsing graph. Relation Type From | To | Weight

Browsed Hyper-link Relation A B 1
S 1
H S 1
Global Resetting Relation D S 1
S A 2
S F 1

OOO®OE®
Tt~ 1~1 e B

s; = (ei1, ..., eim) and s; = (eji, ..., €,), a global resetting relation indicates a browsing

relation from the end QA event of a QA session to the initial QA event in a
consecutive QA session. For example, the QA page y;, in the QA event ¢, has
a global resetting relation to y;; and y;; in the session s; and s; respectively with
probabilities in proportion to their frequencies to be an initial QA page.

We follow the technique used in BrowseRank to model global resetting relations.
In BrowseRank, two types of QA pages are involved in a global resetting relation,
the end QA pages and initial QA pages. An end QA page refers to the last visited
QA page in a QA session. An initial QA page refers to the first QA page in a
session. Once the set of end QA pages QOcng and the set of initial QA pages Qinit are
identified, BrowseRank introduces a pseudo vertex, S, to connect the end pages and
initial pages. Specifically, a weighted and directed edge rinit = (S, ginit) is created for
each initial QA page Oinit € Oinit and a weighted and directed edge reng = (gend, S)
is created for each end QA page gend € Qend- Each edge rinit (rend) is associated
with a transition frequency, defined as the frequency that gini (¢enq) initiates (ends)
a session. As illustrated in Table 2, the set initial QA pages is Qinit = {A, F} and
the set of end QA pages is Qcng = {E, H, D}. Accordingly, we obtained five global
resetting relations as illustrated in Figure 4. Among the global resetting relations,
S — A occurred twice and the other global resetting relations occurred once.

A global resetting transition refers to the behavior in which users drop current
sessions and restart from the initial QA pages of available QA sessions. A QA
page ginit is more likely to be a restart point if giyi initiates the QA sessions more
frequently. Similarly, yenq is more likely to be a drop point if users frequently end
sessions after visiting yenq. In our example, the pseudo vertex S was used to form a
primitive graph (connected graph).

Step 4—staying time extraction For simplicity, given a QA session s = (ey, ..., &)
from a user u, the time difference between two consecutive QA events e; =
(u, xi, yi, t;) and e;y1 = (U, Xi+1, yit1, ti+1) 18 the staying time for the QA page y; in
e;. The staying time for the end QA page was randomly determined based on the
derived staying times in the corresponding QA session because we could not derive
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the staying time by subtracting the visiting times of two immediate QA events for the
end QA pages.

A QA browsing graph G = (V| J S, E, W) is built via the above four steps, where
S represents a pseudo vertex, v € V represents a QA page, and each edge e € E
represents one of the following relations: (i) browsed hyper-link relation; and (ii)
the global resetting relations involved in the pseudo vertex. Each QA page ve V
is associated with a set of observations of staying time. The transition matrix of the
QA browsing graph is denoted as W, where each entry w(i, j) refers to the transition
frequency from v; to v;. Given Table 2, the QA browsing graph shown in Figure 4
contains nine vertices, where S represents the pseudo vertex and the remaining
vertices indicate the QA pages. As illustrated in Figure 4, the QA browsing graph
contains six directed edges, in which one solid edge represent the browsed hyper-
link relation and the five dashed edges represent the global resetting relations. The
QA browsing graph comprises three isolated QA pages (i.e., C, E and G). The
importance of QA pages may be determined by using a QA browsing graph. Given
a query QA page, Random Walk with Restart is performed to retrieve the relevant
QA pages. The relevant QA pages are derived by traveling the QA browsing graph
and their corresponding relevance scores are determined during the traveling the
QA browsing graph. However, if most nodes are isolated or have few links, most QA
pages may not obtain their importance score and relevance scores. Figure 1 illustrates
the degree distribution of QA pages in a QA browsing graph (ignore the direction
of edges). As illustrated in Figure 1, approximately 40.5% of QA pages have a zero
degree of distribution. Figure 5 illustrates the in-link and out-link distribution of QA
pages in a QA browsing graph. As observed in Figure 5, most of the QA pages in
the QA browsing graph have zero in-link (out-links). Particularly, 64.2% (49.1%) of
QA pages have zero in-links (out-links). Consequently, the link relationships must
be enhanced, which requires the design of a latent QA browsing graph.

4.2 QA latent browsing graph

We propose a QA latent browsing graph by improving the links from the latent user
browsing behavior. The latent user browsing behavior consists of three relations:

In-link Distribution Qut-link Distribution

80 ‘ QA-BG — 80 ‘ QA-BG —

70 | i . 70+ i .
® 60} 1 & 60 -
g 50t . o 50f .
& 40} 1 £ 40 -
C C
g 30 1 g 30 |
e 20 1 20 1

10 b 10 b

0 k- Il Il 0 bk Il Il
0 20 40 60 80 100 0 20 40 60 80 100
Number of inlinks Number of outlinks
(a) In-link distribution (b) Out-link distribution

Figure 5 Link distributions of QA pages from Yahoo! Asia Knowledge Plus (July 15, 2009-July 17,
2009).
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(1) local resetting relations, (2) multiple-click relations, and (3) time-constrained
relations. More links are added if QA pages contain these relations. These three
relations are presented as follows:

4.2.1 Local resetting relations

In contrast to global resetting relations, which model the transition behavior among
QA pages from sessions to sessions, the local resetting relations model the transition
behavior for QA pages within a session. We occasionally observe a fragment of a
non-QA page sequence between two QA pages. For example, (¢;, p1, ..., Pk, €it1),
where e; and e;;| represent QA events and p; represents non-QA events for each
a < j< k. An intuitive approach to relate the corresponding QA pages in e; and
eiy) 1s to construct a path from y; to y;y; as follows: y; = y; — ... = Y = Viy1.
However, users do not always visit the next page through a hyper-link transition from
the current page. Instead of configuring the complex relations among the fragment,
we simplify their relations for QA pages and connect two corresponding QA pages
in ¢; and e;1; by generating a direct path from y; to y;;;. We refer to such relation as
local resetting relation. The definition of local resetting relation is as follows:

Definition 4 (Local resetting relations) Given a pair of continuous QA events
(e;, eir1) in a QA session s, a local resetting relation is observed between e; and e;
if a continuous sequence of non-QA events between e; and e;; is found.

The concept of local resetting relations between two QA pages (y;, yiy1) is to
describe a jump behavior (i.e., from the QA page in ¢;, and end at the QA page in
ei+1 with a minimum of one non-QA page between e; and e;; ). More links are added
among QA pages with local resetting relations. Figure 6a illustrates the examples of
local resetting relations (dashed black links). For example, a user may examine the
recommended QA pages listed in B, decides to move on to the non-QA page P,
discover C in P, and then decides to visit C. The series of determinations implies
that the QA page B is the prior context of C. Furthermore, C is regarded as more
relevant or significant than those QA pages that are listed in the recommendation
block of B.

,""'}”‘\\ /,""”1".\‘\
ORONONONONOONONNC CIORCEONNCRO)
© ®
() Local resetting links (b) Multiple-click links

JES

@@@@ @t

(c) Time-constrained links

Figure 6 Examples of QA latent browsing relations.
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4.2.2 Multiple-click relations

A multiple-click relation refers to the behavior in which a user visits more than one
QA page from a non-QA page. The sequence of QA pages visited through hyper-link
transitions from a non-QA page is referred to as a multiple-click group. The current
QA page prior to the non-QA page is considered as the context related to each QA
page in the multiple-click group. Formally, the multiple-click relation can be defined
as follows:

Definition 5 (Multiple-click relations) Given a segment of a QA session s =
(ei, €it1.-, €irr), the QA page y; in the QA event e; has a multiple-click relation to
each subsequent QA page in e}, if (1) the referred page x; in ¢; is different from each
xjin the subsequent QA event e; and (2) each consecutive QA event ¢; has the same
referred page x;, where i +1 < j<i+r.

An example of a multiple-click relation is illustrated by the dashed black links in
Figure 6b. A user first examines the QA page C, moves on to the non-QA page P,
discovers two QA pages { D, E} and visits each of them sequentially. The set of QA
pages {D, E} forms a multiple-click group. The current QA page prior to {D, E} is
C, which is considered as the context of both D and E. Consequently, there are two
multiple-click relations, C — D and C — E.

4.2.3 Time-constrained relations

We explore time-constrained relations for QA pages to improve the QA browsing
graph. In contrast to the previously mentioned latent relations, the time-constrained
relations may link the QA pages that are not consecutive and improve the neigh-
boring context of each QA page in a session by a given time constraint on this pair.
The browsing graph is modeled based on the property of Markov assumption. The
Markov assumption assumes that the page that a user will visit next only depends
on the current page and is independent of the pages that the user visited previously.
The Markov assumption is not realistic because the QA page that a user will visit
next may relatively depend on the QA pages that the user visited previously. Table 3
illustrates an example of a QA session. We observed that the first three QA pages
were highly relevant to the last QA page event, although the first two QA pages and
the last QA page were not repeatedly visited by the user.

To relax the Markov assumption, the time-constrained relation is considered,
where an imposed time constraint determines a flexible number of previously visited
pages for the QA page that a user will visit next. Specifically, a neighboring time
constraint maxspan specifies the maximal allowed time difference between a pair
of QA pages in a session. The time-constrained relation for a pair of QA pages is
defined as follows:

Table 3 An example of

. . ; Time-stamp Question subject
time-constrained relation -
among QA pages in a user QA 2009/07/21 21:08:39 About upload in facebook
session. 2009/07/21 21:09:25 How to upload photos to facebook
2009/07/21 21:12:29 How to upload photos to facebook
2009/07/21 21:12:57 Ask for help facebook experts
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Definition 6 (Time-constrained relations) Given a QA session s = (ey, ..., ¢,) and a
neighboring timing constraint maxspan, a pair of QA pages y; and y; has a time-
constrained relation if their corresponding QA events ¢; and e; are discontinuously
triggered by a user in a session and if the triggered time difference between ¢; and ¢;
is less than maxspan.

A QA browsing graph including time-constrained relations is illustrated in Fig-
ure 6¢ by dashed black links, with the assumption that maxspan is 60 s. We observe
that the amount of context (previously visited QA pages) that a QA page depends on
was extended and restricted by maxspan. The maxspan affects the fraction of prior
context that belongs to a QA page. The QA page that is located in the head of a
session has a higher probability to be part of the prior context of the latter QA page
in the session. In contrast, the QA page that is located in the end of a session has
an optimal prior context. The fraction of prior context is represented by the ratio
of incoming and outgoing time-constrained relations. As illustrated in Figure 6c, the
QA page that is located in the last position of a session E has the most incoming time-
constrained relations, whereas A has the most outgoing time-constrained relations.

Both the local resetting relations and the multiple-click relations that do not
satisfy the timing constraint must be eliminated from the QA browsing graph. With
the above relations, a QA latent browsing graph is a weighted and directed graph
G'=(V'US, E',W"), where S represents the pseudo vertex, each vertex v € V'
represents a QA page, each e € E' involved in S represents the global resetting
relations, and each e € E' connecting two QA pages represent a mixture of the
following relations: (i) browsed hyper-link transitions, (ii) local resetting relation
(under the time constraint maxspan), (iii) multiple-click relation (under the time
constraint maxspan), and (iv) time-constrained relations. The adjacency matrix of
G' is represented by W', where each entry w'(i, j) denotes the transition frequency
from vertex y; to y;. Formally, the weight of the edge €'(i, j) is defined as follows:

y, if y; = Sand y; € V' and the QA page y; appears y times
as the first QA event in a QA session
8, ify; € V'and y; = S and the QA page y; appears § times
w'(Q, ) = as the last QA event in a QA session (1)
¢, ify; e V'and y; € V' and the transitions from y; to y;
appears c times

0, otherwise.

5 Analysis of timing constraint

The timing constraint determines the amount of latent relations and the density of
the latent relation browsing graph. The amount of latent relations and the density
of the latent relations browsing graph increases in conjunction with maxspan. To
determine the value of maxspan, we address the following issues: (1) identify the
elementary features that influence the quality of the relations; (2) examine the effect
of these elementary features on the relation qualities as maxspan increases; and (3)
determine the value of maxspan.
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5.1 Indicators of the quality of relations

To address the first issue, we examine two aspects of qualities as follows: (i) the
relevance degree of a relation, and (ii) the behavioral coherence among a set of
relations.

Relevance degree The relevance degree of a relation refers to the relevance of a
pair of QA pages is in a relation. If the time difference between the pair of QA
pages is short, they are more likely to be relevant to each other. Table 4 presents an
example to support our observation in that QA pages involved in short relations tend
to be more relevant. Let the QA page on the left hand side of a relation be prefix
and the QA page on the right hand size be suffix. For example, the time difference
between QA page A and B is approximately 20 s, and they are considered highly
relevant because both pages are related to the topic of “free on-line movies.” In
contrast, the time difference between QA page A and D is approximately 900 s, and
they are considered less relevant because A is about “free on-line movies” and D is
about “free on-line music.” Furthermore, if a relation, such as (A,B), is supported by
several users, the pages are likely to be relevant. Consequently, we present a metric
to evaluate the relevance degree of a relation as follows:

w,;]-

ZkeN(i) Wi k

rel(i, j)' = @)

where w;; represents the transition frequency of the relation (x;, x;) and N(i)
represents the neighbors of x; given a pre-specified maxspan ¢.

Behavioral coherence The behavioral coherence among a set of relations refers to
the similarity of the QA pages that are visited after a particular QA page. Specifically,
given a QA page x; and a maxspan ¢, if the set of QA pages that are visited after x; are
markedly overlapped, then ¢ may sufficiently identify the relevant subsequent QA
pages for x;. As illustrated in Table 4, we observe that, after u; visited QA page A, u;
sequentially visited B. Similarly, after u, visited QA page A, u, sequentially visited
B and C. Given maxspan as 86 s, we observed the highest number of similar suffix
sets for the QA page A because the suffix set of u; for A within 86 s was { B} and that
of u, for A within 86 s was { B}. In contrast, u; and u, shared less coherence in their
browsing behavior when maxspan was longer than 86 s. In this case, we discovered
that the time difference determined a relative level of behavioral coherence, which

Table 4 Examples of short relations and long relations.

User ID Prefix Topic Suffix Topic t(s)

uj 1509072906787 (A) Free on-line 1008061704665 (B) Free on-line 23
movies movies

u 1509072906787 (A) Free on-line 1008061704665 (B) Free on-line 86
movies movies

u 1509072906787 (A) Free on-line 1008060702361 (C) Free on-line 284
movies movies

us 1509072906787 (A) Free on-line 1508072509613 (D) On-line mp3 919
movies website
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consequently indicated the relevance degree between the subsequent visited QA
pages to a particular QA page.
In summary, the key observations in terms of quality of relations are as follows:

e The relevance degree of a relation increases as the transition frequency increases
and the time different decreases.

e The behavioral coherence that is shared among a set of relations may be used to
measure the reliability of a timing constraint for a particular QA page.

5.2 Reliability testing

We considere the relevance degree and behavioral coherence to automatically
determine the value of the timing constraint, maxspan, as follows:

Given a QA page p and a timing constraint ¢, for each QA event e of visiting the
QA page p, we collect those QA pages visited after p within time window ¢ into a
suffix set, denoted as sf,. If the QA page is visited n times, a set of suffix sets of size
n, denoted as Suf fix(p) = {sf.1, ..., Sfen}, is obtained. We compute a similarity score
sim(s foi, s fe;) for each pair of suffix set sf; and sf.;. The Jaccard coefficient is used to
evaluate the similarity of a pair of suffix sets. We then derive an average similarity
score from the set of suffix sets. The average similarity score represent the reliability
of a timing constraint ¢ for prefix p and may be formally defined as follows:

1
! = / . .
Rp' = W Z sim (Sfe,, Sfe,) . (3)
2 ) i jeSuf fix(p)iti

We derive a reliability score for each time occurrence when a subsequent QA
page was visited after p to determine the optimal timing constraint. Considering the
collection of user behaviors in Table 4, four time occurrences are observed after
the prefix QA page A (i.e., t =23, 1= 86, t =284, and t = 919). We calculate the
reliability score at each time occurrence for the set of corresponding suffix sets
and then select the time occurrence with the highest reliability score as the timing
constraint ¢. In this example, t = 86 is chosen as the value of maxspan. A different
prefix QA page may have derived a different timing constraint. This is reasonable
because users may behave differently on various QA pages. A number of prefix QA
pages are followed by diverse content, which may require a longer maxspan for the
suffix sets to achieve coherence. On the other hand, a number of prefix QA pages are
consistently followed by similar QA pages, which tends to have a shorter maxspan.
(Table 5).

Table 5 Examples of short UserID  Prefix (=23 (=86 (=284 (=919
relations and long relations.

uj A B

753 A B C

u3 A D

R, 0 0.33 0.167 0.167
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6 Algorithms of latent browsing rank and QA recommendation

Given the QA browsing graph structures, the Continuous-time Markov Model is used
to derive the importance scores for the QA pages in Section 6.1. Then, given a query
QA page Q, we adopt Random Walk with Restart in the latent browsing graph to
recommend relevant QA pages.

6.1 Design of latent browsing rank

We propose Latent Browsing Rank (abbreviated as LBR) for computing the im-
portance scores of QA pages. Similar to BrowseRank [11], LBR relies on the
continuous-time Markov model. The details of BrowseRank are referred to in [11].

The concept of Browse Rank is to build a model of a continuous-time time-
homogeneous Markov process to simulate a random walk on a browsing graph
and to use the stationary probability distribution of the process as a measure of
page importance. To efficiently estimate the stationary probability distribution of a
continuous-time and time-homogeneous Markov process, BrowseRank leverages the
correspondence between a continuous-time and time-homogeneous Markov process
and a Q-process. Therefore, deriving the stationary probability distribution of a Q-
process is a problem in computing the page importance. According to [18], deriving
the stationary probability distribution of a Q-process may be reduced to the problem
of deriving a stationary probability distribution of the Embedded Markov chain
(EMC), which is a discrete-time Markov process. Let the stationary probability
distributions of a Q-process be r, where r; represents the importance of page x; and
the stationary probability distribution of an EMC be 7. As such, we derive r by the
following equation:

T
=t (4)
Zj:l qij/

where g;; represents the parameters in the Q-process and 7; represents the stationary
probability of page x;. Consequently, two tasks are required to determine page
importance, as follows: (1) g; estimation, and (2) deriving the stationary probability
distribution 7 of EMC.

To determine the LBR of QA pages in the QA latent browsing graph (i.e., a
QA latent browsing graph G' = (V' U S, E', W'), where W' denotes the transition
frequency matrix), we perform a column-normalized process to derive M' for each
column in W'. Then, for each QA page y;, the parameter ¢; that determined the
underlying staying time distribution of QA page y; was determined from a collection
of staying time information of y; by the following equation:

_ 1 1/, 1Y\
“éi“((“l*q,)‘z(“f‘q;))’ ®

where g;; < 0, u; represents the average staying time and o; represents the variance
of staying time.

The ranking vector is defined as 7 and initialized 7 with all elements equal to %,
where 7 is the number of vertices in G’. Given a damping factor «, which represents
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the probability of a random surfer remaining in a session instead of resetting to other
sessions, the transition probability matrix of the EMC Tgyc is estimated as follows:

a%—i—(l—a))/j, if Y, wix#0
Temc(, ) =\ V) it Y, wix=0, (6)
0, ifi=j

where w; ; denotes the number of transitions from node i to node j and y; denotes
the global resetting probabilities from the restart node to node j. Once the EMC
transition probability matrix Tgpyc is derived, the stationary probability distribution
7 is calculated for QA pages by a power iteration algorithm (line 4). The stationary
probability distribution 7 reflects the importance score of QA pages given the un-
derlying relation structure among QA pages. To incorporate the determined staying
time distributions into 7, the stationary probability distribution of the Q-process for
QA pages r is computed by (4), where each entry r; indicated its importance score
given the relation structure and staying time distribution (line 5).

Algorithm 1 Latent browsing rank.
Input:
G': a QA latent browsing graph,
a: a damping factor.
Output:
r: the vector of importance scores for QA pages.

Estimate g; for each QA page
Estimate the transition probability matrix of the EMC Tgpmc

3 Compute the stationary probability distribution of EMC for QA pages, 7, by
power iteration algorithm
Compute the stationary probability distribution of the Q-process for QA pages, r
return r

6.2 On-line QA recommendation module

The on-line QA recommendation module is presented in this section. Our recom-
mendation module (abbreviated as LBRR) is based on the Latent QA Browsing
graph. Specifically, given a query QA page O, the Latent QA Recommend aims to
compute the top-k QA pages that are most relevant to Q. Given a query QA O,
LBRR exploits Random Walks with Restart to retrieve the relevant QA pages in
QA browsing graph structures.

Given a QA latent browsing graph G', the column-normalized transition prob-
ability matrix of G’ is defined as M’ (line 2). The restart vector vy and the
relevance vector u¢ are initialized with all elements set to zero, except for the entry
corresponding to the query QA page Q, which is set to one (line 3-4). Then, the
relevance scores of each QA page related to Q is obtained by the Random Walk with
Restart model, which iteratively computes the following equation until the ranking
vector 1 converged (line 5-7):

qu“ =(- a)M‘qu + avg, (7)
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where k is the number of iterations, u"Q represents the relevance score of each QA
page in k" iteration, and « is the restart factor, which represents the probability
of a random surfer restarting from the current QA page to the query QA page
Q instead of following the outgoing relations to its neighboring QA pages in M’
(line 6). Consequently, a QA page y; in G’ is regarded as more relevant to Q
if the probability of a random surfer reaching the QA page y; from Q is higher.

After the relevance vector qu+1 is converged, ulgl is returned, where each entry

ug(@i)**! represents its relevance score to the query QA page Q. Finally, a list of
QA pages with top-k highest relevance scores are returned. If the relevance scores
of the returned QA pages are the same, their rank may be determined by the LBR
score. The algorithm for computing the relevance scores of QA pages for a query
QA page Q is summarized in Algorithm 2.

Algorithm 2 Latent browsing recommendation.
Input:
G': a QA latent browsing graph
«: a restart probability,
QO :a query QA page.
Output:
ug: the vector of relevance scores for query QA page Q.

Compute M'
Initialize r o
Initialize ugp = vg

while «/;" has not converged do

Update u"Q by qu“ =(1- oz)M’qu +avg
end
return u'gl: the vector of relevance scores for query QA page Q

N QA N R W N -

7 Performance evaluation

In this section, we first compare the effectiveness of our proposed graph models with
the BrowseRank in terms of importance rank of QA pages (Latent Browse Rank)
and relevance rank of QA pages (Latent Browse Recommendation Rank). Then,
we investigate the robustness of our proposed graph models by varying values of
maxspan.

7.1 Datasets and experimental settings

We conduct experiments with real datasets to evaluate the performance of the
proposed graph model. The dataset is collected over three days during July 2009 from
the commercial Question and Answering forums of Yahoo! Asia Knowledge Plus
(AKP). The dataset contains approximately 43 millions click events and 5.8 millions
clicked QA pages. The dataset is modeled into three types of graphs as follows:
browsing graph (BG), QA browsing graph (QA-BG) and QA latent browsing graph
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Table 6 Description of graph models.

Graph model maxspan (s) Number Number Graph density
of vertices of edges

BG None 3,375,998 2,708,259 475 x 1077

QA-BG None 3,162,988 2,675,099 5.35 x 1077

L-QA-BG(t300) 300 5,434,668 27,298,162 1.85 x 107©

L-QA-BG(t600) 600 5,496,791 39,235,500 2.60 x 107°

L-QA-BG(t1200) 1,200 5,519,518 47,315,599 3.11 x 107°

(L-QA-BG). As summarized in Table 6, the browsing graph BG contains both non-
QA pages and QA pages; and the QA-BG contains only QA pages. The L-QA-BG
only has QA pages with an imposed time threshold maxspan, ranging from 300 to
1200 s. Now, we compare the density of graphs, where given a graph, G = (V, E),
the graph density is computed as follows:

2|E]

DG)= ——F—.
) VIavi—=1

®)

7.2 Evaluation metrics

Both the importance ranking quality and relevance ranking quality are measured
in terms of three aspects as follows: (i) the amount of incoming transitions, (ii) the
accumulated staying time, and (iii) the number of multiple-click groups. Each of
these aspects is defined as follows:

Let the ranking list of QA pages generated by Latent BrowseRank on the QA
latent browsing graph L-QA-BG(t600) be TOP(L-QA-BG,t600); and the top QA
pages generated by BrowseRank on BG and QA-BG be TOP(BG) and TOP(QA-
BG), respectively. An indicator of popularity is proposed to measure the distribution
of the incoming hyper-link transitions over the rank. Specifically, we define the
popularity of a QA page g, I Ny, as the amount of incoming transitions of a QA page
q in the QA browsing graph QA-BG. Considering the ranking position, we define
the average number of incoming transitions for a QA page g at rank K as follows:

Zf:l INgep 9)
—x

Accordingly, the popularity measured by mean average incoming transitions of a
given ranking list is defined as follows:

Qg@K =

K
Zp:l Olq@](

In principle, given a ranking list with popular highly-ranked QA pages, the ranking
list achieves a higher score in terms of popularity at a higher rank in comparison with
a ranking list with unpopular highly-ranked QA pages.

An indicator of information quality, @K, is proposed to measure the distribution
of staying time over the rank. Specifically, we define the information quality of a QA
page g as the sum of a set of observations of staying time for a QA page ¢, denoted
as y,. The longer the total amount of time that users spent on a QA page g, the more

B@K = (10)
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informative the QA page is considered. Given a ranking list, the information quality
defined by total amount of time that users spent on a top-K ranking list is measured
as follows:

K
S@K =" ysap- (11)

p=1

In principle, given a ranking list with highly-ranked QA pages that are associated
with longer accumulated staying time, the ranking list achieves a higher score in terms
of information quality at a higher rank in comparison with a ranking list with QA
page that are associated with less staying time but are highly-ranked.

The indicator of reference value to evaluate the effectiveness of a ranking list is
proposed. Specifically, the value of a QA page g is measured by how the QA page
q associates with other QA pages. To measure the reference value of QA pages, we
identify multiple-click groups in the collected user behavior dataset and accumulated
the occurrences in multiple-click groups for each QA page g. A multiple-click group
is a set of QA pages with the same referrer. We maintain a minimum of two QA
pages in the dataset for these multiple-click groups. The reference value of a given
QA page g is measured by the number of multiple-click groups that g participated
in. The more multiple-click groups g participated in, the more QA pages g was
associated with. The more QA pages associated with ¢, the higher the reference
value of g. An example is illustrated in Figure 7, in which three multiple-click groups
are represented by dotted boxes. The QA page marked by a rectangle is of high
reference value because it participates in three multiple-click groups; whereas the
QA page marked by a circle is of less reference value because it has no associations.
In this case, the QA page represented by rectangle is more valuable than the QA
page represented by the circle because the QA page represented by the rectangle
frequently interact with other QA pages (Figure 8).

The metric notations with their corresponding descriptions are summarized in
Table 7. Let the number of multiple-click groups that a QA page g participates in
be n,. Considering ranking position, the average counts of multiple-click groups of a
given a QA page g at rank K is defined as:

K
2 -1 Ng@
p=1"q@p
€ =% 12
q@K Ve (12)
Figure 7 An example of . .
multiple-click groups. timeline >
Session 1 O
Session 2 O

Sessionn O iAI:I

@ Springer



624 World Wide Web (2012) 15:603-630
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Accordingly, given a ranking list of QA pages, the reference value defined by the
mean average counts of multiple-click groups at rank K is defined as:

K
_ €
Zp_l q@p. (13)

K

Similarly, if the QA pages that more frequently participates in multiple-click groups
are ranked higher in a given ranking list, the ranking list achieves a higher score in
terms of reference value when K is small.

@K =

7.3 Importance ranking quality

In the first set of experiments, we compare the ranking quality in different graph
models, as illustrated in Table 6.

7.3.1 Results and discussions

Figure 9 illustrates the comparison of the ranking results in terms of popularity
(B@K), information quality (§@ K) and reference value (1@ K) at varying K. From
this figure, we have the following observations.

First, the QA latent browsing graph, L-QA-BG(t600), tends to rank the
QA pages of large incoming transitions higher. As Figure 9a demonstrates,

Table 7 Metric notations used in experiments.

Notations Descriptions

Q@K Average number of incoming transitions for a QA page g at rank K
p@K Mean average incoming transitions of a given ranking list

Yq Sum of a set of observations of staying time for a QA page g

s@K Total amount of time that users spent on a top-K ranking list

Ng@p Number of multiple-click groups that a QA page ¢ participates in

€@K Average count of multiple-click groups of a given a QA page ¢ at rank K
@K Mean average count of multiple-click groups at rank K
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Figure 9 Comparison of ranking quality.

TOP(L-QA-BG,t600) exhibits a significant increase in the popularity score after
K = 18; whereas the popularity score in TOP(BG) and TOP(BG) is low and stable
over K. The QA page ranked at K = 18 in TOP(L-QA-BG,t600), denoted as ¢@18,
is an effectively-summarized documents that is illustrated with excellent pictures
and concise texts. It was visited by over ten thousand users within three days and
accumulated a large amount of incoming transitions from other QA pages in the
domain-specific browsing graph QA-BG. The QA page (q@18) was ranked at 83,642
in TOP(QA-BG). This difference is mainly because BrowseRank is highly sensitive
to the number of observations of staying time information. A few observations of
staying time information can result in a bias of the underlying staying time of a page.
Consequently, those pages with a markedly high standard deviation, but visited by
a few people (less than ten), are in TOP(BG). In contrast, popular pages such as
q@18 have a relatively low average staying time and standard deviation and are
regarded as less important by BrowseRank. The popular pages of a higher quality
may be highlighted with the help of the transitions that were derived from the implicit
information of user-perceived relevance among QA pages. A number of QA pages
with high quality in the top-10 of L-QA-BG(t600) are isolated in QA-BG and should
not appear in TOP(QA-BG). However, the implicit transitions in the QA latent
browsing graph may discover these pages.

Second, Latent Browsing Rank may rank those QA pages with excellent infor-
mation quality as high as illustrated in Figure 9b. Most QA pages in TOP(QA-BG)
have a significantly long average staying time or standard deviations, however, they
were visited by less than ten people. Unlike BrowseRank, which is sensitive to the
staying time distribution, Latent Browsing Rank emphasizes the importance of latent
relevance transitions. Consequently, the QA pages with a higher accumulated staying
time may be ranked higher by Latent Browsing Rank.

Third, Latent Browsing Rank tends to rank the frequently associated QA pages
higher. As Figure 9c demonstrates, the QA pages in TOP(L-QA-BG,t600) partici-
pated in more multiple-click groups. The QA pages in TOP(L-QA-BG,t600) are of
higher reference value because they are frequently co-visited with other QA pages.

7.3.2 Top-10 QA pages

Table 8 illustrates the top-10 QA pages that were produced by BrowseRank under
QA-BG and the top-10 QA pages that were produced by Latent Browsing Rank
under L-QA-BG(t600). Among the top-1000 QA pages that were produced by
QA-BG and L-QA-BG(t600), 0.14% were the same. The first column in Table 8
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Table 8 Top 10 QA pages produced by two different graph models.

Rank TOP (BG) TOP (L-QA-BG,t600)
1 [Family] channels to appeal for sudden surges  [Movie] the best Chinese Films you
of water consumption have ever seen
2 [Social and Human] what’s the civil culture? [Drama] TV channel and schedule for
nice Taiwanese Cinema
3 [Investment] a platform in domestic stock for [Movie] the Websites about the release
bidding “stop loss limit order” via intelligent of Chinese Films
investment tool
4 [Mind] healthy diet for effective defecation [Movie] Taiwanese Films during early
stage of Taiwan
5 [Literature] a translation for classical Chinese ~ [Movie] where can I buy the Chinese
Film “Wolf”
6 [Social and Human] comments on navy ship [Movie] the first Taiwanese films after
volunteer for military service World War II
7 [Education] where can I buy “magic follows” [Movie] TV channel for Chinese Films
8 [Health Care] dental clinic near MRT Dingxi [Movie] opinions about Taiwanese Films
Station
9 [Hardware] related issues in installing driver [Movie] the Websites to search for movies
for Bluetooth devices
10 [Party Politics] the cause of death of [Movie] the major Chinese Films in recent
Ching-feng Yin? ten years

illustrates the rank from 1 to 10. The second and third column summarizes the main
idea of the QA page at the corresponding rank.

7.4 Recommendation quality

We select 2000 QA pages of high visiting frequency as the query collection Q to
investigate the recommendation quality. For each query g € O, Random Walk with
Restart was performed on QA-BG, BG, and L-QA-BG(t600) to derive the recom-
mendation lists. The recommendation lists that were derived from QA-BG, BG and
L-QA-BG(t600) were denoted as Remd(QA-BG), Remd(BG), and Remd(L-QA-
BG,t600), respectively. The recommended QA pages for a query g were filtered
by a relevance threshold, that is, only the QA pages which are relevant to the
query g to certain extent will be recommended. After filtering, Remd(BG) contains
1,472 recommendation lists, Remd(QA-BG) contains 1,476 recommendation lists
and Remd(L-QA-BG,t600) contains 1,546 recommendation lists. In addition, a well-
known textual relevance model, BM25 [17], is implemented for comparing the rec-
ommendation quality. In BG25, the textual content for each QA page is collected and
modeled as a set of n-grams. In essence, the title of each QA g € Q isregarded as the
query and the list of QA pages returned by the textual relevance model is regarded
as the relevance search result for the QA page g. The collection of relevance
search lists of each query ¢ € Q derived by BM25 are denoted as Remd(Text). The
recommendation quality of Remd(QA-BG), Remd(BG), Remd(L-QA-BG,t600),
and Rcmd(Text) are shown in Figure 10, where the popularity, information quality
and reference value of different approaches are presented.

There are several observations from Figure 10. First, the recommendation results
derived from all graph models are better than the relevance search results derived
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Figure 10 Comparison of recommendation quality.

from the textual relevance model. The main reason is that the keyword-matching
technique used in BM25 may fail if QA pages contain the same keyword as in the
query QA page, but their contents are totally irrelevant to the topic of the query
QA page. On the other hand, BrowseRank and our proposed framework rely on
analyzing and modeling user browsing behavior, which avoid the keyword matching
problem. Second, Figure 10a indicates that the QA latent browsing graph tends
to recommend the QA pages with a high volume of incoming transitions. This is
because the QA latent browsing graph emphasizes the factor of linkage information
to correct the bias that results from a few sample problems in the staying time
distributions. Third, the QA latent browsing graph tends to recommend informative
QA pages, in which people are likely to spend a large amount of browsing time.
As illustrated in Figure 10b, the accumulated staying time increases dramatically
in Remd(L-QA-BG,t600) over K. Fourth, the QA latent browsing graph tends to
recommend QA pages of higher reference value. As illustrated in Figure 10c, the
number of multiple-click groups that were participated by QA pages in Remd(L-QA-
BG,t600) is markedly higher in comparison with Remd(QA-BG) and Remd(BG)
over K.

From the perspective of page importance, suppose a recommended QA page in
Remd(L-QA-BG,t600) that is produced by QA latent browsing graph is important if
it falls within top-10,000 of TOP(L-QA-BG,t600); and a recommended QA page in
Remd(QA-BG) is important if it falls within top-100,000 of TOP(BG). As illustrated
in Figure 8, at each rank K, Remd(L-QA-BG,t600) returns a higher number of
important QA pages than Remd(QA-BG). Overall, given Q, Remd(L-QA-BG,t600)
contained 117,196 important QA pages and Remd(QA-BG) contained 2,489 impor-
tant QA pages.

Particularly, we also compare Rcmd(QA-BG) and Remd(L-QA-BG,t600) in
terms of precision, recall and normalized Discount Cumulative Gain (NDCG) to
evaluate the potential effectiveness of the recommendation quality. The dataset is
partitioned into training and testing sets according to the time-stamps of records.
The amount of records in training data is 80% and the rest 20% of data is regarded as
testing data. Suppose the query collection Q is the collection of QA pages associated
with each record in testing data. Afterward, for each QA page g € Q, we collect the
list of clicked QA pages after g within time interval ¢ as the ground truth GT,,. Let the
top-K QA pages returned for the query g be S, the precision for the query collection
Q is defined as follows:

IGT, NSl

Precision@ K = ,
[S41

Vg e 0. (14)
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Figure 11 Comparison of recommendation quality in testing set.

The recall for the query collection Q is defined as follows:

IGT, N S,|

Recall @K =
|GT,|

Vg € Q. (15)

To highlight the ranking quality of recommendation results S,, we use discounted
cumulative gain defined as follows:

p=1 orel(p) _ |
DCG@K = — ., Vg € 16
; log(1 + p) q€@Q (16)

where rel(p)=1 if the QA pages ranked at position p falls within GT,; otherwise,
rel(p)=0.

Accordingly, the normalized discounted cumulative gain for a query ¢q is
computed as:

DCG@K
-2y
nDCG@K = - obomr Vg € O (17)

where IDCG@K is the DCG @K of ideal ordering at K.
As shown in Figure 11, the recommendation results derived from QA latent
browsing graph have higher precision, recall and nDCG than those derived from QA
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Figure 12 Comparison of ranking quality with varying value of maxspan.
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Figure 13 Comparison of recommendation quality with varying value of maxspan.

browsing graph. In other words, QA latent browsing graph potentially guarantees
higher on-line user click rates.

7.5 Sensitivity analysis

We illustrate the robustness of the QA latent browsing graph in this section. The
effectiveness of importance ranking and recommendation quality is sensitive to the
maximal allowed time difference between a pair of QA pages. Table 6 illustrates the
details of QA latent browsing graphs with varying values of maxspan.

In Figure 12, we observe that the ranking qualities with varying values of maxspan
displayed similar curves in terms of popularity, information quality, and reference
value. A slight difference is that Latent Browsing Recommendation with a smaller
maxspan highly ranks those QA pages with a higher popularity, excellent informa-
tion quality, and a higher reference value. In Figure 13, the recommendation quality
with maxsapn = 300 imposed on a QA latent browsing graph notably fluctuate in
comparison with maxsapn = 600 or higher over K.

8 Conclusions

We developed a framework of QA recommendation in QA forums, such as Yahoo!
Asia Knowledge Plus and Microsoft Answers. Explicitly, given a set of user click
streams, we proposed a QA browsing graph structure to capture the actual browsing
behaviors of the users of QA pages. We further explored the latent browsing
relationships among QA pages to improve the links in the QA browsing graph
because the QA browsing graph has more isolated QA pages. We also integrated
the staying time factor in determining the relevance among all QA pages for a
given query QA page. Our experiments on a collection of user browsing logs from
Yahoo! Asia Knowledge Plus indicated that the QA latent browsing graph and
staying time analysis provides superior performance to those of the baseline ones.
By performing Random Walk with Restart in the QA latent browsing graph, our
framework recommended QA pages that were highly related to a given query QA
page. Thus, due to the QA latent browsing graph, we proposed two types of scores
for QA pages (i.e., LBR and LBRR). Thus, our QA recommendation derived a list
of QA pages with more information and higher reference value, which indicates that
users are willing to spend their time on those pages after reading the query QA pages.
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