
EL-SEVIER Computers in Industry 27 (1995) 225-236 

Neural networks for precise measurement in computer vision 
systems 

Chao-Ton Su a, C. Alec Chang b3 * , Fang-Chih Tien b 
a Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchy Taiwan 30050, ROC 

b Department of Industrial Engineering, 113 EBW, University of Missouri-Columbia, Columbia, MO 65211, USA 

Received 21 April 1994; revised 24 January 1995 

Abstract 

Although computer vision systems have been successfully applied to some inspection tasks, they were generally not 
considered as precise measurement tools due to dimensional distortion and errors. This paper presents procedures to correct 
these errors for precise measurement. The first step is to formulate calibration models for image coordinate systems using 
neural networks. Then neural networks to model dimensional errors from the initial measurement are structured in a learning 
stage using standard parts. Finally these models are used to correct measurement errors in measurement tasks. These 
proposed procedures are implemented as an example. 

Keywords: Precise measurement; Dimensional inspection; Coordinate calibration; Error correction; Measurement correction; Neural 
networks; Back propagation; Computer vision 

1. Introduction 

Since the computer vision system was first devel- 
oped, it has been successfully applied to automated 
inspection tasks in many industrial processes such as 
printed circuit board, chip alignment and bonding 
and profile matching for machined parts [l]. These 
inspection tasks mainly utilize image subtraction, 
feature matching, diffraction, and spatial filtering to 
find differences between a part and its standard 
datum. In contrast, the application of computer vi- 
sion systems for measurement tasks has been less 
utilized. Due to image distortion and other system 

* Corresponding author. 

deformities, computer vision systems are seldom 
considered as precise measurement devices. 

When an industrial part is brought into the com- 
puter vision system, this part is scanned by a camera. 
The image of this part will be digitized both spatially 
and in amplitude. Digitization of the spatial coordi- 
nates is called image sampling and amplitude digiti- 
zation is referred to as gray-level quantization. After 
an image has been digitized, the thresholding tech- 
nique and boundary extraction method can be ap- 
plied to detect the edge points representing the pro- 
file of the part. Then a segmentation procedure can 
be used to decompose the part profile into linear 
edges or circular curves at certain joints. The K- 
curvature thresholding method is an effective method 
for this boundary segmentation task [2]. By calculat- 
ing the change of the K-curvature for each edge 
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point of the profile, break points of the profile can be 
detected. Finally, dimensional measurements can be 
made for these segmented edge lines. 

Generally the measurement errors of a computer 
vision system come from two major sources. They 
are system errors from hardware and measurement 
errors from software. System errors include digitiza- 
tion error, geometrical dissimilarity due to image 
distortion, curvature of fields of view and others. 

These system errors will seriously deform the ex- 
tracted boundary of a scanned part. Measurement 
errors are usually generated from the adopted algo- 

rithm that fits represented lines or curves for a 
segmented set of edge points. These errors could 
cause a large deviance from true dimensions. Wag- 
ner [3] suggests an uncertainty of at least * 1 pixel 
resolution value for each edge transition in a mea- 
surement. Ho [4] finds that the digitizing error of 
various geometric features must be expressed as a 

perimeter of the object. Chang, Chen and Lin [2] 
develop a two-step method to reduce the discarded 
edge points between two boundary lines for better 
precision in measurement. They also explore the 
representation errors for the measurements of a 
straight line edge, a circular arc and angles in their 
research [5]. However, none of these papers present a 
complete operational procedure to correct dimen- 
sional measurement errors in a computer vision sys- 
tem. 

Without an effective error correction procedure, 
computer vision systems can never be used as pre- 

cise measurement and inspection tools. The develop- 
ment of a systematic procedure to correct these 

errors in computer vision inspection systems is an 
urgent task for automated manufacturing systems. 
Therefore, the purpose of this paper is to present an 
effective error correction procedure that will reduce 
the errors of dimensional measurement in computer 
vision systems. 

2. Error correction for dimensional measure- 
ments 

Laboratory experiments consistently show that 
measurement errors estimated from the digitization 
approximation of a part profile into discrete image 
pixels are mostly underestimated. There are other 

errors from minute shadow of part edges, lighting 
variation and other unknown causes that cannot be 
easily approached analytically. In order to correct 
most errors in the use of vision systems, the empiri- 
cal approach is proposed to formulate measurement 
correction procedures. Geometric factors such as part 
size, geometric shapes, part location and orientation 
in the field of view can be associated with sources of 

measurement errors. Since a generic error correction 
model for all parts on all systems cannot be built 
readily, a system-dependent and part-dependent pro- 

cedure is proposed. In this case, the part position and 
part orientation will be the only influencing factors 
in error correction procedures. Errors associated with 
part sizes and geometric shapes are implicit in mod- 

(X,Y) coordinates of 
geometric feature-points 

: Coordinate Calibration Model ! 

Initial Measurement 

i Error Correction Models : 

Corrected Measurement 

Fig. 1. Error correction procedure for precise measurement. 
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els for each part. The position errors due to the 
surface distortion of the field of view can be cor- 
rected by a proper calibration of the coordinate 
system of a vision equipment set-up. Therefore, part 
orientations will be the independent factor for mea- 
surement correction models. Fig. 1 shows this pro- 
posed framework of error correction procedures. The 
stage of formulating error correction models is the 
“ learning process’ ‘, while the stage in implementing 
the developed models in a computer vision system is 
the “operational process”. 

For measurement correction, the following rela- 
tionship can be established in a learning process: 

‘p,=f(%), (1) 

where 40, is the ratio of the measured dimension to 
its true dimension of a geometric feature, and 19, is 

the orientation of the part scanned. Then, the cor- 
rected estimate of true dimension, kit, can be ob- 
tained in the operational process by 

*it = ri/Pr 7 (2) 

where ri is the initial dimension of a geometric 
feature measured. 

Neural networks can be a general mapping proce- 

dure for the input-.out patterns as shown in (see 
equation 1). The back propagation neural network 
does not require any prior information of functional 
relationships to map the input patterns to the output 
patterns [6-g]. When this method is applied to de- 
velop error correction models, it will generate the 

required correction ratio, cp,, in Eq. (1) from a part 
orientation. 

3. Error correction. using neural network models 

Neural network is a powerful technology that has 
been successfully applied to many tasks of manufac- 
turing systems. For example, Sasaki, Casasent and 
Natarajan [9] apply a neural network fed with opti- 

cally generated features to IC inspection. Javed and 
Sanders [lo] use a multi-layer neural network to 
structure a quality control monitor for zinc coated 

steel. Using a back propagation neural network, 
Neubauer 1111 develops an optical inspection system 
to detect and classify the defects on treated metal 
surfaces. Kroh, Durrani and Chapman [12] develop a 
new neural network architecture for feature recogni- 

tion in binary images. Masory [13] proposes a neural 
network model to find the relationship between 
multi-sensor readings and actual tool wears. Ipakchi 
et al. [14] develop a neural network-based analytical 
technique for instrument calibration. Their technique 

can predict the reading of a target instrument using 
data from other dissimilar instruments. Hou, Lin and 

Scott [15] propose an automated inspection system 
using a Hough Transform and a back propagation 
network for surface mount devices. Ker, Lynch and 
Kalale [16] develop a neural network approach to 
check radii of circular parts and differentiate be- 
tween good and defective products. Hwamg and 
Hubele [17] present a pattern recognition method for 
quality control charts based on the back propagation 
algorithm. Their algorithm can identify six types of 
unnatural patterns on _%? control charts, namely, 

trends, cycles, stratification, systematic, mixtures and 
sudden shift. 

When a set of input/output patterns is given to a 
feed forward neural network, the weights and the 
bias of structural nodes keep adjusting to decrease 
the difference between the network’s output and the 
target patterns. The back propagation learning algo- 
rithm involves a forward pass and a backward pass. 

Both passes are done for each pattern presentation 
during training. After the network reaches a satisfac- 
tory level of performance, the relationships between 
input and output patterns are defined and they can be 

used to estimate the output of new incoming pat- 
terns. In other words, the information is fed from the 
input nodes through the output nodes in the forward 

pass, and the calculations and updating are done 
layer by layer. Mathematically the net input to node 
i for pattern p is expressed as 

net,, = c Wljapj + biY 

j E previous layer 

where aPj is the activation value of unit j for the 
pattern p, wij is the weight from unit j (sending 
unit) to unit i (receiving unit), and bi is a bias 
associated with unit i. 

After the incoming sum is computed, a sigmoid 
function f is usually used to compute the output of 
unit i for the pattern p: 

1 
upi =f(netPi) = 

1 + exp( -net,,) . (4) 
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The difference between the network’s output and 
the target patterns is calculated and errors for hidden 
units are computed. An error function is then formed 

based on the total sum of square differences of the 
target value and actual output value of the ith output 
unit for the pth pattern from training data. The back 
propagation algorithm uses gradient descent on the 
error function with respect to weights. A recursive 
procedure is applied to calculate incremental values 
that are used to compute the weight changes in Eq. 
(3) for the network. In this recursive procedure, new 
incremental weights are obtained from the results of 

each run. When the total sum of squared error (tss> 
of all the output units is less than a selected criterion, 

the recursive procedure can be terminated. The struc- 
tured neural network derives an error correction ratio 
(cp) that will be multiplied to the initial measurement 
to produce a better measurement. 

4. Calibrating the image coordinate system 

When coordinates of edge points of an object are 
used to calculate its dimension, the pixel sizes of an 
image should be known precisely. However, in most 
systems, not only is the unit length of the pixel in the 
X direction not the same as that in the Y direction, 

but also the pixel size changes at different locations. 
For example, the ratio between the unit length in the 
X direction and that in the Y direction is 1.73 for a 
pixel around the center of an ITEX 100 Image 
Processing System. It changes to a different ratio 
when a pixel is away from the center. To improve 
measurement accuracy, a proper calibration of the 
image coordinates system is necessary prior to em- 

ploying the computer vision inspection system. 
Veeder [18] suggests that by measuring a certified 
master part and comparing the measured results with 
the true values according to the standard part, enough 
information can be obtained to correct the error from 
the video measuring system. Rodriguez, Mandeville 
and Wu [19], adopt an array of squares to calibrate 
the optical distortion of the camera. Improving these 
methods, we can develop a modeling approach to 
calibrate the different variations for different coordi- 
nate locations. 

directions for a single pixel at different positions is 

associated with different amounts of errors. Different 

coordinate calibration ratios must apply to image 
points at different positions. Fig. 2 shows an exam- 
ple of calibration points that can be used to build the 
relationships between the true object coordinates and 
their image coordinates at different positions. After 
scanning these circles, data sets of elliptical images 

are obtained because of the different unit lengths in 
the X direction and in the Y direction. The geomet- 
ric centers of the elliptical images are used for 

mapping the coordinates of the geometric center of 
the physical circles. Once the relationship between 
the image position and its true physical location is 
defined, the image coordinates of scanned image 
points can be calibrated. 

Assuming that N data sets are used on the entire 
image plane, the following procedure can be used to 
estimate the coordinates of the geometric center for 
each image Z,. Let (pij, qij) be the coordinates of the 
jth edge point for the ith image and ni is the number 

of edge points for the ith image. The geometric 
center for the ith image can be expressed as 

(Xi,Yi) = (+e$), (5) 

where i= 1,2,. ..,N and j = 1,2,. ..,n,. N is the 
number of circle images to be captured. Because the 
distortion is usually symmetrical around the center of 
the image plane and its distortion function is usually 
quadratic, at least three calibration points along one 
side of the image plane are required. At least nine 
data sets are required for the calibration of the whole 
image plane. 

The ratio between the length in the X and Y Based on the discussion above, the proposed pro- 

Fig. 2. Data points to structure neural networks for coordinate 

calibration. 
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cedure for the calibration of the image coordinate 
system can be summarized as follows: 

Procedure 1. Calibration for the image coordi- 
nates 
Position a precise X-Y table within the field of 
view; 

Attach a thin gauge block on the X-Y table and 
define the initial position of the ring contour as the 
origin of the field of view; 
Scan the ring gauge block to obtain an image, Z1; 
Decide the number of calibration points required, 

N (N 2 9); 
FOR i = 2,3,. . . ,N DO 

Translate the X-Y table a predetermined step 
distance (as Fig. 2); 
Record the true readings (xi, yi> from the X-Y 
table; 
Scan the ring gauge block to obtain an image, 

zi; 
END FOR, 
FOR each image Ii DO 

Get the coordinates of the edge points; 
Calculate the coordinates of the geometric cen- 
ter (xi, yi> by using Eq. (5); 

END FOR, 
Model the relatia’nships between (xf , y; ) and 
(xi, yi) by using neural networks. 

5. Correcting dimeusional measurement 

In order to apply the back propagation procedure 
for a feed forward neural network, a set of 
input/output patterns should be obtained. The initial 
dimensional measurement and orientations of the 
part should be obtained for the learning process. To 
collect an effective set of input/output data, one can 
position the rotary table within the field of view and 

place the part to be measured close to the center of 
the rotary table. By rotating the rotary table 8 de- 
grees in a counterclockwise (or clockwise) direction, 
where 8 is a predetermined increment for the part 
orientation, one can measure geometric features of 
the part at different orientations. Thus, a dimension 
ratio can be obtained by 

where 7ri is the initial measurement of a geometric 
feature after conducting coordinate calibration, rrTTt is 
the true dimension and 4prr, is the dimension ratio of 
the ith observation with orientation 0,. This proce- 
dure is presented to obtain an effective input-output 
set for network training: 

Procedure 2. Data collection for network training 
Position a precise rotary table within the field of 
view; 
Place the part to be measured close to the center 
of the rotary table; 
Scan the profile of the part at present location to 
obtain an image, I,; 

Let 8, = 0; 
FOR i = 2,3,. . . ,k, k = int[360/8], DO 

Rotate the rotary table 8 degrees in a counter- 
clockwise (or clockwise) direction, where 8 is a 
predetermined increment for the part orienta- 
tion; 

ei = ei_1 + 8; 
Scan the profile of the part to obtain an image, 

Ii; 
END FOR, 
FOR each image Zi DO 

Get the coordinates of the edge points; 
Calibrate these coordinates; 
Compute the radius size ri, length Li and angle 
7Yi by employing proper measurement methods; 

Set ‘p,, = ri/rr pL,=Li/L and ‘psi = $/a, 
where r, L and 6 are the true values for the 
radius size, length and angle of the part to be 
measured; 

END FOR. 

When the architecture of a neural network is 
selected to build error correction models, the orienta- 

tions of the geometric features to be measured are 
input to the input layer. To reduce the number of 
input variables, an orientation angle can be used for 
adjacent features as long as the same practice is used 
in its operational stage. If the value of the input 
pattern in the network is greater than 3, the value of 
the sigmoid function will be close to 1; and if the 
value of the input pattern is less than - 3, the value 
of the sigmoid function will be close to 0. In case 
there are too many values of the input pattern which 
are greater than 3 or less than -3, those input 
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patterns will block the back propagation procedure 
[20,21]. The output layer will have nodes corre- 
sponding to the number of correction ratios for geo- 
metric features. Since the observations of the target 
patterns must be within [O, 11 and the observations of 
the input patterns should be between -3 and 3, the 
data sets can be scaled and shifted. For example, the 
following scaling and translation is used on the data 

set in this paper: 
Input pattern: 

(7) 

Target pattern: 

(cp:,~~,~~>‘=(cp,--,cp,--,~~--f)t, (8) 

where 9,, 0, and 0, are the orientations of the 
circular arc, straight line edge and angle, respec- 
tively, and cp,, (pL and Q are the correction ratios 
for the measurement of radius, length and angles, 

respectively. 
Following the proposed data collection procedure, 

a set of training patterns (x,, tl>, (x2, t,>, . . . . 
(x,, t,) can be collected, where 

xi = ( 0~,Y0~i7e~,)‘7 (9) 

ti = ((P:,7&@. (10) 

When the learning rate and momentum coefficient 
are selected properly, the back propagation network 
can be used effectively in estimating the mapping 
function between cp’ and 8’ by choosing a reason- 
able number of layers and nodes in the hidden layers. 
The value of the total sum of squared errors (tss) can 
be used as an index for the performance of the 
trained network. If tss reaches a stable condition (or 

is less than some criterion), the training process is 
terminated. 

This proposed error correction procedure using 
neural networks can be summarized as follows: 

Procedure 3. Laming stage for network building 
1. Obtain a set of observed data, ((P,~,O, >, ((p,,8,.) 

and (~+B,~) , i = 12, . . . ,k, by using the’ prd- 
posed data collection procedure. 

2. Transform the observed data sets into a set of 
training patterns, ( x~,~J, i = 1,2, . . . ,k. 

3. Choose a set of network’s architecture. Deter- 
mine reasonable learning rate and the momen- 
tum coefficient. 

4. Train each network until the difference of the 
tss of two successive iterations is less than a 
predetermined tolerance. 

5. Choose a trained network with the smallest tss. 

Procedure 4. Operational stage for measurement 

correction 
1. 

2. 

3. 
4. 

5. 

Measure the radius r, length L and angle 19 of 
the part profile. 
Estimate the orientations of the circular arc, 
straight line edge and angle, i.e., decide (e,, 

e,, e,Y. 
Set (e;,e;,e;;>t = (e,/ioo,e,/ioo,e,/ioo)t. 
Present ($, 0;) 0; >’ to the trained network from 
the above learning procedures and compute the 

output (cp:,cpf, q&I’. 

Correct radius size by r/qr, length by L/cp, 
and angle by 8/q@, where 9 = p; + p, p E 

{r, L, S} and p is a translation constant as in 

the learning stage. 

6. Implementation 

This proposed measurement error correction pro- 
cedure is implemented on an ITEX 100 Image Pro- 

cessing System using a CCD camera with 512 by 
512 resolution. The measurements are carried out in 
the laboratory at 20°C room temperature. A precise 
mechanical part with known dimensions is used to 
verify the developed procedure. The four geometric 
features, the radius, two angles, and length of the 

segment are illustrated in Fig. 3. 
A coordinate calibration step is conducted first. 

The camera distance is set at 41.1 cm for a proper 

The averages of the 

mechanical measuring results: 

L = 0.90 10” f 0.0002” 

= 123.59” f 0.03” 

fi2 = 56.22” f 0.03” 

Fig. 3. A test part (aluminum alloy, thickness: 0.0260” f O.OOOS”). 
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field of view of the experiment. By following the 
proposed Procedure 1, a set of data points are de- 
rived by moving a circular gauge block according to 

a predetermined format in the field of view. In the 
present example, the number of calibration points is 
arbitrarily set as shown in Fig. 2. The boundary of 
the circular gauge block is scanned and its geometri- 
cal center is calculated as the input (Xi, yi) of the 
network. The comzsponding target values <X,!, y’) 
are the readings from the X-Y table. After the 

coordinates of the geometric centers are determined, 
the relationships between the image coordinates and 

their true coordinates can be established by using the 
neural network method following Procedure 1. This 
coordinate correction procedure is applied to all 

scanned boundary points of the part profile. 
In order to locate the pattern values into the 

feasible range to train neural networks, the input- 

output patterns, (Xi, y), are transformed as (Xi/loo, 
Y,/lOO). For netvlrork training, the Parallel Dis- 
tributed Processing Software (PDP) is used [22,23]. 
After several pilot runs, the learning rate (77) and 
momentum (K) are decided as 0.03 and 0.9. The 
networks with one and two hidden layers, 2-*-2 
(such as 2-4-2) and 2- * - * -2 (such as 2-4-4-2), 
are trained. The 2-6-2 network has the best perfor- 
mance in mapping. Its weights and biases are listed 

in Table 1. 
When the coordinates are calibrated, error correc- 

tion models can be structured following the proposed 
procedures. Many sharewares from Internet such as 

input 
layer hidden layer 

output 
layer 

cp,- 0.5 

(pL- 0.5 

k, - 0.5 

vu, - 0.5 

Fig. 4. Architecture of the 2-3-3-4 nehvork. 

the Laplacian operator or other gradient based meth- 

ods can be used to find edge lines. The Sobel’s edge 
detection method is used in this example for its 
speed. By applying the proposed Procedure2, forty 
observed data sets are collected from two repetitions 
with 18 degrees of angle increment. They are trans- 
formed into a set of training patterns (xi,ti> for the 
proposed Procedure 3, where 

ti=(~r,-~1~~,-t~~~li-f”~~2,-~)f, 
i=12 40. , ,***, 

There is no good algorithm indicating the starting 

values of leaning rate, moment, tss and an initial set 
of weights. The designation of these values of a 
feed-forward neural network is mainly a trial and 

error process. However, experiences of many re- 

Table 1 
Weights and biases of the 2-6-2 network for coordinate calibration 

j-i wij j-i wij node i 4 
o-2 1.019298 2-8 - 4.38538 2 - 3.854295 
1-2 0.009901 3-8 - 1.913018 3 0.498228 
o-3 0.088061 4-8 2.118208 4 1.365475 
l-3 - 0.292487 5-8 0.942664 5 2.115479 
o-4 - 0.387209 6-8 2.535533 6 0.698492 
l-4 0.03951 7-8 - 0.716094 7 0.132813 
o-5 - 0.015648 2-9 0.388515 8 - 0.011987 
l-5 - 0.520544 3-9 - 3.604298 9 1.075127 
O-6 - 1.921038 4-9 0.276105 
l-6 - 0.006703 5-9 - 3.739314 
o-7 0.017369 6-9 - 0.152341 
l-7 0.505321 7-9 4.500251 
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searchers provide us with some guidelines that can 
be summarized as follows [23,24]: 

(1) A heuristic rule recommended by Eberhart and 
Dobbins states that a reasonable number of neurons 
in each layer is around the square root of he number 
of input plus output neurons. As a result, the starting 
number of neurons in the hidden layer in this exam- 
ple is 2 and 2-2. 

(2) A random number generator supplies the ini- 
tial weight set. The range of randomization should be 
within f0.3. A range too wide may lead to network 

oscillation. 
(3) McClelland and Rumelhart frequently use val- 

ues of 0.5 and 0.9 for learning rate and momentum, 
respectively. In this project, these values are used as 
a place to start. 

(4) The tss is set to 0.01 initially. A maximum 
iteration is set at 100 000. If the network stops before 
reaching the maximum number of iterations allowed, 
reduce tss further. Otherwise, plot a tss graph. If the 

graph shows the trend that tss will further decrease, a 
larger learning rate can be used and the network 
trained again until it shows little sign of improve- 

ment. 
Several different networks have been tried. A 

2-3-3-4 network, as shown in Fig. 4, demonstrates 
the best performance. Accordingly, the model of the 
2-3-3-4 network is chosen to estimate the required 
correction ratios when a new input pattern 
(8,/100,19,/100)’ of an incoming part is given. 

The correction models obtained from Procedure3 
for the ratios of radius, length, angle 1 and angle 2 of 
the test part are as follows: 

Qr=;+ 
1 

1 + exp( -net,,) ’ 

Q&+ 
1 

1 + exp( -net,,) ’ 

1 1 
Q+r = 2 + 

1 + exp( - net,,,) ’ 

1 1 
Qfio42= - + 

2 1 + exp( -net,,,) ’ (11) 

where netpi = Cjwi ja,j + bi, j belongs to previous 
layer based on network 2-3-3-4, up,, = 8,/100 and 
upI = 0,./100 for the input layer. f3, is the orienta- 
tion of the circular arc and 0, is the orientation of 
the straight line edge between angle 1 and angle 2. 
The weights and biases of this network model, wij 
and bi, are listed in Table 2. 

This proposed error correction method is further 

conducted using 20 testing data sets for the struc- 
tured networks from Procedure3. A summary of 
corrected measurements using Procedure 4 is shown 
in Table 3. The absolute errors after a measurement 
correction of the radius, length, angle 1 and angle 2 
are much less than the errors of raw measurement. 
For example, the average absolute error of radius is 

Table 2 
Weights and biases of the 2-3-3-4 network for measurement calibration 

j-i wv j-i wij node i bi 

o-2 0.684261 4-7 1.764118 2 - 4.966747 
l-2 1.637231 5-8 2.329209 3 - 8.085383 
o-3 - 5.062571 6-8 3.590328 4 - 1.009515 
l-3 4.898856 7-8 1.861937 5 -3.031289 
o-4 2.812193 5-9 1.079458 6 1.789951 
l-4 - 2.510104 6-9 2.39857 7 - 3.141014 
2-5 6.998819 7-9 - 4.743825 8 - 3.110659 
3-5 - 2.892356 5-10 - 0.685486 9 - 0.750603 
4-5 1.020161 6-10 -0.819291 10 0.709865 
2-6 - 3.22185 7-10 0.43645 11 - 0.498287 
3-6 - 1.868098 5-11 0.101489 
4-6 - 1.104647 6-11 0.948275 
2-7 - 0.11002 7-11 5.410086 
3-7 6.60991 
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Fig. 5. A comparison of raw measurement and corrected measurement. 

decreased from 0.027 to 0.001. Its standard devia- 
tions of corrected measurements are reduced from 
0.298 to 0.002. A comparison of the errors for each 
test data before and after error correction is shown in 
Fig. 5. 

7. Discussion and Recommendation 

Due to the ability to map any set of input-output 
patterns, a practitioner may tend to structure one 

network to model the error correction ratio from raw 
data without a coordinate calibration step. In this 
approach, the inputs of the net work are four initial 
measurements, the position of the arc center, and the 
two orientations for the arc and the bottom edge 
obtained from the scanned image. For the training of 
such a network, the position (Xi, x), and the orienta- 
tions Co,, 0,) can be transformed into 
(XJlOO, yi/lOO) and (8,/100, $,/loo) in order to 
locate the input values within [ -3,3]. The target 
patterns of correction ratios (cp,, (pL, (~4~’ (~9~) can 
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be adjusted into the: interval [O, 11 by subtracting 0.5. 
The 8-12-4 network is the most efficient network, 
since it has a faster convergence and the lower tss 
among different networks. However, even though the 
measurement errors of Angle 1 and Angle2 are re- 
duced to 0.56 and 0.28 respectively, these errors and 
their standard deviations are still too large to satisfy 
common precision requirement in industry. There- 
fore, the one-step network structure for measurement 

correction is not recommended unless we can use a 
very large amount of learning data. If resources for 
learning procedures are limited, a calibration of the 

coordinate system :jhould be applied before training 
neural networks for measurement correction. More- 
over, this coordinate calibration model can be used 
for different parts using the same field of view. 
Finally, the setup (condition of a system should be 
recorded and maintained properly for each use of 
measurement correction models. 

Although the use of more data sets for network 
training may generate better results, it will also take 
longer time in learning. It takes about three hours in 
a personal computer with a 4b6DX2 processor com- 
puter to train the coordinate calibration model and 
additional four houlrs for the measurement correction 
model. Fortunately, this training is required only 

once during a system setup. The use of learned 
model in implementation stage takes only a frac- 
tional second. 

There are also statistical methods to derive map- 
ping equations to calibrate coordinate systems. For 
example, the regression method is also an effective 
procedure to formulate calibration models. In our 
experiments, results of corrected coordinates using 
regression models show compatible precision as us- 
ing neural network models. If the network training of 

coordinate correction models is tedious or cannot 
converge properly, this is an alternative to be consid- 
ered. However, the search of good function format 
for the regression method can be a very difficult 
task. 

With current technology advancement, computer 
vision systems can become a very versatile non-con- 
tact inspection sy.stem for precise measurement. 
However, a correction of raw measurements is essen- 
tial in using computer vision systems for measure- 
ment purposes. In this paper, we propose a neural 
network-based approach to correct the system errors 

in hardware and the measurement errors in measure- 
ment algorithms. The task of precise measurement 
can be accomplished using fine cameras and this 
proposed measurement correction procedure. With 
further research, effective neural network models to 
calibrate 3D vision systems can be expected in the 
near future. 
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